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Abstract: In this paper, we consider the fractional optimal control problem with the terminal
and running state constraints. The fractional calculus of derivatives and integrals can be viewed
as generalizations of their classical notions to any arbitrary real order. In our problem setup, the
dynamical system (or state equation) is captured by the fractional differential equation in the sense
of (left) Caputo with order α ∈ (0, 1), and the objective functional is formulated by the Bolza form
expressed as the left Riemann-Liouville fractional integral. In addition, there are terminal and running
state constraints; while the former is described by initial and final states within a convex set, the latter
is given by an explicit instantaneous inequality state constraint. We obtain the Pontryagin maximum
principle for the problem of this paper. The proof is based on an application of the Ekeland variational
principle and the spike variation, by which we develop fractional variational and duality analysis using
fractional calculus and functional analysis techniques, together with the representation results on (RL
and Caputo) linear fractional differential equations. In fact, due to the inherent complex nature of the
fractional control problem and the presence of the terminal and running state constraints, our maximum
principle is new in the optimal control problem, context and its detailed proof must be different from
that of the existing literature. As an application, we consider the linear-quadratic fractional optimal
control problem with terminal and running state constraints, for which the optimal solution is obtained
using the maximum principle of this paper.
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1. Introduction

Fractional calculus of derivatives and integrals can be viewed as generalizations of their classocal
ones to any real arbitrary order [1–3]. One important application of fractional calculus is a class of
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fractional differential equations, involving fractional derivatives (or integrals), which enables us to
describe more general and extraordinary phenomena observed in real world. Indeed, various types
of fractional differential equations and their applications have been studied in applied mathematics,
science, engineering, and economics; see [1–5] and the references therein.

Along with fractional differential equations, fractional optimal control problems, i.e., optimal
control for fractional differential equations in the sense of Riemann-Liouville (RL) and/or Caputo,
have been studied extensively in the literature under different formulations; see [6–22] and the
references therein. In particular, classical results on fractional optimal control problems were
obtained in [6–8]. The time optimal control problem for fractional differential equations was studied
in [9, 10]. The existence of optimal solutions for fractional optimal control problems was studied
in [11, 20]. The fractional dynamic programming approach with the Hamilton-Jacobi-Bellman PDE
was studied in [12, 13]. The linear optimal control problem for fractional differential equations was
considered in [14, 23]. Applications and numerical approaches of various fractional optimal control
problems were studied in [15–19, 24].

The optimal control problems and their Pontryagin maximum principles for the fractional optimal
control problems were studied in several different directions; see [20, 25–36] and the references
therein. Specifically, the researches in [25–28] considered the optimal control problem for RL and
Caputo fractional differential equations without state constraints, which use the Euler-Lagrangian
approach similar to [6, 7]. In [34], the Lagrangian multiplier method was applied to obtain the
necessary condition for optimality. However, it requires that the corresponding Hamiltonian is
smooth, and does not know the nontriviality of the corresponding Lagrangian multipliers. Moreover,
the terminal state constraint was not considered in [34]. In [29], a simple convex variation was applied
to obtain the maximum principle for the RL fractional optimal control problem. The Caputo fractional
optimal control problem without state constraints was studied in [30], where the sufficient condition
was also obtained under the convexity assumption. In [31, 32], the Caputo and Cucker-Smale
multi-agent fractional control problems without state constraints were studied, where the
corresponding control space was assumed to be compact. The authors in [36] studied the
controllability and existence of optimal control for the unconstrained case in the infinite-dimensional
case. In [35], the pseudospectral method for fractional optimal control problem was studied without
the state constraints. In addition, [33] studied the singular fractional optimal control problem.
Recently, the Caputo fractional optimal control problem with the terminal state constraint only was
considered in [20]. However, the research in [20] did not consider the running state constraint. We
also mention that the research in [22] studied the equivalent relationship between control problems for
fractional differential equations and Volterra integral equations, and its infinite-dimensional case was
treated in [21]. Notice that the research in [21, 22] did not consider the state constraints in the
corresponding maximum principles. We note that [37, 38] studied the nonfractional optimal control
problems with state constraints. Recently, [39] studied the general numerical methods for the
linear-quadratic fractional optimal control problem, where the Bolza-Riemann-Liouville objective
functional was considered. Moreover, [39] provided several practical examples of linear-quadratic
fractional optimal control problems such as the optimal drug scheduling of cancer chemotherapy
problem and the minimum fuel optimal control problem. We also mention that the research in [40]
considered the linear-quadratic fractional optimal control problem without state constraints, where
instead of the open-loop optimal solutions, the closed-loop optimal solution was obtained in terms of
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the Riccati-type equation.
In this paper, we consider the fractional optimal control problem with terminal and running state

constraints. The precise problem statement is given in Section 3. In our problem setup, the dynamic
constraint is captured by the fractional differential equation in the sense of Caputo with order α ∈ (0, 1),
and the objective functional is formulated by the left RL fractional integral. In addition, there are
terminal and running state constraints; while the former is described by initial and final states within
a convex set, the latter is expressed by an explicit instantaneous inequality state constraint. Note that
the general fractional optimal control problem with terminal and running state constraints has not been
sufficiently studied in the existing literature, which we address in this paper. Indeed, the earlier results
for fractional optimal control problems discussed above did not consider the case of both terminal and
running state constraints. We also mention that the research in [39] studied the numerical approaches
for solving the linear-quadratic fractional optimal control problem. Finally, in the existing literatures,
some standing assumptions in the fractional optimal control problem (e.g.,, the assumption of the
control space being closed or convex) are different from those in our paper.

We prove the wellposedness (equivalently, the existence and uniqueness of the solution) of the
Caputo fractional differential equation with order α ∈ (0, 1) (see Theorem 3.1). Although similar
versions of Theorem 3.1 are reported in the existing literature (e.g., [2, 41]), we provide its different
version and different proof. In particular, to prove Theorem 3.1, we first need to show the equivalent
RL fractional integral representation of the Caputo fractional differential equation. Then, we use the
Bielecki norm under an appropriate function space to apply the contraction mapping theorem. We also
obtain several important estimates of the Caputo fractional differential equation using the fractional
Gronwall’s inequality.

We obtain the explicit representation results of left Caputo linear fractional differential equations
with initial conditions and right RL fractional differential equations with terminal conditions, where
the latter is also dependent on the variable of the Lebesgue-Stieltjes measure (see Section 4). In both
cases, to obtain the desired representation formulas, a detailed analysis of the fundamental solution of
the left and right RL fractional state-transition matrices has to be carried out, and the careful use of
Fubini’s formula is needed. While the representation result of left Caputo linear fractional differential
equations was presented in ( [42], Theorem 5.1), we provide its different version of the representation
result in Lemma 4.2 using the definition of (left and right) RL fractional state-transition matrices.
Furthermore, the representation result of right RL fractional differential equations with terminal
conditions in Lemma 4.3 has not been reported in the existing literature. Note that the results in
Section 4 are independent from our main result.

The main result of this paper is the Pontryagin maximum principle (see Theorem 5.1). Since the
control space U is only a separable metric space and does not have any algebraic structure (see
Assumption 3.1), we have to employ the spike perturbation technique. Due to the inherent complex
nature of the fractional control problem and the presence of the terminal and running state constraints,
our maximum principle and its detailed proof must be different from those of the existing
literature (e.g., [20, 29, 31]). Specifically, in the proof (see Section 7), we need to formulate the
penalized unconstrained fractional control problem, for which the Ekeland variational principle has to
be applied. Then, to develop the variational and duality analysis via the spike variation, we have to
use the fractional calculus and the intrinsic properties of distance functions (with functional analysis
techniques), together with the fractional Gronwall’s inequality, the representation results of (left and
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right) Caputo and RL linear fractional differential equations (see Theorem 3.1 and Section 4*), and
the technical lemma (see Lemma C.1 in Appendix C†). Moreover, the proofs for the complementary
slackness and the transversality condition are essentially required due to the presence of the terminal
and running state constraints. We mention that our proof technique of the maximum principle for the
fractional optimal control problem has not been presented in the existing literature.

As an application, we consider the linear-quadratic fractional optimal control problem with terminal
and running state constraints (see Section 6 and Proposition 6.1 ). We obtain the optimal solution to
the linear-quadratic problem using the maximum principle of this paper (see Theorem 5.1), and then
discuss the computational method to obtain the unknown variables in the maximum principle (see
Proposition 6.1 and Remark 6.1). Indeed, we mention that various numerical approaches for solving
linear-quadratic fractional optimal control problems can be found in [39, 44, 45] and the references
therein (see Remark 6.1).

Our maximum principle in Theorem 5.1 can be viewed as an extension of [20, 29, 31] in several
different directions (see Remarks 3.1 and 5.2). In particular, the researches in [20, 29, 31] did not
consider both terminal and running state constraints. In addition, the control spaces in [20, 29, 31]
need to be compact or closed, whereas we assume only separability without convexity (see
Assumption 3.1). Hence, the problem formulation of this paper is different from that of [20, 29, 31],
and the new approaches and techniques have to be developed in this paper (particularly the proof of
the maximum principle in Section 7 and the representation results in Section 4). Indeed, the
maximum principle of this paper is new in the optimal control problem context and its proof requires
to develop a new technique, both of which are not reported in the existing literature. Note also that
recently, [46] obtained the maximum principle for optimal control of infinite-dimensional
Caputo-type evolution equations under the end-point terminal state constraint only. Hence, the
approach of [46] cannot be used to solve the problem with both terminal and running state constraints
considered in our paper. We also mention that ( [46], Theorem 3.1 and Remark 3.2) requires
additional assumptions in the corresponding maximum principle due to the infinite-dimensional
nature of the problem formulation. Finally, the example studied in this paper is different from that
in [46]. Indeed, this paper considers the linear-quadratic problem with both terminal and running state
constraints, whereas [46] studied the fractional heat equation with the terminal state constraint only.

The paper is organized as follows. Preliminaries on fractional calculus are given in Section 2. We
formulate the problem and then provide the wellposedness result in Section 3. In Section 4, we present
the representation results of (left and right) Caputo and RL linear fractional differential equations. The
maximum principle of this paper is stated in Section 5. The application of the maximum principle
to the state-constrained fractional linear-quadratic problem is studied in Section 6. The proof for the
maximum principle is provided in Section 7. We conclude our paper in Section 8. In Appendix A, we
provide the proof of the results in Section 3. In Appendix B, we give the variational analysis, which is
needed in Section 7. In Appendix C, we provide the technical lemma used in Section 7.

*In Section 4, we prove the representation formulas of the solution to the left Caputo and right RL fractional differential equations,
where the latter includes the Lebesgue-Stieltjes integral, in terms of the (left and right) RL fractional state-transition matrices. Note that
the results in Section 4 have not been reported in the existing literature.

†We mention that the proof of Lemma C.1 in Appendix C requires a new technique compared with its nonfractional version in ( [43],
Corollary 3.8, Chapter 4).
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2. Preliminaries on fractional calculus

In this section, we provide some preliminary results on fractional calculus. More detailed results on
fractional calculus can be found in [1, 2] and the references therein.

Let Rn be the n-dimensional Euclidean space, where ⟨x, y⟩ := x⊤y is the inner product and |x| :=
⟨x, x⟩1/2 is the norm for x, y ∈ Rn. For A ∈ Rm×n, A⊤ denotes the transpose of A. Let In be an n × n
identity matrix. Define 1S (·) by the indicator function of any set S . Let Γ be the Gamma function.

For any differentiable map f : Rn → Rl, let ∂x f : Rn → Rl×n be the partial derivative of f with
respect to x ∈ Rn. Note that ∂x f =

[
∂x f ⊤1 · · · ∂x f ⊤l

]⊤
with ∂x f j ∈ R

1×n, and when l = 1, ∂x f ∈ R1×n.
For any differentiable map f : Rn×Rl → Rl, ∂x f : Rn×Rl → Rl×n for x ∈ Rn, and ∂y f : Rn×Rl → Rl×l

for y ∈ Rl.
Let t0, t f ∈ [0,T ] with t0 < t f be fixed. Define the following spaces:

• Lp([t0, t f ];Rn), p ≥ 1: the space of functions ψ : [t0, t f ] → Rn such that ψ is measurable and
∥ψ(·)∥Lp,n := (

∫ t f

t0
|ψ(t)|pRndt)

1
p < ∞ (∥ψ(·)∥L∞,n := ess supt∈[t0,t f ] |ψ(t)| < ∞ when p = ∞);

• C([t0, t f ];Rn): the space of functions ψ : [t0, t f ] → Rn such that ψ is continuous and ∥ψ(·)∥∞,n :=
supt∈[t0,t f ] |ψ(t)| < ∞;
• AC([t0, t f ];Rn): the space of functions ψ : [t0, t f ]→ Rn such that ψ is absolutely continuous;
• BV([t0, t f ];Rn): the space of functions ψ : [t0, t f ] → Rn such that ψ is of bounded variation on

[t0, t f ].

The norm on BV([t0, t f ];Rn) is defined by ∥ψ(·)∥BVn := ψ(t0) + TV(ψ), where
TV(ψ) := sup(tk)k

{∑
k |ψ(tk+1) − ψ(tk)|

}
< ∞ with the supremum being taken by all partitions of [t0, t f ].

Let NBV([t0, t f ];Rn) be the space of functions ψ(·) ∈ BV([t0, t f ];Rn) such that ψ(·) ∈ BV([t0, t f ];Rn)
is normalized, i.e., ψ(t0) = 0 and ψ is left continuous. The norm on NBV([t0, t f ];Rn) is defined by
∥ψ(·)∥NBVn := TV(ψ). When ψ(·) ∈ NBV([t0, t f ];R) is monotonically nondecreasing, we have
∥ψ(·)∥NBV := ∥ψ(·)∥NBV1 = ψ(t f ). Recall that both (BV([t0, t f ];Rn), ∥ · ∥BVn)
and (NBV([t0, t f ];Rn), ∥ · ∥NBVn) are Banach spaces.

Definition 2.1. (i) For f (·) ∈ L1([t0, t f ];Rn) and t ∈ [t0, t f ], the left Riemann-Liouville (RL)
fractional integral Iαt0+[ f ] of order α > 0 is defined by Iαt0+[ f ](t) :=

∫ t

t0
(t−s)α−1

Γ(α) f (s)ds.

(ii) For f (·) ∈ L1([t0, t f ];Rn) and t ∈ [t0, t f ], the right RL fractional integral Iαt f−
[ f ] of order α > 0 is

defined by Iαt f−
[ f ](t) :=

∫ t f

t
(s−t)α−1

Γ(α) f (s)ds.

Lemma 2.1. ( [1], Lemma 2.1) For any f (·) ∈ L1([t0, t f ];Rn), ∥Iαt0+[ f ](·)∥L1,n ≤ K∥ f (·)∥L1,n and
∥Iαt f−

[ f ](·)∥L1,n ≤ K∥ f (·)∥L1,n , which implies Iαt0+[ f ](·), Iαt f−
[ f ](·) ∈ L1([t0, t f ];Rn).

Lemma 2.2. ( [1], Lemma 2.3) For any f (·) ∈ L1([t0, t f ];Rn) and α, β > 0, the following semigroup
property holds: Iαt0+[I

β
t0+[ f ]](·) = Iα+βt0+ [ f ](·) = Iβ+αt0+ [ f ](·) = Iβt0+[I

α
t0+[ f ]](·) and

Iαt f−
[Iβt f−

[ f ]](·) = Iα+βt f−
[ f ](·) = Iβ+αt f−

[ f ](·) = Iβt f−
[Iαt f−

[ f ]](·).

Lemma 2.3. ( [2], Theorem 2.6) For f (·) ∈ L∞([t0, t f ];Rn), Iαt0+[ f ](·), Iαt f−
[ f ](·) ∈ C([t0, t f ];Rn).

Definition 2.2. (i) For f (·) ∈ L1([t0, t f ];Rn), the left RL fractional derivative Dα
t0+[ f ] of order α ∈

(0, 1) is defined by Dα
t0+[ f ](t) := d

dt

[
I1−α
t0+ [ f ]

]
(t), provided that I1−α

t0+ [ f ](·) ∈ AC([t0, t f ];Rn). In this
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case, we have Dα
t0+[ f ](·) ∈ L1([t0, t f ];Rn). Let DRL α

n t0+ be the set of functions f (·) ∈ L1([t0, t f ];Rn)
such that f admits the left RL fractional derivative Dα

t0+[ f ] of order α ∈ (0, 1).

(ii) For f (·) ∈ L1([t0, t f ];Rn), the right RL fractional derivative Dα
t f−

[ f ] of order α ∈ (0, 1) is defined

by Dα
t f−

[ f ](t) := − d
dt

[
I1−α
t f−

[ f ]
]
(t), provided that I1−α

t f−
[ f ](·) ∈ AC([t0, t f ];Rn). In this case, we have

Dα
t f−

[ f ](·) ∈ L1([t0, t f ];Rn). Let DRL α
n t f−

be the set of functions f (·) ∈ L1([t0, t f ];Rn) such that f
admits the right RL fractional derivative Dα

t f−
[ f ] of order α ∈ (0, 1).

Remark 2.1. Note that when α = 1, the notions of fractional integral and derivatives are reduced to
those of usual ones [1, 20] (see [1], Chapter 2).

Let Dα
t0+[ f (·)](·) := Dα

t0+[ f ](·) and Dα
t f−

[ f (·)](·) := Dα
t f−

[ f ](·), where (·) in the square bracket is used
to emphasize the integration of f with respect to the other variable.

Definition 2.3. (i) For f (·) ∈ C([t0, t f ];Rn), the left Caputo fractional derivative DC α
t0+[ f ] of order

α ∈ (0, 1) is defined by DC α
t0+[ f ](t) := Dα

t0+[ f (·) − f (t0)](t), where f (·) − f (t0) ∈ DRL α
n t0+. In this

case, we have DC α
t0+[ f ](·) ∈ L1([t0, t f ];Rn). Let DC α

n t0+ be the set of functions f (·) ∈ C([t0, t f ];Rn)
such that f admits the left Caputo fractional derivative DC α

t0+[ f ] of order α ∈ (0, 1).

(ii) For f (·) ∈ C([t0, t f ];Rn), the right Caputo fractional derivative DC α
t f−

[ f ] of order α ∈ (0, 1) is
defined by DC α

t f−
[ f ](t) := Dα

t f−
[ f (·) − f (t f )](t), where f (·) − f (t f ) ∈ DRL α

n t f−
. In this case, we have

DC α
t f−

[ f ](·) ∈ L1([t0, t f ];Rn). Let DC α
n t f−

be the set of functions f (·) ∈ C([t0, t f ];Rn) such that f
admits the right Caputo fractional derivative DC α

t f−
[ f ] of order α ∈ (0, 1).

3. State-constrained fractional optimal control problem

Consider the Rn-valued left Caputo fractional differential equation with order α ∈ (0, 1): DC α
t0+[X](t) = f (t, X(t), u(t)), t ∈ (t0, t f ],

X(t0) = X0 ∈ R
n,

(3.1)

where X(·) ∈ Rn is the state with the initial condition X0 ∈ R
n, u : [t0, t f ] → U is the control input

with U being the control set, and f : [t0, t f ] × Rn × U → Rn is the driver of the Caputo fractional
differential equation. LetU := {u : [t0, t f ] → U | u is measurable} be the space of admissible controls
for (3.1). We sometimes use the notation X(·; X0, u) := X(·) to stress the dependency of (3.1) on the
pair (X0, u(·)) ∈ Rn ×U.

Assumption 3.1. (i) (U, ρ) is a separable metric space, where ρ is the corresponding metric.

(ii) f (·, X, u) ∈ L∞([t0, t f ];Rn), and it holds that supu∈U | f (t, x, u)| < ∞ for (t, x) ∈ [t0, t f ]×Rn. (X, u) 7→
f (t, X, u) is Lipschitz continuous, i.e., there is a constant L ≥ 0 such that for any t ∈ [t0, t f ]
and (X, u), (X′, u′) ∈ Rn × U, | f (t, X, u) − f (t, X′, u′)| ≤ L(|X − X′| + ρ(u, u′)), and it holds that
| f (t, 0, u)| ≤ L(1 + |X|).

(iii) X 7→ f (t, X, u) is continuously differentiable, where (t, X, u) 7→ ∂X f (t, X, u) is continuous, and
(X, u) 7→ ∂X f (t, X, u) is Lipschitz continuous with the constant L ≥ 0.

The following theorem shows the wellposedness of (3.1). Its proof can be found in Appendix A.
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Theorem 3.1. Let Assumption 3.1 hold. Then, the following statements hold:

(i) The solution of (3.1), X(·) ∈ DC α
n t0+, can be expressed as the left RL fractional integral form given

by X(t) = X0 + Iαt0+[ f (·, X(·), u(·))](t);

(ii) For any (X0, u(·)) ∈ Rn ×U, (3.1) has a unique solution of X(·) ∈ DC α
n t0+;

(iii) For any (X0, u(·)), (X′0, u
′(·)) ∈ Rn ×U, we have

sup
t∈[t0,t f ]

|X(t; X0, u) − X′(t; X′0, u
′)| ≤ b(t f ) +

∫ t f

t0

∞∑
k=1

(LΓ(α))k

Γ(kα)
(t f − s)kα−1b(s)ds, (3.2)

sup
t∈[t0,t f ]

|X(t; X0, u)| ≤ b′(t f ) +
∫ t f

t0

∞∑
k=1

(LΓ(α))k

Γ(kα)
(t f − s)kα−1b′(s)ds, (3.3)

where b(t) := |X0 − X′0| + L
∫ t

t0
(t−s)α−1

Γ(α) ρ(u(s), u′(s))ds and b′(t) := |X0| + L
∫ t

t0
(t−s)α−1

Γ(α) ds.

The objective functional is given by the following left RL fractional integral with order β ≥ 1:

J(X0; u(·)) = Iβt0+[l(·, X(·), u(·)](t f ) + m(X0, X(t f )), (3.4)

where by Definition 2.1,

Iβt0+[l(·, X(·), u(·)](t f ) =
∫ t f

t0

(t f − s)β−1

Γ(β)
l(s, X(s), u(s))ds.

In (3.4), l : [t0, t f ] × Rn × U → R is the running cost and m : Rn × Rn → R is the terminal cost. The
fractional optimal control problem of this paper is formulated as follows:

(P) inf
u(·)∈U

J(X0; u(·))

subject to the terminal and running state constraints given by(X0, X(t f )) ∈ F ⊂ R2n,

Gi(t, X(t)) ≤ 0, ∀t ∈ [t0, t f ], i = 1, . . . , q.
(3.5)

Assumption 3.2. (i) l(·, X, u) ∈ L∞([t0, t f ];R), and (X, u) 7→ l(t, X, u) is continuous.
(X, X′) 7→ m(X, X′) is continuous.

(ii) X 7→ l(t, X, u) is continuously differentiable, where (t, X, u) 7→ ∂Xl(t, X, u) is continuous, and
(X, u) 7→ ∂Xl(t, X, u) is Lipschitz continuous with the constant L ≥ 0. (X, X′) 7→ m(X, X′) is
continuously differentiable, where (X, X′) 7→ ∂Xm(X, X′) and (X, X′) 7→ ∂X′m(X, X′) are Lipschitz
continuous with the constant L ≥ 0.

(iii) F is a nonempty closed convex subset of R2n. (t, X) 7→ G(t, X) :=
[
G1(t, X) · · · Gq(t, X)

]⊤
with

Gi : [t0, t f ]×Rn → R, i = 1, . . . , q, is continuous, where X 7→ G(t, X) is continuously differentiable
with (t, X) 7→ ∂XG(t, x) being bounded.

AIMS Mathematics Volume 10, Issue 1, 884–920.



891

Remark 3.1. Assumptions similar to Assumptions 3.1 and 3.2 have been used in various optimal
control problems and their maximum principles; see [21, 22, 43, 47–51] and the references therein.
Also, we extend [20, 29, 31]. In fact, the researches in [29, 31] did not consider any state constraints,
and [20] considered only the terminal state constraint. Furthermore, the control spaces in [20,29,31]
need to be compact or closed, whereas we assume only separability without convexity (see
Assumption 3.1). The fractional control problem with both terminal and running state constraints
formulated in (P) has not been studied in the existing literature.

4. Representation results on linear fractional differential equations

In this section, we provide the representation results of (RL and Caputo) linear fractional
differential equations via RL fractional state-transition matrices. Note that the results of this section
are independent from the main result of this paper in Theorem 5.1.

Definition 4.1. Let F(·) ∈ L∞([t0, t f ];Rn×n). The left RL fractional state-transition matrix Π(·, τ) ∈
DRL α

n×n τ+ with t0 ≤ τ ≤ t ≤ t f is defined by

Π(t, τ) =
(t − τ)α−1

Γ(α)
In +

∫ t

τ

(t − r)α−1

Γ(α)
F(r)Π(r, τ)dr, (4.1)

which is the solution to the following left RL fractional differential equation:Dα
τ+[Π](t, τ) = F(t)Π(t, τ), t ∈ (τ, t f ],

I1−α
τ+ [Π](τ, τ) = In.

Lemma 4.1. The left RL fractional state-transition matrix given in (4.1) can be written as the following
backward fractional integration form:

Π(t, τ) =
(t − τ)α−1

Γ(α)
In +

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)F(r)dr. (4.2)

Proof. By the right-hand-side of (4.2), let

Π̂(t, τ) =
(t − τ)α−1

Γ(α)
In +

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)F(r)dr. (4.3)

Then, we need to show the equivalence of (4.1) and (4.3). Hence, we have to prove the following
result: ∫ t

τ

(t − r)α−1

Γ(α)
F(r)Π̂(r, τ)dr =

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)F(r)dr. (4.4)

Clearly, (4.4) holds when t = τ. Then, (4.4) follows by Fubini’s formula ( [52], Theorem 3.3,
Chapter 6), since we can show that∫ t

τ

(t − r)α−1

Γ(α)
F(r)Π̂(r, τ)dr
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=

∫ t

τ

(t − r)α−1

Γ(α)
F(r)

(r − τ)α−1

Γ(α)
Indr +

∫ t

τ

(t − r)α−1

Γ(α)
F(r)

∫ r

τ

(ν − τ)α−1

Γ(α)
Π(r, ν)F(ν)dνdr

=

∫ t

τ

(t − r)α−1

Γ(α)
F(r)

(r − τ)α−1

Γ(α)
Indr +

∫ t

τ

∫ t

r

(t − ν)α−1

Γ(α)
F(ν)Π(ν, r)dν

(r − τ)α−1

Γ(α)
F(r)dr

=

∫ t

τ

(t − r)α−1

Γ(α)
F(r)

(r − τ)α−1

Γ(α)
Indr +

∫ t

τ

(
Π(t, r) −

(t − r)α−1

Γ(α)
In

) (r − τ)α−1

Γ(α)
F(r)dr

=

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)F(r)dr.

This completes the proof. □

Indeed, we can see that (4.2) in Lemma 4.1 comes from the following definition:

Definition 4.2. Let F(·) ∈ L∞([t0, t f ];Rn×n). The right RL fractional state-transition matrix Π(t, ·) ∈
DRL α

n×n t− with t0 ≤ τ ≤ t ≤ t f is defined by

Π(t, τ) =
(t − τ)α−1

Γ(α)
In +

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)F(r)dr, (4.5)

which is the solution to the following right RL fractional differential equation:Dα
t−[Π](t, τ) = Π(t, τ)F(τ), τ ∈ [t0, t),

I1−α
t− [Π](t, t) = In.

We state the representation result of left linear Caputo fractional differential equations with initial
conditions.

Lemma 4.2. Let F(·) ∈ L∞([t0, t f ];Rn×n) and G(·) ∈ L∞([t0, t f ];Rn). Consider the following left Caputo
fractional differential equation: DC α

t0+[Q](t) = F(t)Q(t) +G(t), t ∈ (t0, t f ],
Q(t0) = Q0 ∈ R

n.
(4.6)

Then, (4.6) admits a unique solution Q(·) ∈ DC α
n t0+. Furthermore, the solution of (4.6) is given by

Q(t) = Q0 +

∫ t

t0
Π(t, s)(F(s)Q0 +G(s))ds, (4.7)

where Π is the left RL fractional state-transition matrix associated with F in Definition 4.1.

Proof. As (4.6) is a linear Caputo fractional differential equation, the existence and uniqueness of
the solution of Q(·) ∈ DC α

n t0+ follows from Theorem 3.1. We now prove (4.7). By Theorem 3.1 and
Definition 2.1, (4.6) is equivalent to

Q(t) = Q0 +

∫ t

t0

(t − τ)α−1

Γ(α)
(F(τ)Q(τ) +G(τ))dτ. (4.8)
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To show (4.7), we have to prove that (4.7) satisfies the integral representation in (4.8). Specifically, by
comparing (4.7) and (4.8), we need to verify the following result:∫ t

t0

(t − τ)α−1

Γ(α)
(F(τ)Q(τ) +G(τ))dτ =

∫ t

t0
Π(t, s)(F(s)Q0 +G(s))ds. (4.9)

Obviously, (4.9) holds when t = t0. For t ∈ (t0, t f ], using (4.7), it follows that∫ t

t0

(t − τ)α−1

Γ(α)
(F(τ)Q(τ) +G(τ))dτ =

∫ t

t0

(t − τ)α−1

Γ(α)
F(τ)Q0dτ +

∫ t

t0

(t − τ)α−1

Γ(α)
G(τ)dτ (4.10)

+

∫ t

t0

(t − τ)α−1

Γ(α)
F(τ)

∫ τ

t0
Π(τ, s)(F(s)Q0 +G(s))dsdτ.

By Fubini’s formula (see [52], Theorem 3.3, Chapter 6),∫ t

t0

(t − τ)α−1

Γ(α)
F(τ)

∫ τ

t0
Π(τ, s)(F(s)Q0 +G(s))dsdτ

=

∫ t

t0

∫ t

τ

(t − s)α−1

Γ(α)
F(s)Π(s, τ)ds(F(τ)Q0 +G(τ))dτ.

Then, by Definition 4.1 and (4.10), it follows that∫ t

t0

(t − τ)α−1

Γ(α)
(F(τ)Q(τ) +G(τ))dτ (4.11)

=

∫ t

t0

(t − τ)α−1

Γ(α)
F(τ)Q0dτ +

∫ t

t0

(t − τ)α−1

Γ(α)
G(τ)dτ

+

∫ t

t0

∫ t

τ

(t − s)α−1

Γ(α)
F(s)Π(s, τ)ds(F(τ)Q0 +G(τ))dτ

=

∫ t

t0
Π(t, τ)(F(τ)Q0 +G(τ))dτ. (4.12)

Hence, by (4.11), (4.9) is verified. This completes the proof. □

The following result shows the representation result of right linear RL fractional differential
equations with terminal conditions. Here, the corresponding RL fractional differential equation
includes the variable of the Lebesgue-Stieltjes measure on [t0, t f ]. Hence, its solution has to be written
in terms of the integral of the Lebesgue-Stieltjes measure.

Lemma 4.3. Let F(·) ∈ L∞([t0, t f ];Rn×n), G1(·),G2(·) ∈ L∞([t0, t f ];Rn), and η(·) ∈ NBV([t0, t f ];R).
Consider the following right RL fractional differential equation:d

[
I1−α
t f−

[Q]
]
(t) = −

[
F(t)⊤Q(t) +G1(t)

]
dt −G2(t)dη(t),

I1−α
t f−

[Q](t f ) = Q f ,
(4.13)
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where dη denotes the Lebesgue-Stieltjes measure of η on ([t0, t f ],B([t0, t f ])).‡ Then, (4.13) admits a
unique solution Q(·) ∈ BV([t0, t f ];Rn). Furthermore, the solution of (4.13) is given by

Q(t) = Π(t f , t)⊤Q f +

∫ t f

t
Π(τ, t)⊤G1(τ)dτ +

∫ t f

t
Π(τ, t)⊤G2(τ)dη(τ), (4.14)

where Π is the right RL state-transition matrix associated with F defined in (4.5) of Definition 4.2.

Proof. The proof for the existence and uniqueness is similar to that of Theorem 3.1 and Lemma 4.2.
To prove (4.14), by using the definition of Π in (4.5),

Q(t) =
(t f − t)α−1

Γ(α)
Q f +

∫ t f

t

(τ − t)α−1

Γ(α)
G1(τ)dτ +

∫ t f

t

(τ − t)α−1

Γ(α)
G2(τ)dη(τ)

+

∫ t f

t

(τ − t)α−1

Γ(α)
F(τ)⊤Π(t f , τ)⊤Q f dτ +

∫ t f

t

∫ τ

t

(r − t)α−1

Γ(α)
F(r)⊤Π(τ, r)⊤drG1(τ)dτ

+

∫ t f

t

∫ τ

t

(r − t)α−1

Γ(α)
F(r)⊤Π(τ, r)⊤drG2(τ)dη(τ).

The multiple integrals in the above equation have to be analyzed. By Fubini’s formula (see [52],
Theorem 3.3, Chapter 6),∫ t f

t

∫ τ

t

(r − t)α−1

Γ(α)
F(r)⊤Π(τ, r)⊤drG1(τ)dτ =

∫ t f

t

(τ − t)α−1

Γ(α)
F(τ)⊤

∫ t f

τ

Π(r, τ)⊤G1(r)drdτ∫ t f

t

∫ τ

t

(r − t)α−1

Γ(α)
F(r)⊤Π(τ, r)⊤drG2(τ)dη(τ) =

∫ t f

t

(τ − t)α−1

Γ(α)
F(τ)⊤

∫ t f

τ

Π(r, τ)⊤G2(r)drdη(τ).

Hence, it follows that

Q(t) =
(t f − t)α−1

Γ(α)
Q f +

∫ t f

t

(τ − t)α−1

Γ(α)

(
G1(τ) + F(τ)⊤Q(τ)

)
dτ +

∫ t f

t

(τ − t)α−1

Γ(α)
G2(τ)dη(τ).

By Definitions 2.1 and 2.2, this is equivalent to

Q(t) = D1−α
t f−

[Q f ](t) + Iαt f−
[G1(·) + F(·)⊤Q(·)](t) +

∫ t f

t

(τ − t)α−1

Γ(α)
G2(τ)dη(τ).

As F(·) ∈ L∞([t0, t f ];Rn×n) and G1(·),G2(·) ∈ L∞([t0, t f ];Rn), from Lemmas 2.1 and 2.3 and
Definitions 2.1 and 2.2 with ( [2], Theorem 2.2) and Fubini’s formula,

−I1−α
t f−

[Q](t) = −I1−α
t f−

[
−

d
dt

[Iαt f−
[Q f ]](·)

]
(t) − I1

t f−
[G1(·) + F(·)⊤Q(·)](t)

− I1−α
t f−

[ ∫ t f

·

(τ − ·)α−1

Γ(α)
G2(τ)dη(τ)

]
(t)

= −Q f −

∫ t f

t
[G1(s) + F(s)⊤Q(s)]ds −

∫ t f

t
G2(τ)dη(τ). (4.15)

‡B([t0, t f ]) denotes the Borel σ-algebra generated by subintervals of [t0, t f ].
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Indeed, to show (4.15), let B the beta function. By Fubini’s formula and change of integral variables
with s = t − r(τ − t) (which implies ds = −(τ − t)dr), we can show that

I1−α
t f−

[ ∫ t f

·

(τ − ·)α−1

Γ(α)
G2(τ)dη(τ)

]
(t)

=

∫ t f

t

∫ t

τ

(s − t)−α

Γ(1 − α)
(τ − s)α−1

Γ(α)
G2(τ)dsdη(τ)

=
1

Γ(1 − α)Γ(α)

∫ t f

t

∫ 0

−1
(−r(τ − t))−α(τ − t + r(τ − t))α−1G2(τ)(−(τ − t))drdη(τ)

=
B(α, 1 − α)
Γ(1 − α)Γ(α)

∫ t f

t
G2(τ)dη(τ) =

∫ t f

t
G2(τ)dη(τ).

Hence, (4.15) holds. Note that I1−α
t f−

[Q](t f ) = Q f . As I1−α
t f−

[Q](·) ∈ AC([t0, t f ];Rn), by Definitions 2.1
and 2.2, the differential form of (4.15) can be written by (4.13). We can easily observe that Q(·) ∈
BV([t0, t f ];Rn). This completes the proof. □

5. Main result: Pontryagin maximum principle of (P)

Assume that (u(·), X(·)) ∈ U × DC α
n t0+ is the optimal solution of (P), where u(·) ∈ U is the optimal

solution of (P) and X(·) := X(·; X0, u) ∈ DC α
n t0+ is the corresponding optimal state trajectory of (3.1)

controlled by u(·) ∈ U. Note that X(·) ∈ DC α
n t0+ satisfies the terminal and running state constraints

in (3.5). For notational convenience, let

f (t) := f (t, X(t), u(t)), ∂X f (t) := ∂X f (t, X(t), u(t))

l(t) := l(·, X(t), u(t)), ∂Xl(t) := ∂Xl(t, X(t), u(t))

m := m(X0, X(t f )), ∂X0m := ∂X0m(X0, X(t f )), ∂Xm := ∂Xm(X0, X(t f ))

Gi(t) := Gi(t, X(t)), ∂XGi(t) := ∂XGi(t, X(t)).

We state the Pontryagin maximum principle of (P). The proof is provided in Section 7.

Theorem 5.1. Suppose that Assumptions 3.1 and 3.2 hold. Assume that the pair (u(·), X(·)) ∈ U× DC α
n t0+

is the optimal solution of (P). Then, there exist a tuple (λ, ξ, θ) ∈ R × R2n × NBV([t0, t f ];Rq) and the
adjoint vector p(·) ∈ BV([t0, t f ];Rn), where ξ = (ξ1, ξ2) with ξ1, ξ2 ∈ R

n, and θ(·) = (θ1(·), . . . , θq(·))
with θi satisfying θi(·) ∈ NBV([t0, t f ];R), i = 1, . . . , q, such that the following conditions are satisfied:

(i) Nontriviality condition: (λ, ξ, θ) , 0 with λ ≥ 0, ξ = (ξ1, ξ2) ∈ NF(X0, X(t f )) and
∥θi(·)∥NBV = θi(t f ) ≥ 0 for i = 1, . . . , q, where NF(X0, X(t f )) is the normal cone to the convex set
F at (X0, X(t f )) ∈ F defined in (7.1), and θi(·) ∈ NBV([t0, t f ];R), i = 1, . . . , q, is finite,
nonnegative and monotonically nondecreasing on [t0, t f ];

(ii) Adjoint equation: The adjoint vector p(·) ∈ BV([t0, t f ];Rn) is the unique solution of the following
right RL fractional differential equation: a.e. t ∈ [t0, t f ],

d
[
I1−α
t f−

[p]
]
(t) = −

[
∂X f (t)⊤p(t) + λ

(t f − t)β−1

Γ(β)
∂Xl(t)⊤

]
dt −

q∑
i=1

∂XGi(t)⊤dθi(t), (5.1)
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which is equivalent to the following right RL fractional integral form:

I1−α
t f−

[p](t) = I1−α
t f−

[p](t f ) +
∫ t f

t

[
∂X f (s)⊤p(s) + λ

(t f − s)β−1

Γ(β)
∂Xl(s)⊤

]
ds +

∫ t f

t

q∑
i=1

∂XGi(s)⊤dθi(s);

(iii) Transversality condition:

I1−α
t f−

[p](t0) = −(ξ1 + λ∂X0m
⊤), I1−α

t f−
[p](t f ) = ξ2 + λ∂Xm⊤;

(iv) Complementary slackness condition:∫ t f

t0
Gi(s)dθi(s) = 0, ∀i = 1, . . . , q;

(v) Hamiltonian minimization condition:

min
u∈U
H(t, X(t), p(t); u) = H(t, X(t), p(t); u(t)), a.e. t ∈ [t0, t f ],

whereH : [t0, t f ] × Rn × Rn × U → R is the Hamiltonian defined by

H(t, X, p; u) := ⟨p, f (t, X, u)⟩ + λ
(t f − t)β−1

Γ(β)
l(t, X, u). (5.2)

Remark 5.1. The adjoint equation p(·) ∈ BV([t0, t f ];Rn) in (5.1) is expressed as the right RL fractional
differential (or integral) form that includes the Lebesgue-Stieltjes integral, where dθi, i = 1, . . . , q, is
the corresponding Lebesgue-Stieltjes measure on ([t0, t f ],B([t0, t f ])) with dθi(t) ≥ 0 for t ∈ [t0, t f ] by (i)
of Theorem 5.1. When θi(·) ∈ AC([t0, t f ];R), i = 1, . . . , q, θi is differentiable a.e. t ∈ [t0, t f ]. In this
case, we have p(·) ∈ DRL α

n t f−
, which can be expressed as the following right RL fractional differential

equation:

Dα
t f−

[p](t) = ∂X f (t)⊤p(t) + λ
(t f − t)β−1

Γ(β)
∂Xl(t)⊤ +

q∑
i=1

∂XGi(t)⊤
dθi(t)

dt
, a.e. t ∈ [t0, t f ].

Here, dθi(t)
dt is the derivative of θi(·) ∈ AC([t0, t f ];R) for i = 1, . . . , q ( [52], Theorem 3.11, Chapter 3).

Remark 5.2. (i) Without (3.5), Theorem 5.1 becomes similar to ( [31], Theorem 3.1), where the
control space of ( [31], Theorem 3.1) is assumed to be compact. In this case, only (ii) and (v) of
Theorem 5.1 are needed with λ = 1, ξ = 0, and θ = 0, where the adjoint equation p(·) ∈ DRL α

n t f−

becomes

Dα
t f−

[p](t) = ∂X f (t)⊤p(t) +
(t f − t)β−1

Γ(β)
∂Xl(t)⊤, a.e. t ∈ [t0, t f ].

Note also that without the running state constraint, Theorem 5.1 is specialized to ( [20],
Theorem 3.12) with θ = 0. However, our proof technique of Theorem 5.1 is different from that
of ( [20], Theorem 3.12), since we adopt the general measurable admissible controls.
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(ii) Note that by Remark 2.1, when α = β = 1 in Theorem 5.1, Theorem 5.1 is reduced to the
maximum principle for the nonfractional optimal control problem with terminal and running
state constraints (see [37, 48, 53] and the references therein for different versions of maximum
principles for nonfractional optimal control problems with state constraints).

Remark 5.3. The maximum principle in Theorem 5.1 are of interest only when the running state
constraint is nondegenerate in the sense that ∂XGi(t)⊤ , 0 whenever Gi(t) = 0 for all t ∈ [t0, t f ]
and i = 1, . . . , q. A similar remark is given in ( [54], page 330, Remarks (b)) for the classical state-
constrained optimal control problem for ordinary state equations.

6. Example: Fractional linear quadratic control with state constraints

In this section, we study an application of Theorem 5.1 to the state-constrained fractional linear-
quadratic control problem. The purpose of this section is to demonstrate the general applicability of
Theorem 5.1 by providing a computation method of unknown variables (λ, ξ, θ) in Theorem 5.1.

Consider the following R2-valued left Caputo fractional differential equation with order α ∈ (0, 1)
and X(·) =

[
X1(·) X2(·)

]⊤
:  DC α

t0+[X1](t) = X2(t), t ∈ (t0, t f ],
DC α

t0+[X2](t) = u(t).
(6.1)

Let U = [−u′, u′] ⊂ R be the control space. The quadratic objective functional to be minimized is
given by

(LQ-P) inf
u(·)∈U

J((a, b); u(·)) =
1
2

∫ t f

t0

(t f − s)β−1

Γ(β)
u(s)2ds, (6.2)

subject to the terminal and running state constrains:(X1(t0), X2(t0)) = (a, b), (X1(t f ), X2(t f )) = (0, 0),
X2(t) ≤ 0, ∀t ∈ [t0, t f ].

(6.3)

We observe that (6.1)–(6.3) hold Assumptions 3.1 and 3.2. Therefore, we can apply Theorem 5.1 to
obtain the optimal solution of (LQ-P).§

By Theorem 5.1, the adjoint equation p(·) =
[
p1(·) p2(·)

]⊤
∈ R2 is given byd

[
I1−α
t f−

[p1]
]
(t) = 0 · dt,

d
[
I1−α
t f−

[p2]
]
(t) = −p1(t)dt − dθ(t).

(6.4)

The transversality condition (recall p(·) =
[
p1(·) p2(·)

]⊤
∈ R2) is as follows:

I1−α
t f−

[p](t0) = −ξ1 = −

ξ11

ξ12

 ∈ R2,

I1−α
t f−

[p](t f ) = ξ2 =

ξ21

ξ22

 ∈ R2.

§We assume the existence of the optimal solutions of (LQ-P).
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Due to the terminal state constraints in (6.1) and the definition of the normal cone in (7.1), ξ1 can be
arbitrary, whereas ξ2 has to be determined based on the terminal condition of (6.4).

In view of Lemma 4.3 and ( [1], Corollary 2.1 and Property 2.1, Chapter 2), the solution of the
adjoint equation in (6.4) can be written as

p1(t) =
(t f − t)α−1

Γ(α)
ξ21,

p2(t) =
(t f − t)α−1

Γ(α)
ξ22 +

(t f − t)2α−1

Γ(2α)
ξ21 +

∫ t f

t

(τ − t)α−1

Γ(α)
dθ(τ).

(6.5)

The complementary slackness condition with θ(·) ∈ NBV([t0, t f ];R) is as follows (see also (7.22)):∫ t f

t0
X2(s)dθ(s) = 0. (6.6)

The Hamiltonian minimization condition is as follows:

min
u∈U
H(t, X(t), p(t); u) = H(t, X(t), p(t); u(t)), a.e. t ∈ [t0, t f ],

where H(t, X, p; u) := p1(t)X2(t) + p2(t)u(t) + λ (t f−t)β−1

Γ(β)
u(t)2

2 . By (6.5) and the first-order optimality
condition, the (candidate) optimal solution can be obtained by (note that λ , 0 by the nontriviablity
condition)

u(t) = −
1
λ
Γ(β)(t f − t)1−βp2(t) = −

ξ22

λ
ζ1(t) −

ξ21

λ
ζ2(t) −

1
λ
ζ3(t), (6.7)

where

ζ1(t) =
Γ(β)(t f − t)α−β

Γ(α)
, ζ2(t) =

Γ(β)(t f − t)2α−β

Γ(2α)

ζ3(t) = Γ(β)(t f − t)1−β
∫ t f

t

(τ − t)α−1

Γ(α)
dθ(τ).

By Theorem 3.1 (and Lemma 2.2) and (6.7), the optimal state trajectory is as follows:X1(t) = a + bIαt0+[1](t) + I2α
t0+[u(·)](t),

X2(t) = b + Iαt0+[u(·)](t).
(6.8)

When t = t f , the state trajectory must hold the terminal state constraint in (6.3), i.e.,X1(t f ) = a + bIαt0+[1](t f ) + I2α
t0+[u(·)](t f ) = 0,

X2(t f ) = b + Iαt0+[u(·)](t f ) = 0.
(6.9)

We study the computation method to obtain unknown variables (λ, ξ21, ξ22, θ). By (6.7), it should
be λ , 0. Hence, by the nontriviality condition, we take λ = 1. Recall from Theorem 5.1 that
θ(·) ∈ NBV([t0, t f ];R) is finite, nonnegative, and monotonically nondecreasing on [t0, t f ]. Hence, θ has
a countable number of jumps on [t0, t f ] (see [52], Lemma 3.12), which implies that we may use the
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approximation of dθ([t0, t f ]) =
∑K

k=0 θk, where θi ≥ 0, i = 0, . . . ,K, and K defines the K + 1 disjoint
intervals in [t0, t f ] with t0 ≤ t1 ≤ t2 ≤ · · · ≤ tK−1 ≤ tK ≤ tK+1 = t f . Here, you can choose K such that the
algebraic equation given below (see (6.14)) admits a solution. Also, as θ(0) = 0, we have θ0 = 0.

When t ∈ [tk, tk+1), k ∈ {0, . . . ,K}, it follows thatζ3(t) = Γ(β)(t f − t)1−β ∑K
j=k θ j

(t j+1−t)α−1

Γ(α) , t ∈ [tk, tk+1),

ζ3(t f ) = 0.
(6.10)

For t ∈ [tk, tk+1), k ∈ {0, . . . ,K}, let

ζ̂
j
3(t) =

Γ(β)
Γ(α)Γ(α)

∫ t

t0
(t − s)α−1(t f − s)1−β(t j − s)α−1ds, ζ̂ j

3(t f ) = 0

ζ̃
j
3(t) =

Γ(β)
Γ(α)Γ(α)

∫ t

t0
(t − s)2α−1(t f − s)1−β(t j − s)α−1ds, ζ̃ j

3(t f ) = 0.

Then from (6.10), for t ∈ [tk, tk+1), k ∈ {0, . . . ,K}, it holds that

Iαt0+[u(·)](t) = −ξ22Iαt0+[ζ1(·)](t) − ξ21Iαt0+[ζ2(·)](t) −
K∑

j=k

θ ĵζ
j+1
3 (t)

I2α
t0+[u(·)](t) = −ξ22I2α

t0+[ζ1(·)](t) − ξ21I2α
t0+[ζ2(·)](t) −

K∑
j=k

θ jζ̃
j+1
3 (t).

The complementary slackness condition in (6.6) becomes∫ t f

t0
X2(s)dθ(s) = 0 ⇔

K∑
k=0

θkX2(tk) = 0, (6.11)

where by (6.8)–(6.10) and the definition of ζ̂ and ζ̃ (note that tK+1 = t f ),

X1(tk) = a + bIαt0+[1](tk) − ξ22I2α
t0+[ζ1(·)](tk) − ξ21I2α

t0+[ζ2(·)](tk) −
K∑

j=k

θ jζ̃
j+1
3 (tk), k = 0, . . . ,K,

X1(tK+1) = X1(t f ) = a + bIαt0+[1](t f ) − ξ22I2α
t0+[ζ1(·)](t f ) − ξ21I2α

t0+[ζ2(·)](t f ) = 0,

X2(tk) = b − ξ22Iαt0+[ζ1(·)](tk) − ξ21Iαt0+[ζ2(·)](tk) −
K∑

j=k

θ ĵζ
j+1
3 (tk), k = 0, . . . ,K,

X2(tK+1) = X2(t f ) = b − ξ22Iαt0+[ζ1(·)](t f ) − ξ21Iαt0+[ζ2(·)](t f ) = 0.

(6.12)

Then from (6.9), (6.11) and (6.12), we arrive the following (linear and nonlinear) algebraic equations
to compute ξ21, ξ22, and θk, k = 1, . . . ,K:[

I2α
t0+[ζ1(·)](t f ) I2α

t0+[ζ2(·)](t f )
Iαt0+[ζ1(·)](t f ) Iαt0+[ζ2(·)](t f )

]
×

[
ξ22

ξ21

]
=

[
a + bIαt0+[1](t f )

b

]
, (6.13)
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and (note that θ0 = 0)
b − ξ22Iαt0+[ζ1(·)](t1) − ξ21Iαt0+[ζ2(·)](t1)

...

b − ξ22Iαt0+[ζ1(·)](tK) − ξ21Iαt0+[ζ2(·)](tK)


⊤

×


θ1
...

θK

 −

∑K

j=1 θ ĵζ
j+1
3 (t1)
...

θK ζ̂
K+1
3 (tK)


⊤

×


θ1
...

θK

 = 0. (6.14)

Based on the above analysis, we get the following conclusion of this section:

Proposition 6.1. The pair (u(·), X(·)) ∈ U × DC α
n t0+ given in (6.7) and (6.8) is the optimal solution

of (LQ-P), where (ξ2, θ) can be obtained by solving the algebraic equations in (6.13) and (6.14).

Remark 6.1. (i) In order to solve the algebraic equations in (6.13) and (6.14) and compute the
optimal state trajectory X (see (6.8)) as well as the adjoint equation in (6.5), we have to rely on
numerical approaches. Note that to solve (6.13) and (6.14), we need to compute RL fractional
integrals, for which [55–57] provide several related numerical schemes. Various numerical
methods for solving fractional differential equations to obtain the optimal state trajectory X (see
(6.8)) as well as the adjoint equation in (6.5) can be found in [55, 58, 59] and the references
therein.

(ii) We mention that [39] studied general numerical approaches for solving the linear-quadratic
fractional control problem with state constraints. We believe that the approaches of [39] can be
applied to solve the linear-quadratic problem in this section. Note that the researches in [44, 45]
also provided different numerical methods for solving fractional optimal control problems.

7. Proof of Theorem 2

This section is devoted to prove Theorem 5.1.

7.1. Preliminaries on distance functions

Let dF : R2n → R+ be the standard Euclidean distance function to F defined by dF(x) := infy∈F |x−y|
for x ∈ R2n. Note that dF(x) = 0 when x ∈ F. Then the terminal state constraint in (3.5) can be written
as (X0, X(t f )) ∈ F ⇔ dF(X0, X(t f )) = 0. By the projection theorem ( [60], Theorem 2.10), there
is a unique PF(x) ∈ F with PF(x) : R2n → F ⊂ R2n, the projection of x ∈ R2n onto F, such that
dF(x) = infy∈F |x− y| = |x− PF(x)|. By ( [60], Lemma 2.11), PF(x) ∈ F is the corresponding projection
if and only if ⟨x − PF(x), y − PF(x)⟩ ≤ 0 for all y ∈ F. In view of ( [60], Definition 2.37), we have
x−PF(x) ∈ NF(PF(x)) for x ∈ R2n, where NF(x) is the normal cone to the convex set F at a point x ∈ F
defined by

NF(x) := {y ∈ R2n | ⟨y, y′ − x⟩ ≤ 0, ∀y′ ∈ F}. (7.1)

Lemma 7.1. ( [61], page 167) and ( [62], Proposition 2.5.4) dF(x)2 is Fréchet differentiable with the
Fréchet differentiation of dF(x)2 at x ∈ R2n given by DdF(x)2(h) = 2⟨x − PF(x), h⟩ for h ∈ R2n.

We define ψ(X(·)) := G(·, X(·)) =
[
G1(·, X(·)) · · · Gq(·, X(·))

]⊤
, where

ψ : C([t0, t f ];Rn) → C([t0, t f ];Rq). Let S := C([t0, t f ];R
q
−) ⊂ C([t0, t f ];Rq), where
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R
q
− := R− × · · · × R−. Note that S is a nonempty closed convex cone of C([t0, t f ];Rq) with a nonempty

interior ( [51], Appendix B) (see also ( [48], Section 2.2)). Then, the running state constraint in (3.5)
is equivalent to

ψ(X(·)) ∈ S ⇔ Gi(t, X(t)) ≤ 0, ∀t ∈ [t0, t f ], i = 1, . . . , q. (7.2)

As G is continuously differentiable, ψ is Fréchet differentiable with its Fréchet differentiation at X(·) ∈
C([t0, t f ];Rn) given by Dψ(X(·))(w) = ∂XG(·, X(·))w for w ∈ C([t0, t f ];Rn) ( [61], page 167). The
normal cone to S at x ∈ S is defined by

NS (x) := {κ ∈ C([t0, t f ];Rq)∗ | ⟨κ, κ′ − x⟩C∗q×Cq ≤ 0, ∀κ′ ∈ S }, (7.3)

where ⟨·, ·⟩C∗q×Cq := ⟨·, ·⟩C([t0,t f ];Rq)∗×C([t0,t f ];Rq) stands for the duality paring between C([t0, t f ];Rq) and
C([t0, t f ];Rq)∗ with C([t0, t f ];Rq)∗ being the dual space of C([t0, t f ];Rq).¶

Remark 7.1. Note that (C([t0, t f ];Rq), ∥ · ∥∞,q) is a separable Banach space ( [63], Theorem 6.6,
page 140). Then, by ( [43], Theorem 2.18, page 42), there exists a norm ∥ · ∥C([t0,t f ];Rq) on C([t0, t f ];Rq),
equivalent to ∥ · ∥∞,q ( [43], Definition 2.17, page 42), such that (C([t0, t f ];Rq)∗, ∥ · ∥C([t0,t f ];Rq)∗) is
strictly convex, i.e., ∥x∥C([t0,t f ];Rq)∗ = ∥y∥C([t0,t f ];Rq)∗ = 1 and ∥x + y∥C([t0,t f ];Rq)∗ = 2 imply that x = y for
x, y ∈ C([t0, t f ];Rq)∗ ( [43], Definition 2.12, page 41).

Let dS : C([t0, t f ];Rq)→ R+ be the distance function to S defined by dS (x) := infy∈S ∥x−y∥C([t0,t f ];Rq)

for x ∈ C([t0, t f ];Rq). Then, we note that (7.2) is equivalent to dS (ψ(X(·)) = 0 ⇔ ψ(X(·)) ∈ S .

Lemma 7.2. ( [62], Proposition 2.4.1 and page 53) dS is nonexpansive, continuous, and convex.

We define the subdifferential of dS at x ∈ C([t f , t f ];Rq) by ( [62], pages 10, 27)

∂dS (x) := {y′ ∈ C([t0, t f ];Rq)∗ | ⟨y′, y − x⟩C∗q×Cq ≤ dS (y) − dS (x), ∀y ∈ C([t0, t f ];Rq)}. (7.4)

By ( [62], page 27), since dS is continuous, ∂dS (x) is a nonempty (∂dS (x) , ∅), convex, and weak–∗

compact subset of C([t0, t f ];Rq)∗. From ( [62], Proposition 2.1.2) and Lemma 7.2, ∥y′∥C([t0,t f ];Rq)∗ ≤ 1
for all y′ ∈ ∂dS (x). Then, by ( [43], Proposition 3.11, Chapter 4) (see also ( [51], Proposition A.2)
and ( [48], Proposition 5, Appendix B.2)) and the fact that S ⊂ C([t0, t f ];Rq) is a nonempty closed
convex subset, we can conclude that ∥y′∥C([t0,t f ];Rq)∗ = 1 for all y′ ∈ ∂dS (x) with x < S .

Remark 7.2. We claim that ∂dS (x) = {y′}, i.e., ∂dS (x) is a singleton, for x ∈ C([t0, t f ];Rq) \ S . To
show this, let us assume that ∂dS (x) is not a singleton. We take y′, y′′ ∈ ∂dS (x) with y′ , y′′. As ∂dS (x)
is convex, we have ηy′ + (1 − η)y′′ ∈ ∂dS (x) for η ∈ [0, 1]. Note that by the preceding discussion,
∥ηy′ + (1 − η)y′′∥C([t0,t f ];Rq)∗ = 1 for η ∈ [0, 1]. Then ∥y′∥C([t0,t f ];Rq)∗ = 1 and ∥y′′∥C([t0,t f ];Rq)∗ = 1 when
η = 1 and η = 0, respectively. In addition, when η = 1

2 , we have ∥y′ + y′′∥C([t0,t f ];Rq)∗ = 2. This, together
with the fact that (C([t0, t f ];Rq)∗, ∥ · ∥C([t0,t f ];Rq)∗) is strictly convex by Remark 7.1, implies that y′ = y′′,
which contradicts our assumption y′ , y′′. Hence, y′ = y′′ ∈ ∂dS (x) and ∥y′∥C([t0,t f ];Rq)∗ = 1. Then we
repeat this process for all elements of ∂dS (x), which implies ∂dS (x) = {y′}, i.e., ∂dS (x) is a singleton,
and ∥y′∥C([t0,t f ];Rq)∗ = 1.

¶Let (X, ∥ · ∥X) be a Banach space. We denote (X∗, ∥ · ∥X∗ ) by the dual space of (X, ∥ · ∥X), where X∗ is the space of bounded linear
functionals on X with the norm given by ∥ψ∥X∗ := supx∈X, ∥x∥X≤1⟨ψ, x⟩X∗×X . Here, ⟨·, ·⟩X∗×X denotes the usual duality paring between X
and X∗, i.e., ⟨ψ, x⟩X∗×X := ψ(x). Recall that (X∗, ∥ · ∥X∗ ) is also a Banach space.
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Lemma 7.3. dS is strictly Hadamard differentiable on C([t0, t f ];Rq) \ S with the Hadamard
differential DdS satisfying ∥DdS (x)∥C([t0,t f ];Rq)∗ = ∥y′∥C([t0,t f ];Rq)∗ = 1 for all x ∈ C([t0, t f ];Rq) \ S . Also,
dS (x)2 is strictly Hadamard differentiable on C([t0, t f ];Rq) \ S with the Hadamard differential given
by DdS (x)2 = 2dS (x)DdS (x) for x ∈ C([t0, t f ];Rq) \ S . Finally, dS (x)2 is Fréchet differentiable on S
with the Fréchet differential being DdS (x)2 = 0 ∈ C([t0, t f ];Rq)∗ for all x ∈ S .

Proof. Recall dS (x) = 0 when x ∈ S , and dS (x) > 0 for x ∈ C([t0, t f ];Rq) \ S . Consider dS when
x ∈ C([t0, t f ];Rq) \ S . The nonexpansive property of dS from Lemma 7.2 implies that dS is Lipschitz
continuous. In addition, by Remark 7.2, the subdifferential of dS is a singleton. Then we are able to
invoke ( [64], Theorem 3.54) to conclude that dS (x) is strictly Hadamard differentiable on
C([t0, t f ];Rq) \ S , where by Remark 7.2, ∥DdS (x)∥C([t0,t f ];Rq)∗ = 1. Consequently, dS (x)2 is strictly
Hadamard differentiable on C([t0, t f ];Rq) \ S with DdS (x)2 = 2dS (x)DdS (x) for x ∈ C([t0, t f ];Rq) \ S .
When dS is on S , we have DdS (x)2 = 0 ∈ C([t0, t f ];Rq)∗ for x ∈ S due to the fact that dS (x) = 0 for
x ∈ S and dS is nonexpansive shown in Lemma 7.2. □

7.2. Ekeland variational principle

Recall that (u(·), X(·)) ∈ U × DC α
n t0+ is the optimal solution of (P). For ϵ > 0, define the penalized

objective functional

Jϵ(X0; u(·)) =
((

[J(X0; u(·)) − J(X0; u(·)) + ϵ]+
)2
+ dF(X0, X(t f ))2 + dS (ψ(X(·)))2

) 1
2
, (7.5)

where J is given in (3.4). Define the Ekeland metric by

d̂((X0, u(·)), (X̃0, ũ(·))) = |X0 − X̃0| + d̃(u(·), ũ(·)), (7.6)

where for u(·), ũ(·) ∈ U, d̃(u(·), ũ(·)) := |{t ∈ [t0, t f ] | u(t) , ũ(t)}|. Note that (Rn × U, d̂) is a complete
metric space ( [43], Proposition 3.10, Chapter 4), and Jϵ is a continuous functional on (Rn × U, d̂) in
view of Lemmas 7.1 and 7.2, Theorem 3.1.∥

We observe that

Jϵ(X0, u(·)) > 0, ∀(X0, u(·)) ∈ Rn ×U,

Jϵ(X0; u(·)) = ϵ ≤ inf
(X0,u(·))∈Rn×U

Jϵ(X0, u(·)) + ϵ.

Then, by the Ekeland variational principle [65] (see also ( [43], Corollary 2.2, Chapter 4)), there exists
a pair (Xϵ

0, u
ϵ(·)) ∈ Rn ×U such that

d̂((Xϵ
0, u

ϵ(·)), (X0, u(·))) ≤
√
ϵ, (7.7)

and Jϵ(Xϵ
0, u

ϵ(·)) ≤ Jϵ(X0; u(·)) = ϵ,
Jϵ(Xϵ

0, u
ϵ(·)) ≤ Jϵ(X0; u(·)) +

√
ϵd̂((Xϵ

0, u
ϵ(·)), (X0; u(·))), ∀(X0, u(·)) ∈ Rn ×U.

(7.8)

From (7.8), we observe that the pair (Xϵ
0, u

ϵ(·)) ∈ Rn × U is the optimal solution to the unconstrained
problem given by Jϵ(X0; u(·)) +

√
ϵd̂((Xϵ

0, u
ϵ(·)), (X0; u(·))).

∥Note that Theorem 3.1 with Assumption 3.1 (particularly supu∈U | f (t, x, u)| < ∞ for (t, x) ∈ [t0, t f ] × Rn) and the Arzeá–Ascoli
theorem imply that all state trajectories X of the control system (3.1) is equicontinuous and bounded, and therefore relatively compact in
the uniform topology. Then there is a subsequence of the state trajectories converging uniformly, which together with Assumption 3.2
and Lemmas 7.1 and 7.2 implies the continuity of Jϵ on (Rn ×U, d̂).
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7.3. Spike variation and notation

For δ ∈ (0, 1), define (with |E| being the Lebesgue measure of E)

Eδ = {E ⊂ [t0, t f ] | |E| = δ(t f − t0)}. (7.9)

For any Eδ ∈ Eδ and u(·) ∈ U, we introduce the spike variation:

uϵ,δ(t) :=

uϵ(t), t ∈ [t0, t f ] \ Eδ,

u(t), t ∈ Eδ.
(7.10)

Clearly uϵ,δ(·) ∈ U and d̃(uϵ,δ(·), uϵ(·)) ≤ |Eδ| = δ(t f − t0). Consider the variations Xϵ(·) := X(·; Xϵ
0, u

ϵ)
and Xϵ,δ(·) := X(·; Xϵ

0 + δa, u
ϵ,δ), where a ∈ Rn. Note that Xϵ(·) is the state trajectory of (3.1)

under (Xϵ
0, u

ϵ(·)) ∈ Rn × U, and Xϵ,δ is the variational equation under (7.10) and the perturbed initial
condition a.

We introduce (with Eϵ,δ(·) := Xϵ,δ(·) − Xϵ(·))

f ϵ(s) := f (s, Xϵ(s), uϵ(s)), ∂X f ϵ(s) := ∂X f (s, Xϵ(s), uϵ(s))

f̂ ϵ(s) := f (s, Xϵ(s), u(s)) − f (s, Xϵ(s), uϵ(s))

f ϵ,δX (s) :=
∫ 1

0
∂X f (s, Xϵ(s) + rEϵ,δ(s), uϵ,δ(s))dr

lϵ(s) := l(s, Xϵ(s), uϵ(s)), ∂Xlϵ(s) := ∂Xl(s, Xϵ(s), uϵ(s))

l̂ϵ(s) := l(s, Xϵ(s), u(s)) − l(s, Xϵ(s), uϵ(s))

lϵ,δX (s) :=
∫ 1

0
∂Xl(s, Xϵ(s) + rEϵ,δ(s), uϵ,δ(s))dr

mϵ := m(Xϵ
0, X

ϵ(t f )), ∂X0m
ϵ := ∂X0m(Xϵ

0, X
ϵ(t f )), ∂Xmϵ := ∂Xm(Xϵ

0, X
ϵ(t f ))

mϵ,δ
X0

(t f ) :=
∫ 1

0
∂X0m(Xϵ

0 + rδa, Xϵ(t f ) + rEϵ,δ(r))dr

mϵ,δ
X (t f ) :=

∫ 1

0
∂Xm(Xϵ

0 + rδa, Xϵ(t f ) + rEϵ,δ(r))dr

f̂ (s) := f (t, X(s), u(s)) − f (t, X(s), u(s)), l̂(s) := l(s, X(s), u(s)) − l(t, X(s), u(s)).

7.4. Variational analysis I

By (7.5) and (7.8), together with (7.6) and (7.10), we have

−
√
ϵ(|a| + t f ) ≤

1
Jϵ(Xϵ

0 + δa; uϵ,δ(·)) + Jϵ(Xϵ
0; uϵ(·))

×
1
δ

((
[J(Xϵ

0 + δa; uϵ,δ(·)) − J(X0; u(·)) + ϵ]+
)2

(7.11)

−
(
[J(Xϵ

0; uϵ(·)) − J(X0; u(·)) + ϵ]+
)2
+ dF(Xϵ

0 + δa, X
ϵ,δ(t f ))2

− dF(Xϵ
0, X

ϵ(t f ))2 + dS (ψ(Xϵ,δ(·)))2 − dS (ψ(Xϵ(·)))2
)
.
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By Lemmas B.1 and B.2 in Appendix B, we introduce

Zϵ(t) = a +
∫ t

t0

(t − s)α−1

Γ(α)
(∂X f ϵ(s)Zϵ(s) + f̂ ϵ(s))ds,

Ẑϵ(t f ) =
∫ t f

t0

(t f − s)β−1

Γ(β)
(∂Xlϵ(s)Zϵ(s) + l̂ϵ(s))ds + ∂X0m

ϵa + ∂XmϵZϵ(t f ).

From Lemmas B.1 and B.2, Zϵ and Ẑϵ are the variational equations related to the pair (Xϵ
0, u

ϵ(·)) ∈
Rn ×U in (7.8). In fact, by Theorem 3.1, Zϵ is equivalent to (B.2) in Lemma B.1.

We now consider the limit of δ ↓ 0 in (7.11). By continuity of Jϵ on Rn × U, it follows that
limδ↓0 Jϵ(Xϵ

0 + δa; uϵ,δ(·)) = Jϵ(Xϵ
0; uϵ(·)). Then, the following facts hold:

(F.1) By Lemmas B.1 and B.2, we have

1
Jϵ(Xϵ

0 + δa; uϵ,δ(·)) + Jϵ(Xϵ
0; uϵ(·))

×
1
δ

(([
J(Xϵ

0 + δa; uϵ,δ(·)) − J(X0; u(·)) + ϵ
]+)2

−
([

J(Xϵ
0; uϵ(·)) − J(X0; u(·)) + ϵ

]+)2
)
→ λϵẐϵ(t f ), as δ ↓ 0,

where since Jϵ(X0, u(·)) > 0 for (X0, u(·)) ∈ Rn ×U,

λϵ :=
[J(Xϵ

0; uϵ(·)) − J(X0; u(·)) + ϵ]+

Jϵ(Xϵ
0; uϵ(·))

≥ 0.

(F.2) From Lemmas 7.1 and B.1,

1
δ

dF(Xϵ
0 + δa, X

ϵ,δ(t f ))2 − dF(Xϵ
0, X

ϵ(t f ))2

Jϵ(Xϵ
0 + δa; uϵ,δ(·)) + Jϵ(Xϵ

0; uϵ(·))
→ ⟨ξϵ1, a⟩ + ⟨ξ

ϵ
2,Z

ϵ(t f )⟩, as δ ↓ 0,

where with ξϵ1, ξ
ϵ
2 ∈ R

n,

ξϵ =

[
ξϵ1
ξϵ2

]
:=



[
Xϵ

0
Xϵ(t f )

]
− PF(Xϵ

0, X
ϵ(t f ))

Jϵ(Xϵ
0; uϵ(·))

∈ NF(PF(Xϵ
0, X

ϵ(t f ))), (Xϵ
0, X

ϵ(t f )) < F,

0 ∈ NF(PF(Xϵ
0, X

ϵ(t f ))), (Xϵ
0, X

ϵ(t f )) ∈ F.

(F.3) By Theorem 3.1, and Lemmas 7.3 and B.1,

1
δ

dS (ψ(Xϵ,δ(·)))2 − dS (ψ(Xϵ(·)))2

Jϵ(Xϵ
0 + δa; uϵ,δ(·)) + Jϵ(Xϵ

0; uϵ(·))
→ ⟨µϵ , ∂XG(·, Xϵ(·))Zϵ(·)⟩Cq×C∗q , as δ ↓ 0,

where as DdS (ψ(Xϵ(·))) is the subdifferential of dS at ψ(Xϵ(·)) ∈ C([t0, t f ];Rq) (see Lemma 7.3),
by (7.3) and (7.4), µϵ ∈ NS (ψ(Xϵ(·))), and

µϵ :=


dS (ψ(Xϵ(·)))DdS (ψ(Xϵ(·)))

Jϵ(Xϵ
0; uϵ(·))

∈ C([t0, t f ];Rq)∗, ψ(Xϵ(·)) < S ,

0 ∈ C([t0, t f ];Rq)∗, ψ(Xϵ(·)) ∈ S .
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Therefore, by (F.1)–(F.3), as δ ↓ 0, (7.11) becomes for (a, u(·)) ∈ Rn ×U,

−
√
ϵ(|a| + t f ) ≤ λϵẐϵ(t f ) + ⟨ξϵ1, a⟩ + ⟨ξ

ϵ
2,Z

ϵ(t f )⟩ + ⟨µϵ , ∂XG(·, Xϵ(·))Zϵ(·)⟩C∗q×Cq , (7.12)

where from Lemma 7.3 and the property of dF in Section 7.1,

|λϵ |2 + |ξϵ |2 + ∥µϵ∥2C([t0,t f ];Rq)∗ = 1. (7.13)

7.5. Variational analysis II

We consider the limit of ϵ ↓ 0. We introduce

Z(t) = a +
∫ t

t0

(t − s)α−1

Γ(α)
(∂X f (s)Z(s) + f̂ (s))ds, (7.14)

Ẑ(t f ) =
∫ t f

t0

(t f − s)β−1

Γ(β)
(∂Xl(s)Z(s) + l̂(s))ds + ∂X0ma + ∂XmZ(t f ), (7.15)

where by Lemma B.3, Z and Ẑ are variational equations related to the optimal solution u(·) ∈ U. By
Theorem 3.1, Z in (7.14) is equivalent to (B.4) in Lemma B.3.

Instead of taking the limit of ϵ ↓ 0, let {ϵk} be a sequence of ϵ such that ϵk ≥ 0 and ϵk ↓ 0 as
k → ∞. We replace ϵ by ϵk. By (7.13), the sequences ({λϵk}, {ξϵk}, {µϵk}) are bounded for k ≥ 0. Note
also from (7.13) that the ball generated by ∥µϵk∥2C([t0,t f ];Rq)∗ ≤ 1 is a closed unit ball in C([t0, t f ];Rq)∗,
which is weak–∗ compact by the Banach-Alaoglu theorem ( [63], page 130). Then, by the standard
compactness argument, we may extract a subsequence of {ϵk}, still denoted by {ϵk}, such that as k → ∞,

({λϵk}, {ξϵk}, {µϵk})→ (λ0, ξ0, µ0) =: (λ, ξ, µ), (7.16)

where the convergence of {µϵk} → µ (as k → ∞) is understood in the weak–∗ sense [63].
We claim that the tuple (λ, ξ, µ) holds

λ ≥ 0, ξ ∈ NF(PF(X0, X(t f ))), µ ∈ NS (ψ(X(·))). (7.17)

Indeed, λ ≥ 0 holds due to (F.1). ξ ∈ NF(PF(X0, X(t f ))) follows from (F.2) and the property of
limiting normal cones ( [54], page 43). To prove µ ∈ NS (ψ(X(·))), µϵk ∈ NS (ψ(Xϵ(·))) in (F.3) means
⟨µϵk , z − ψ(Xϵk(·))⟩Cq∗×Cq ≤ 0 for z ∈ S (see (7.3)). Then it follows that

0 ≥ ⟨µϵk , z − ψ(Xϵk(·))⟩C∗q×Cq

≥ ⟨µ, z − ψ(X(·))⟩C∗q×Cq − ∥ψ(Xϵk(·)) − ψ(X(·))∥∞,q

+ ⟨µϵk , z − ψ(X(·))⟩C∗q×Cq − ⟨µ, z − ψ(X(·))⟩C∗q×Cq → ⟨µ, z − ψ(X(·))⟩C∗q×Cq , as k → ∞,

where the convergence follows from (7.16) and Lemma B.3, together with the boundedness of {µϵk}

by (7.13). This convergence is understood in the weak–∗ sense. This and (7.3) imply µ ∈ NS (ψ(X(·))).
By (7.13) and (7.16), together with Lemma B.3, it follows that

λϵk Ẑϵk(t f ) ≤ λẐ(t f ) + |Ẑϵk(t f ) − Ẑ(t f )| + |λϵk − λ|Ẑ(t f ) → λẐ(t f ), as k → ∞,
⟨ξϵk

1 , a⟩ → ⟨ξ1, a⟩, as k → ∞,
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⟨ξϵk
2 ,Z

ϵk(t f )
〉
≤

〈
ξ2,Z(t f )⟩ + |Zϵk(t f ) − Z(t f )| + |ξ

ϵk
2 − ξ2||Z(t f )| →

〈
ξ2,Z(t f )

〉
, as k → ∞,

and similarly, together with the definition of the weak–∗ convergence,

⟨µϵk , ∂XG(·, Xϵk(·))Zϵk(·)⟩C∗q×Cq

≤ ⟨µ, ∂XG(·)Z(·)⟩C∗q×Cq + ∥Z
ϵk(·) − Z(·)∥∞,n

+ ⟨µϵk , ∂XG(·)Z(·)⟩C∗q×Cq − ⟨µ, ∂XG(·)Z(·)⟩C∗q×Cq → ⟨µ, ∂XG(·)Z(·)⟩C∗q×Cq , as k → ∞.

Therefore, as k → ∞, (7.12) becomes for (a, u(·)) ∈ Rn ×U,

0 ≤ λẐ(t f ) + ⟨ξ1, a⟩ + ⟨ξ2,Z(t f )⟩ + ⟨µ, ∂XG(·, X(·))Z(·)⟩C∗q×Cq , (7.18)

Note that (7.18) is the crucial inequality obtained from the Ekeland variational principle as well as the
estimates of the variational equations in Lemmas B.1 and B.3.

7.6. Proof of Theorem 5.1 (iv): Complementary slackness

Let µ = (µ1, . . . , µq) ∈ C([t0, t f ];Rq)∗. For any z = (z1, . . . , zq) ∈ C([t0, t f ];Rq), it holds that
⟨µ, z⟩C∗q×Cq =

∑q
i=1⟨µi, zi⟩C∗1×C1 . Recall that µ ∈ NS (ψ(X(·))) from (7.17), where

ψ(X(·)) =
[
G1(·, X(·)) · · · Gq(·, X(·))

]⊤
= (ψ1(X(·)), . . . , ψq(X(·))) ∈ S . Based on (7.3), this implies

that

⟨µ, z − ψ(X(·))⟩C∗q×Cq =

q∑
i=1

⟨µi, zi − ψi(X(·))⟩C∗1×C1 ≤ 0, ∀z ∈ S . (7.19)

Take z in (7.19) as in the following cases (note that Gi(·) = Gi(·, X(·))):

z =
[
G1(·) · · · 2Gi(·) · · · Gq(·)

]⊤
∈ S

z =
[
G1(·) · · · 0∈C([t0,t f ];R) · · · Gq(·)

]⊤
∈ S .

Then, (7.19) is equivalent to

⟨µi, ψi(X(·))⟩C∗1×C1 = 0, ∀i = 1, . . . , q, (7.20)

⟨µi, zi⟩C∗1×C1 ≥ 0, ∀zi ∈ C([t0, t f ];R+), i = 1, . . . , q. (7.21)

For (7.21), by the Riesz representation theorem (see ( [63], page 75 and page 382)), there is a unique
θ(·) = (θ1(·), . . . , θq(·)) with θi(·) ∈ NBV([t0, t f ];R), i.e., θi, i = 1, . . . , q, are normalized functions of
bounded variation on [t0, t f ], such that we have ⟨µi, zi⟩C∗1×C1 =

∫ t f

t0
zi(s)dθi(s) ≥ 0 for i = 1, . . . , q, where

every θi is finite, nonnegative, and monotonically nondecreasing on [t0, t f ] with θi(0) = 0. Moreover,
for (7.20), the Riesz representation theorem leads to

⟨µi, ψi(X(·))⟩C∗1×C1 =

∫ t f

t0
Gi(s)dθi(s) = 0 (7.22)

⇔ supp(dθi(·)) ⊂ {t ∈ [t0, t f ] | Gi(t, X(t)) = 0}, ∀i = 1, . . . , q,

where dθi, i = 1, . . . , q, denotes the Lebesgue-Stieltjes measure on ([t0, t f ],B([t0, t f ])) with dθi(t) ≥ 0
for t ∈ [t0, t f ] due to the fact that θi(·) ∈ NBV([t0, t f ];R) is nondecreasing and finite. Hence, the relation
in (7.22) proves the complementary slackness condition in Theorem 5.1.
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7.7. Proof of Theorem 5.1 (i): Nontriviality condition

Recall (7.19), i.e., for any z ∈ S , ⟨µ, z−ψ(X(·))⟩C∗q×Cq =
∑q

i=1⟨µi, zi−ψi(X(·))⟩C∗1×C1 ≤ 0. By the Riesz
representation theorem (see ( [63], page 75 and page 382)) and the fact that θi(·) ∈ NBV([t0, tg];R),
i = 1, . . . , q, is finite, nonnegative, and monotonically nondecreasing on [t0, t f ] with θi(0) = 0, it follows
that ∥µi∥C([t0,t f ];R)∗ = ∥θi(·)∥NBV = θi(t f ) ≥ 0 for i = 1, . . . , q.

By (7.17) and the fact that (X0, X(t f )) ∈ F implies PF(X0, X(t f )) = (X0, X(t f )) (see Section 7.1), we
have ξ = (ξ1, ξ2) ∈ NF(X0, X(t f )).

From the fact that S = C([t0, t f ];R
q
−) has an nonempty interior, there are z′ ∈ S and σ > 0 such that

z′ + σz ∈ S for all z ∈ B(C([t0,t f ];Rq),∥·∥C([t0 ,t f ];Rq))(0, 1) (the closure of the unit ball in C([t0, t f ];Rq)). Then
similar to (7.19) and the fact that µϵ ∈ NS (ψ(Xϵ(·))), it follows thatσ⟨µϵ , z⟩C∗q×Cq ≤ ⟨µ

ϵ , ψ(Xϵ(·))−z′⟩C∗q×Cq

for all z ∈ B(C([t0,t0];Rq),∥·∥C([t0 ,t f ];Rq))(0, 1). From (7.13) and the definition of the norm of the dual space (the
norm of linear functionals on C([t0, t f ];Rq) (see Section 7.1)), by taking the limit as ϵ ↓ 0, we get

σ∥µ∥C([t0,t f ];Rq)∗ = σ
√

1 − |λ|2 − |ξ|2 ≤ ⟨µ, ψ(X(·)) − z′⟩C∗q×Cq , ∀z′ ∈ S .

Note that σ > 0. When µ = 0 ∈ C([t0, t f ];Rq)∗ and ξ = 0, we have λ = 1. When λ = 0 and
µ = 0 ∈ C([t0, t f ];Rq)∗, we have |ξ| = 1. When λ = 0 and ξ = 0, we have µ , 0 ∈ C([t0, t f ];Rq)∗. This
implies (λ, ξ, θ) , 0, i.e., they cannot vanish simultaneously.

Based on the above discussion, it holds that (λ, ξ, θ) , 0, where λ ≥ 0 (see (7.17)), ξ ∈ NF(X0, X(t f )),
θi(·) ∈ NBV([t0, tg];R) is nondecreasing with ∥µi∥C([t0,t f ];R)∗ = ∥θi(·)∥NBV = θi(t f ) ≥ 0 for i = 1, . . . , q.
This shows the nontriviality condition in Theorem 5.1.

7.8. Proof of Theorem 5.1 (ii): Adjoint equation and duality analysis

From Lemma 4.3 and the transversality condition, the solution of the adjoint equation in (5.1) can
be written as

p(t) = Π(t f , t)⊤(ξ2 + λ∂Xm⊤) (7.23)

+ λ

∫ t f

t
Π(τ, t)⊤

(t f − τ)β−1

Γ(β)
∂Xl(τ)⊤dτ +

∫ t f

t
Π(τ, t)⊤

q∑
i=1

∂XGi(τ)⊤dθi(τ),

where Π is the right RL fractional state-transition matrix associated with ∂X f (see Definition 4.2 and
Lemma 4.1 in Section 4). Moreover, from Lemma 4.2 and Theorem 3.1, Z in (7.14) can be written as

Z(t) = a +
∫ t

t0
Π(t, s)(∂X f (s)a + f̂ (s))ds, (7.24)

where Π is the left RL state-transition matrix associated with ∂X f (see Definition 4.1).
By using (7.24), (7.15) and the Riesz representation theorem, (7.18) becomes

0 ≤ ⟨ξ1 + λ∂X0m
⊤, a⟩ + ⟨ξ2 + λ∂Xm⊤, a +

∫ t f

t0
Π(t f , s)(∂X f (s)a + f̂ (s))ds⟩ (7.25)

+

∫ t f

t0

q∑
i=1

∂XGi(s)
(
a +

∫ s

t0
Π(s, τ)(∂X f (τ)a + f̂ (τ))dτ

)
dθi(s)
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+ λ

∫ t f

t0

(t f − s)β−1

Γ(β)
∂Xl(s)

(
a +

∫ s

t0
Π(s, τ)∂X f (τ)adτ

)
ds

+ λ

∫ t f

t0

(t f − s)β−1

Γ(β)
∂Xl(s)

∫ s

t0
Π(s, τ) f̂ (τ)dτds + λ

∫ t f

t0

(t f − s)β−1

Γ(β)
l̂(s)ds.

In (7.25), by Fubini’s formula (see ( [52], Theorem 3.3, Chapter 6)),∫ t f

t0

q∑
i=1

∂XGi(s)
∫ s

t0
Π(s, τ) f̂ (τ)dτdθi(s) =

∫ t f

t0

∫ t f

s

q∑
i=1

∂XGi(τ)Π(τ, s) f̂ (s)dθi(τ)ds,∫ t f

t0

(t f − s)β−1

Γ(β)
∂Xl(s)

∫ s

t0
Π(s, τ) f̂ (τ)dτds =

∫ t f

t0

∫ t f

s

(t f − τ)β−1

Γ(β)
∂Xl(τ)Π(τ, s) f̂ (s)dτds.

Then it follows from Lemma 4.1 in Section 4 that∫ t f

t0

[∫ t f

s

q∑
i=1

∂XGi(τ)Π(τ, s) f̂ (s)dθi(τ) + (ξ⊤2 + λ∂Xm)Π(t f , s) f̂ (s)

+ λ

∫ t f

s

(t f − τ)β−1

Γ(β)
∂Xl(τ)Π(τ, s) f̂ (s)dτ

]
ds

=

∫ t f

t0

〈∫ t f

s

q∑
i=1

Π(τ, s)⊤∂XGi(τ)⊤dθi(τ)

+ λ

∫ t f

s

(t f − τ)β−1

Γ(β)
Π(τ, s)⊤∂Xl(τ)⊤dτ + Π(t f , s)⊤(ξ2 + λ∂Xm⊤), f̂ (s)

〉
ds.

We may apply the same technique to the terms in (7.25) related to the initial variation a. Hence, by
applying the above result and using (7.23) (with Lemma 4.1 in Section 4), (7.25) becomes

0 ≤ ⟨ξ1 + λ∂X0m
⊤, a⟩ + ⟨ξ2 + λ∂Xm⊤, a⟩ +

∫ t f

t0

q∑
i=1

∂XGi(s)dθi(s)a + λ
∫ t f

t0

(t f − s)β−1

Γ(β)
∂Xl(s)dsa

+

∫ t f

t0
⟨p(s), ∂X f (s)a⟩ds +

∫ t f

t0
⟨p(s), f̂ (s)⟩ds + λ

∫ t f

t0

(t f − s)β−1

Γ(β)
l̂(s)ds. (7.26)

Below, we use (7.26) to prove the transversality condition, the nontriviality of the adjoint equation, and
the Hamiltonian-like maximum condition of Theorem 5.1.

7.9. Proof of Theorem 5.1 (iii): Transversality Condition

When u = u, (7.26) becomes

0 ≤ ⟨ξ1 + λ∂X0m
⊤, a⟩ + ⟨ξ2 + λ∂Xm⊤, a⟩ +

∫ t f

t0

q∑
i=1

∂XGi(s)dθi(s)a (7.27)

+ λ

∫ t f

t0

(t f − s)β−1

Γ(β)
∂Xl(s)dsa +

∫ t f

t0
⟨p(s), ∂X f (s)a⟩ds.
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Then, by the adjoint equation in (5.1), (7.27) can be written as

0 ≤ ⟨ξ1 + λ∂X0m
⊤, a⟩ + ⟨ξ2 + λ∂Xm⊤, a⟩ + ⟨

∫ t f

t0
Dα

t f−
[p](s)ds, a⟩. (7.28)

Recall from (7.23) and Lemma 4.3 that

I1−α
t f−

[p](t f ) = ξ2 + λ∂Xm⊤. (7.29)

Note that from Definition 2.2 and (5.1),∫ t f

t0
Dα

t f−
[p](s)ds = I1−α

t f−
[p](t0) − I1−α

t f−
[p](t f ) = I1−α

t f−
[p](t0) − (ξ2 + λ∂Xm⊤).

Then (7.28) becomes 0 ≤ ⟨ξ1 + λ∂X0m
⊤
+ I1−α

t f−
[p](t0), a⟩. As this holds for a,−a ∈ Rn,

I1−α
t f−

[p](t0) = −(ξ1 + λ∂X0m
⊤). (7.30)

Hence, (7.29) and (7.30) show the transversality condition.

7.10. Proof of Theorem 5.1 (v): Hamiltonian minimization condition

When a = 0, (7.26) becomes 0 ≤
∫ t f

t0
⟨p(s), f̂ (s)⟩ds + λ

∫ t f

t0

(t f−s)β−1

Γ(β) l̂(s)ds. Then, by (5.2),∫ t f

t0
H(s, X(s), p(s); u(s))ds ≤

∫ t f

t0
H(s, X(s), p(s); u(s))ds.

Since U is separable by Assumption 3.1, there exists a countable dense set U0 = {ui, i ≥ 1} ⊂ U.
Moreover, there exists a measurable set S i ⊂ [t0, t f ] such that |S i| = t f−t0 and any t ∈ S i is the Lebesgue
point of H(t, X(t), p(t); u(t)), i.e., limτ↓0

1
2τ

∫ t+τ

t−τ
H(s, X(s), p(s); u(s))ds = H(t, X(t), p(t); u(t)) ( [66],

Theorem 5.6.2). We fix ui ∈ U0. For any t ∈ S i, define

u(s) :=

u(s), s ∈ [t0, t f ] \ (t − τ, t + τ),
ui, s ∈ (t − τ, t + τ).

It then follows that

0 ≤ lim
τ↓0

1
2τ

∫ t+τ

t−τ

[
H(s, X(s), p(s); ui) −H(s, X(s), p(s); u(s))

]
ds (7.31)

= H(t, X(t), p(t); ui) −H(t, X(t), p(t); u(t)).

Note that (7.31) implies that

H(t, X(t), p(t); u(t)) ≤ H(t, X(t), p(t); u), ∀ui ∈ U0, t ∈ ∩i≥1S i. (7.32)

Since ∩i≥1S i = [t0, t f ] by the fact that U0 is countable, H is continuous in u ∈ U, and U is separable,
(7.32) implies the Hamiltonian minimization condition. This is the end of the proof for Theorem 5.1.
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8. Conclusions

In this paper, we obtained the Pontryagin maximum principle for the fractional optimal control
problem with terminal and running state constraints (see Theorem 5.1). Indeed, our main result
indicates the maximum principle leads to the necessary optimality conditions for the problem, which
include the nontriviality condition, the transversality condition, the complement slackness condition,
and the Hamiltonian minimization condition. Regarding the framework of general theory of control
systems, the maximum principle of this paper provides a new approach for solving fractional optimal
control problems with state constraints. Indeed, we need to develop the new proof of the maximum
principle due to the inherent complex nature of the fractional control problem, the presence of the
terminal and running state constraints, and the generalized standing assumptions.

There are several potential future research directions arising from this paper: (i) Generalization to
other fractional differential equations such as the Caputo-Katugampola differential equation and
systems driven by fractional Brownian motion [67]; (ii) studying the dynamic programming principle
for the fractional control problem with state constraints; and (iii) the fractional control problem with
delay and state constraints [36]. Furthermore, in engineering problems, instead of the open-loop
optimal solution, the closed-loop optimal solution is more appropriate. Hence, one important future
research problem is the characterization of the closed-loop optimal solution, particularly for the
linear-quadratic problem. Note that we may have to extend techniques of [40] to the case of state
constraints.

We should mention that similar to [20], our study has limitations in applications to real practical
problems, including those for high-order systems. Recently, for the linear-quadratic case, various
numerical methods for several practical fractional control applications were studied in [39] (e.g., the
optimal drug scheduling of cancer chemotherapy problem and the minimum fuel optimal control
problem; see [39, Section 6 and Example 9]). In addition, the tumor growth problem in fractional
optimal control was considered in [45]. It is important to extend the major ideas of [39] to general
nonlinear fractional optimal control problems to study practical applications.
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Appendix

A. Proof of Theorem 1

We prove Theorem 3.1.

A.1. Proof of (i)

We first show (3.1) implies the integral expression. As X(·) ∈ DC α
n t0+,

I1−α
t0+ [X(·) − a](·) ∈ AC([t0, t f ];Rn). By Definition 2.3,

I1−α
t0+ [X(·) − X0](t) = I1−α

t0+ [X(·) − X0](t0) + I1
t0+[ DC α

t0+[X](·)](t)
= I1−α

t0+ [X(·) − X0](t0) + I1
t0+[ f (·, X(·), u(·))](t).

As I1−α
t0+ [X(·) − X0](t0) = 0 and f (·, X, u) ∈ L∞([t0, t f ];Rn), by Lemmas 2.1–2.3, we have

Iαt0+[I
1−α
t0+ [X(·) − X0](·)](t) = I1

t0+[X(·) − X0](t)
= Iαt0+

[
I1
t0+[ f (·, X(·), u(·))](·)

]
(t) = I1

t0+
[
Iαt0+[ f (·, X(·), u(·))](·)

]
(t).

This implies I1
t0+[X(·) − X0](t) = I1

t0+
[
Iαt0+[ f (·, X(·), u(·))](·)

]
(t). Differentiating the above equality shows

the desired expression.
We prove the integral expression implies (3.1). Note that by Lemma 2.3, we have

Iαt0+[ f (·, X(·), u(·)](·) ∈ C([t0, t f ];Rn), which implies X(t0) = X0. Then, by Lemmas 2.1–2.3, it follows
that I1−α

t0+ [X(·) − X0](t) = I1−α
t0+ [Iαt0+[ f (·, X(·), u(·)](·)](t) = I1

t0+[ f (·, X(·), u(·)](t). Since
f (·, X, u) ∈ L∞([t0, t f ];Rn), it is clear that X(·) ∈ AC([t0, t f ];Rn), which, together with Definition 2.3,
implies that DC α

t0+[X](t) = d
dt

[
I1−α
t0+ [X(·) − X0]

]
(t) = f (t, X(t), u(t)).

A.2. Proof of (ii)

The proof for the existence and uniqueness is modified from ( [41], Theorem 3). For t ∈ [t0, t f ],
define F [X(·)](t) := X0 + Iαt0+[ f (·, X(·), u(·)](t). Below, we show that F admits a unique fixed point
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on C([t0, t f ];Rn). Then the existence and uniqueness of the solution in DC α
n t0+ follows from (i) of

Theorem 3.1.
Recall that ∥X(·)∥∞ := ∥X(·)∥∞,n := sups∈[t0,t f ] |X(s)| for X(·) ∈ C([t0, t f ];Rn). By a slight abuse of

notation, for k ∈ N and X(·) ∈ C([t0, t f ];Rn), define the Bielecki norm:
∥X(·)∥∞,k := maxs∈[t0,t f ] |e−k(s−t0)X(s)|. Note that ∥X(·)∥∞,k ≤ ∥X(·)∥∞ ≤ ek(t f−t0)∥X(·)∥∞,k.**

As f (·, X, u) ∈ L∞([t0, t f ];Rn), we have F : C([t0, t f ];Rn)→ C([t0, t f ];Rn). By Assumption 3.1, for
any X(·), X′(·) ∈ C([t0, t f ];Rn), it follows that

|e−k(t−t0)(F [X(·)](t) − F [X′(·)](t))| ≤ L
e−k(t−t0)

Γ(α)

∫ t

t0
(t − s)α−1|X(s) − X′(s)|ds.

Note that |X(s) − X′(s)| ≤ ek(s−t0)∥X(·) − X′(·)∥∞,k for s ∈ [t0, t f ]. Hence,

|e−k(t−t0)(F [X(·)](t) − F [X′(·)](t))| ≤ L∥X(·) − X′(·)∥∞,k
1
Γ(α)

∫ t

t0
(t − s)α−1ek(s−t)ds.

By definition of the Gamma function Γ,
∫ t

t0
(t − s)α−1e−k(t−s)ds ≤

∫ ∞
0

sα−1e−ksds = Γ(α)
kα . This leads

to ∥F [X(·)](·) − F [X′(·)](·)∥∞,k ≤ ∥X(·) − X′(·)∥∞,k L
kα . Then, by choosing k ∈ N such that L

kα < 1,
F : C([t0, t f ];Rn)→ C([t0, t f ];Rn) is contraction. Note that this holds for any t ∈ [t0, t f ], where L

kα < 1
can be chosen independently of t. Therefore, by (i) of Theorem 3.1 and the contraction mapping
theorem, (3.1) admits a unique solution of X(·) ∈ DC α

n t0+.

A.3. Proof of (iii)

Let X(·) := X(·; X0, u) and X′(·) := X(·; X′0, u
′). By Assumption 3.1, we can show that |X(t)−X′(t)| ≤

|X0−X′0|+L
∫ t

t0
(t−s)α−1

Γ(α) [|X(s)−X′(s)|+ρ(u(s), u′(s))]ds. By Gronwall’s inequality (see [68, Theorem 1])

with b(t) = |X0 − X′0|+ L
∫ t

t0
(t−s)α−1

Γ(α) ρ(u(s), u′(s))ds and z(t) = |X(t)− X′(t)|, it follows that |X(t)− X′(t)| ≤

b(t)+
∫ t

t0

∑∞
k=1

(LΓ(α))k

Γ(kα) (t−s)kα−1b(s)ds. Hence, (3.2) follows. We can show (3.3) using a similar technique;
thus completing the proof.

B. Variational analysis

Lemma B.1. The following result holds:

sup
t∈[t0,t f ]

∣∣∣∣Xϵ,δ(t) − Xϵ(t)
δ

− Zϵ(t)
∣∣∣∣ = o(1), as δ ↓ 0, (B.1)

where Zϵ is the variational equation related to the pair (Xϵ
0, u

ϵ(·)) ∈ Rn×U expressed by the left Caputo
fractional differential equation (with ∂X f ϵ and f̂ ϵ defined in Section 7.3): DC α

t0+[Z
ϵ](t) = ∂X f ϵ(t)Zϵ(t) + f̂ ϵ(t), t ∈ (t0, t f ],

Zϵ(t0) = a ∈ Rn.
(B.2)

**This means that ∥ · ∥∞,k is equivalent to ∥ · ∥∞, and the space (C([t0, t f ];Rn), ∥ · ∥∞,k) is complete.
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Proof. Let Zϵ,δ(t) := Xϵ,δ(t)−Xϵ (t)
δ

, where by the Taylor series expansion, Zϵ,δ satisfies (with f ϵ,δX defined in
Section 7.3)

Zϵ,δ(t) = a +
∫ t

t0

(t − s)α−1

Γ(α)

(
f ϵ,δX (s)Zϵ,δ(s) +

1Eδ(s)
δ

f̂ ϵ(s)
)
ds.

Then (B.1) is equivalent to showing that limδ↓0 supt∈[t0,t f ] |Z
ϵ,δ(t) − Zϵ(t)| = 0 for t ∈ [t0, t f ]. Hereafter,

K represents a generic constant, which may differ at different places.
By Theorem 3.1, it follows that supt∈[t0,t f ] |X

ϵ,δ(t)| ≤ K and supt∈[t0,t f ] |X
ϵ(t)| ≤ K. Then, by

Theorem 3.1 and (7.10) (with some minor modification of the proof for Theorem 3.1),

sup
t∈[t0,t f ]

|Xϵ,δ(t) − Xϵ(t)| ≤ Kδ. (B.3)

By Theorem 3.1, (B.2) is equivalent to

Zϵ(t) = a +
∫ t

t0

(t − s)α−1

Γ(α)
(∂X f ϵ(s)Zϵ(s) + f̂ ϵ(s))ds.

As (B.2) is a linear Caputo fractional differential equation, by Theorem 3.1, (B.2) admits a unique
solution. In addition, by Theorem 3.1, supt∈[t0,t f ] |Z

ϵ(t)| ≤ K.
We have

Zϵ,δ(t) − Zϵ(t) =
∫ t

t0

(t − s)α−1

Γ(α)
f ϵ,δX (s)(Zϵ,δ(s) − Zϵ(s))ds +

∫ t

t0

(t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)ds

+

∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
f̂ ϵ(s)ds.

By Assumption 3.1, there is a constant K ≥ 0 such that

|Zϵ,δ(t) − Zϵ(t)| ≤ |b1(t) + b2(t)| + K
∫ t

t0

(t − s)α−1

Γ(α)
|Zϵ,δ(s) − Zϵ(s)|ds,

where

b1(t) :=
∫ t

t0

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds

b2(t) :=
∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
f̂ ϵ(s)ds

∣∣∣∣.
For b1, based on (7.10),∫ t

t0

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds =
∫

[t0,t]∩Eδ

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds

+

∫
[t0,t]\Eδ

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds.
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In view of Assumption 3.1, and the fact that d̃(uϵ,δ(·), uϵ(·)) ≤ |Eδ| = δ(t f − t0) and supt∈[t0,t f ] |Z
ϵ(t)| ≤ K

by Theorem 3.1, the first term can be estimated by the dominated convergence theorem:∫
[t0,t]∩Eδ

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds = o(1), as δ ↓ 0.

Similarly, by (7.10) and (B.3), and the fact that d̃(uϵ,δ(·), uϵ(·)) ≤ |Eδ| = δ(t f − t0) and supt∈[t0,t f ] |Z
ϵ(t)| ≤

K by Theorem 3.1, the second term can be estimated by the dominated convergence theorem:∫
[t0,t]\Eδ

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds ≤ K
∫

[t0,t]\Eδ

(t − s)α−1

Γ(α)
|Xϵ,δ(s) − Xϵ(s)||Zϵ(s)|ds

≤ Kδd̃(uϵ,δ(·), uϵ(·)) = o(1), as δ ↓ 0.

These two estimates imply that for any t ∈ [t0, t f ],

b1(t) =
∫ t

t0

∣∣∣∣ (t − s)α−1

Γ(α)
( f ϵ,δX (s) − ∂X f ϵ(s))Zϵ(s)

∣∣∣∣ds = o(1), as δ ↓ 0.

Then, it follows that limδ↓0 supt∈[t0,t f ] b1(t) = 0. In addition, from Assumption 3.1 and Lemma C.1, it
follows that supt∈[t0,t f ] b2(t) ≤ δ = o(1).

By the preceding analysis, we have

|Zϵ,δ(t) − Zϵ(t)| ≤ K
∫ t

t0

(t − s)α−1

Γ(α)
|Zϵ,δ(s) − Zϵ(s)|ds + o(1), as δ ↓ 0.

In view of Fractional Gronwall’s inequality (see [68], Theorem 1 and Corollary 2), it follows that
supt∈[t0,t f ] |Z

ϵ,δ(t)−Zϵ(t)| ≤ o(1)Eα[KΓ(α)(t f−t0)α]. This implies that as δ ↓ 0, supt∈[t0,t f ] |Z
ϵ,δ(t)−Zϵ(t)| →

0, i.e., limδ↓0 supt∈[t0,t f ] |Z
ϵ,δ(t) − Zϵ(t)| = 0, which shows (B.1). We complete the proof. □

Lemma B.2. The following result holds: as δ ↓ 0,∣∣∣∣ J(Xϵ
0 + δa; uϵ,δ(·)) − J(Xϵ

0; uϵ(·))
δ

− Ẑϵ(t f )
∣∣∣∣ = o(1), as δ ↓ 0,

where

Ẑϵ(t f ) =
∫ t f

t0

(t f − s)β−1

Γ(β)
(∂Xlϵ(s)Zϵ(s) + l̂ϵ(s))ds + ∂X0m

ϵa + ∂XmϵZϵ(t f ).

Proof. Recall Zϵ,δ(t) = Xϵ,δ(t)−Xϵ (t)
δ

. By the Taylor series expansion,

1
δ

(
J(t0, Xϵ

0 + δa; uϵ,δ(·)) − J(t0, Xϵ
0; uϵ(·))

)
− Ẑϵ(t f )

=

∫ t f

t0

(t f − s)β−1

Γ(β)
lϵ,δX (s)(Zϵ,δ(s) − Zϵ(s))ds +

∫ t f

t0

(t f − s)β−1

Γ(β)

(1Eδ(s)
δ
− 1

)̂
lϵ(s)ds

+

∫ t f

t0

(t f − s)β−1

Γ(β)
(lϵ,δX (s) − ∂Xlϵ(s))Zϵ(s)ds
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+ (mϵ,δ
X0

(t f ) − ∂X0m
ϵ)a + mϵ,δ

X (t f )(Zϵ,δ(t f ) − Zϵ(t f )) + (mϵ,δ
X (t f ) − ∂Xmϵ))Zϵ(t f ).

Note that limδ↓0 |Zϵ,δ(s) − Zϵ(s)| = 0 for s ∈ [t0, t f ] by Lemma B.1. From Assumption 3.2 and
Lemma C.1, it follows that |

∫ t f

t0

(t f−s)β−1

Γ(β) (1Eδ (s)
δ
− 1)̂lϵ(s)ds| ≤ δ. Then using a similar proof technique of

Lemma B.1, we can show the desired result. This completes the proof. □

Lemma B.3. The following results hold:

(i) limϵ↓0 d̂((X0; u(·)), (Xϵ
0, u

ϵ(·))) = 0;

(ii) supt∈[t0,t f ] |Z
ϵ(t) − Z(t)| = o(1) and |Ẑϵ(t f ) − Ẑ(t f )| = o(1) as ϵ ↓ 0, where Z is the left Caputo

fractional differential equation given by DC α
t0+[Z](t) = ∂X f (t)Z(t) + f̂ (t), t ∈ (t0, t f ],

Z(t0) = a ∈ Rn,
(B.4)

and Ẑ is given by

Ẑ(t f ) =
∫ t f

t0

(t f − s)β−1

Γ(β)
(∂Xl(s)Z(s) + l̂(s))ds + ∂X0ma + ∂XmZ(t f ).

Proof. Part (i) follows from (7.7). The proof for part (ii) is similar to that for Lemmas B.1 and B.2.
We complete the proof. □

C. Technical lemma

Lemma C.1. For any α ∈ (0, 1), δ ∈ (0, 1) and g ∈ L1([t0, t f ];R), there is an Eδ ∈ Eδ, where Eδ is
defined in (7.9), such that

sup
t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
g(s)ds

∣∣∣∣ ≤ δ.
Proof. Note that as g ∈ L1([t0, t f ];R), there is a simple function g(n), which is an approximation of g in
L1 such that g(n) → g in L1 as n→ ∞ ( [66], Lemma 4.2.1). For any ϵ ≥ 0, consider

sup
t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
g(s)ds

∣∣∣∣
≤ sup

t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α) + ϵ

(1Eδ(s)
δ
− 1

)
g(n)(s)ds

∣∣∣∣
+ sup

t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
g(n)(s)ds −

∫ t

t0

(t − s)α−1

Γ(α) + ϵ

(1Eδ(s)
δ
− 1

)
g(n)(s)ds

∣∣∣∣
+ sup

t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α)

(1Eδ(s)
δ
− 1

)
(g(s) − g(n)(s))ds

∣∣∣∣
≜ sup

t∈[t0,t f ]
H(1) + sup

t∈[t0,t f ]
H(2) + sup

t∈[t0,t f ]
H(3).
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Note that (t−s)α−1

Γ(α)+ϵ g(n)(s) is continuous in t with s < t ≤ t f and is an element of L1 in both variables (t, s)
with t0 ≤ s < t ≤ t f . Then, by ( [43], Corollary 3.8, Chapter 4), there is an Eδ ∈ Eδ such that

sup
t∈[t0,t f ]

H(1) = sup
t∈[t0,t f ]

∣∣∣∣∫ t

t0

(t − s)α−1

Γ(α) + ϵ

(1Eδ(s)
δ
− 1

)
g(n)(s)ds

∣∣∣∣ ≤ δ.
Also, from ( [66], Lemma 4.2.1), as g(n) is an approximation of g, for any t ∈ [t0, t f ],

H(3) ≤ C
(
1 +

1
δ

) ∫ t

t0

(t − s)α−1

Γ(α)
|g(s) − g(n)(s)|ds→ 0, as n→ ∞.

By the dominated convergence theorem, supt∈[t0,t f ] H(2) = o(1) as ϵ ↓ 0. Note that these estimates are
independent of t ∈ [t0, t f ]. Hence, by combining the preceding estimates, as ϵ ↓ 0, the result follows.
This completes the proof. □
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