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1. Introduction

Let R be a ring with identity, and let C(R) be the center of R. The commuting graph Γ(R) of R is
the graph associated to R whose vertices are the elements of R \ C(R) such that distinct vertices A and
B are adjacent if and only if AB = BA. For the purpose of investigating the structures of a group or a
ring, there are many associated graphs that have been studied extensively. Let Mn(F) denote the ring
of n × n matrices over F, where F is a field and n ≥ 2 an arbitrary integer. In [1], if F is a finite
field and Γ(R) � Γ(Mn(F)), then |R| = |Mn(F)|. Furthermore, if F is a prime field and n = 2, then
R � M2(F). In [2], this result still holds if it is just assumed that F is a finite field. There are also some
graph-theoretic properties of the commuting graphs that have been investigated, such as connectivity
and domination number. In [3], Akbari et al. showed that Γ(Mn(F)) is a connected graph if and only
if every field extension of F of degree n contains a proper intermediate field. Also it is shown that for
two fields F and E and integers n,m ≥ 2, if Γ(Mn(F)) � Γ(Mm(E)), then n = m and |F| = |E|.

The commuting graph of a finite group ∆(G) is the graph whose vertex set is G with x, y ∈ G, x , y,
joined by an edge whenever xy = yx, where G is a finite group. The graph ∆(G) has been studied
in [4–7]. The set of all automorphisms of a graph forms a group known as the graph’s automorphism
group. The automorphism group of a graph describes its symmetries. In [6], it is proved that the
automorphism group of ∆(G) is abelian if and only if |G| ≤ 2. With the wreath product, Mirzargar
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et al. [7] determined the automorphism group of ∆(G), where G is an AC-group. In [8], it is proved that
the automorphism group of Γ(M2(F)) is a direct product of symmetric groups, where F is a finite field.
In this paper, motivated by these works, we extend the finite field to the ring of integers modulo ps,
and we completely determine the automorphism group of Γ(M2(Zps)), where Zps is the ring of integers
modulo ps, p is a prime and s is a positive integer. This paper is organized as follows. In section 2, we
give some preliminaries, notation, lemmas and definition of the wreath product. In section 3, we show
that the automorphism group of Γ(M2(Zps)) is a subgroup of a direct product of some wreath products,
and we completely characterize it in Theorem 3.8.

2. Preliminaries and notation

In this paper, let M2(Zps) denote the 2×2 matrix ring over Zps , we write it R for short. Let Ei j denote
the matrix in R having 1 in its (i, j) entry and zeros elsewhere, and let E denote the identity matrix. It is
well known that C(R) = {aE | a ∈ Zps}. For A ∈ R, CR(A) = {B ∈ R | AB = BA} is called the centralizer
of A in R. For the ring R, let us denote by U(R) and D(R) the unit group and the zero divisor set of
R respectively. The commuting graph of R is the graph with vertices R \ C(R), and distinct vertices A
and B are adjacent if and only if AB = BA. In a graph G, if x is adjacent to y (denoted by [x, y]), then
we say that x is a neighbor of y or that y is a neighbor of x. Let N(x) denote the neighbors of x in G.
A graph automorphism of a graph G is a bijection on vertex set (denoted by V(G)) which preserves
adjacency. For a ∈ Zps , let 〈a〉 be the ideal of Zps generated by a, we will denote by Ann(a) the set
{b ∈ Zps | ab = 0}, and by Ass(a) the set {ua | u ∈ U(Zps)}. Write T = {0, 1, · · · , p − 1} ⊆ Zps . The
subset of T consisting of all non-zero elements is denoted by T ∗. Let us denote by S n the symmetric
group of degree n. For a set D, we will denote by |D| the size of D, and by S D the symmetric group
on D.

Lemma 2.1. [9, p. 328] Every non-zero element in Zps can be written uniquely as

t0 + t1 p + · · · + ts−1 ps−1,

where ti ∈ T, i ∈ {0, 1, · · · , s − 1}. Furthermore, |〈pi〉| = ps−i, |Ass(pi)| = ps−i − ps−i−1, and Ann(pi) =

〈ps−i〉.

Definition 2.2. [10, p. 172] Let D and Q be groups, let Ω be a finite Q-set, and let K =
∏

ω∈Ω Dω,
where Dω � D for all ω ∈ Ω. Then the wreath product of D by Q, denoted by D oΩ Q, is the semidirect
product of K by Q, where Q acts on K by q · (dω) = (dqω) for q ∈ Q and (dω) ∈

∏
ω∈Ω Dω.

Lemma 2.3. ( [10, p. 178] or [11, Theorem 2.1.6]) Let X = B1 ∪ · · · ∪ Bm be a partition of a set X in
which each Bi has k elements. If G = {g ∈ S X | for each i, there is j with g(Bi) = B j}, then G � S k oΩm S m,
where Ωm = {1, 2, · · · ,m}.

Let X =
⋃m1

i1=1 Bi1 be a partition of a set X in which each Bi1 has same size. Let Bi1 =
⋃m2

i2=1 Bi1,i2 be
a partition of a set Bi1 in which each Bi1,i2 has same size, where i1 = 1, 2, · · · ,m1. Continuing in this
way we obtain partitions

X =

m j⋃
i j=1

· · ·

m1⋃
i1=1

Bi1,··· ,i j
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of X in which each Bi1,··· ,i j has same size for j = 1, · · · , k. With this notation, by Lemma 2.3, we have
the following:

Corollary 2.4. ( [12, p. 93] or [11, Theorem 2.1.15]) Let G be the largest subgroup of S X preserving
above partitions and |Bi1,··· ,ik | = mk+1. Then G = {g ∈ S X | for each i j, there is i′j with g(Bi1,··· ,i j) = Bi′1,··· ,i

′
j
,

j = 1, · · · , k}. Moreover, G � (· · · (S mk+1 oΩmk
S mk) o · · · oΩm2

S m2) oΩm1
S m1 , where Ωmi = {1, 2, · · · ,mi} for

i = 1, 2, · · · , k + 1.

With the associativity of the wreath product (see [10, Theorem 7.26]), we will simply write
(· · · (S mk+1 oΩmk

S mk) o · · · oΩm2
S m2) oΩm1

S m1 as S mk+1 o S mk o · · · o S m2 o S m1 . In [11, p. 68], the iterated
wreath product S mk+1 o S mk o · · · o S m2 o S m1 consists of all fk+1 o fk o · · · o f2 o f1, where f1 ∈ S m1 and

f j =

m j−1∏
i j−1=1

m j−2∏
i j−2=1

· · ·

m1∏
i1=1

g j,i1,··· ,i j−2,i j−1 ∈

m j−1m j−2···m1∏
S m j , (2.1)

j = 2, 3, · · · , k + 1, with the action on
∏k+1

j=1 Ωm j defined by

( fk+1 o fk o · · · o f2 o f1)(x1, x2, · · · , xk+1) = (y1, y2, · · · , yk+1), (2.2)

where y1 = f1(x1) and y j = g j,y1,y2,··· ,y j−1(x j), j = 2, 3, · · · , k + 1 for all (x1, x2, · · · , xk+1) ∈
∏k+1

j=1 Ωm j and
fk+1 o fk o · · · o f2 o f1 ∈ S mk+1 o S mk o · · · o S m2 o S m1 .

3. Automorphisms of Γ(R)

Let R0 denote the set {aE11 +bE12 +cE21 +dE22 | a−d ∈ U(Zps) or b ∈ U(Zps) or c ∈ U(Zps)}. Then
R\R0 = {aE11 +bE12 +cE21 +dE22 | a−d ∈ D(Zps), b ∈ D(Zps) and c ∈ D(Zps)}. Since |D(Zps)| = ps−1,
an easy computation shows that |R \ R0| = p4s−3. Therefore |R0| = p4s − p4s−3. For A, B ∈ R, we write
A ∼ B if there exist a ∈ U(Zps) and b ∈ Zps such that A = aB + bE. A trivial verification shows that
∼ is an equivalence relation on R. Set [A] = {B ∈ R | B ∼ A}. It follows immediately that [A] is the
equivalence class of A on R under the equivalence relation of ∼.

Lemma 3.1. Every equivalence class in R0 has size p2s − p2s−1. Moreover, there are p2s + p2s−1 + p2s−2

distinct equivalence classes in R0.

Proof. Assume that A = aE11 + bE12 + cE21 + dE22 ∈ R0, where a − d ∈ U(Zps) or b ∈ U(Zps) or c ∈
U(Zps). Let A1 = a1A + b1E and A2 = a2A + b2E ∈ [A], where a1, a2 ∈ U(Zps) and b1, b2 ∈ Zps . We
claim that if a1 , a2 or b1 , b2, then A1 , A2. If a1 = a2 and b1 , b2, then A1 − A2 = (b1 − b2)E. It is
clear that A1 , A2. If a1 , a2 and b1 = b2, then A1 − A2 = ((a1 − a2)(a − d) + (a1 − a2)d)E11 + (a1 −

a2)bE12 + (a1 − a2)cE21 + (a1 − a2)dE22. If (a1 − a2)d = 0, then (a1 − a2)(a − d) , 0 or (a1 − a2)b , 0
or (a1 − a2)c , 0 (i.e., A1 , A2), since a1 − a2 , 0, a − d ∈ U(Zps) or b ∈ U(Zps) or c ∈ U(Zps). If
(a1 − a2)d , 0, then it is obvious that A1 , A2. If a1 , a2 and b1 , b2, then A1 − A2 = ((a1 − a2)(a −
d) + (a1 − a2)d + b1 − b2)E11 + (a1 − a2)bE12 + (a1 − a2)cE21 + ((a1 − a2)d + b1 − b2)E22. Similarly, we
have A1 , A2. It is well known that |U(Zps)| = ps − ps−1. So |[A]| = p2s − p2s−1.

It is easily seen that if A ∈ R0, then [A] ⊆ R0. This fact makes it obvious that R0 is the disjoint union
of some equivalence classes. Since |R0| = p4s − p4s−3, there are exactly p2s + p2s−1 + p2s−2 equivalence
classes in R0. �
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In fact, a trivial verification shows that the set of equivalence class representatives in R0 is

{E11 + aE12 + bE21, aE11 + E12 + bE21, aE11 + bE12 + E21,

E11 + cE12 + bE21, E11 + bE12 + cE21, bE11 + E12 + cE21,

E11 + cE12 + dE21 | a, b ∈ 〈p〉, c, d ∈ U(Zps)}.

We denote this set by P0. By Lemma 3.1, we can write

P0 = {A0,1, A0,2, · · · , A0,p2s+p2s−1+p2s−2}.

It is immediate that R0 =
⋃|P0 |

i0=1[A0,i0].
Let j ∈ {1, 2, · · · , s − 1}. Set P j = p jP0. Since Zps is a principal ideal ring,

P j = {p jE11 + aE12 + bE21, aE11 + p jE12 + bE21, aE11 + bE12 + p jE21,

p jE11 + cE12 + bE21, p jE11 + bE12 + cE21, bE11 + p jE12 + cE21,

p jE11 + cE12 + dE21 | a, b ∈ 〈p j+1〉, c, d ∈ Ass(p j)}.

From Lemma 3.1, |P j| = p2s−2 j + p2s−2 j−1 + p2s−2 j−2. Write P j = {A j,1, A j,2, · · · , A j,|P j |}. Set

R j =

|P j |⋃
i j=1

[A j,i j]. (3.1)

Accordingly, there are seven forms in
⋃s−1

j=0 P j. For example, let j, k ∈ {0, 1, · · · , s − 1}, if A j,i j =

p jE11 + a1E12 + b1E21, Ak,ik = a2E11 + pkE12 + b2E21, where a1, b1 ∈ 〈p j+1〉, a2, b2 ∈ 〈pk+1〉, then we say
that A j,i j and Ak,ik have different forms.

Lemma 3.2. Let R j =
⋃|P j |

i j=1[A j,i j], where j = 0, 1, . . . , s − 1. Then

R =

s−1⋃
j=0

R j

⋃
C(R) =

s−1⋃
j=0

(∪|P j |

i j=1[A j,i j])
⋃

C(R)

is a partition of R.

Proof. By the definition of C(R), we have C(R) ∩ R j = ∅ for all j ∈ {0, 1, · · · , s − 1}. By construction,
C(R) * R0 and hence C(R) * R j for j ∈ {1, 2, · · · , s − 1}. Let A j,i j ∈ P j. Then A j,i j = p jA0,i0 for a
certain A0,i0 ∈ P0. Consequently, [A j,i j] = [p jA0,i0] = {ap jA0,i0 + bE | a ∈ U(Zps) and b ∈ Zps} =

{aA0,i0 + bE | a ∈ Ass(p j) and b ∈ Zps}. By Lemma 2.1, in much the same way as Lemma 3.1, the size
of an equivalence class in R j is p2s− j − p2s− j−1. It follows that |R j| = p4s−3 j − p4s−3 j−3. Then

s−1∑
j=0

|R j| + |C(R)| =
s−1∑
j=0

(p4s−3 j − p4s−3 j−3) + ps = p4s = |R|.

It remains to prove that R j1 ∩ R j2 = ∅ for all j1 , j2 ∈ {0, 1, · · · , s − 1}. Assume that A ∈ R j1 ∩

R j2 , ∅. Then there exist a1, a2 ∈ U(Zps), b1, b2 ∈ Zps , A j1,i j1
∈ P j1 and A j2,i j2

∈ P j2 such that
A = a1A j1,i j1

+ b1E = a2A j2,i j2
+ b2E. It implies that A j1,i j1

= a−1
1 a2A j2,i j2

+ a−1
1 (b2−b1)E. Since the (2, 2)

entries of A j1,i j1
and A j2,i j2

are equal to 0, a−1
1 (b2 − b1) = 0. Thus, A j1,i j1

= a−1
1 a2A j2,i j2

. Suppose that
A j1,i j1

= p j1 E11 + ?p j1+1E12 + ?E21 and A j2,i j2
= p j2 E11 + ?p j2+1E12 + ?E21. We thus get j1 = j2. This

contradicts our assumption j1 , j2. Similarly, we obtain contradictions in the other cases of A j1,i j1
and

A j2,i j2
. This completes the proof. �
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Lemma 3.3. Let A ∈ [A j,i j], B ∈ [Ak,ik], where j, k ∈ {0, 1, · · · , s − 1}, A j,i j ∈ P j and Ak,ik ∈ Pk.
(i) Let j + k ≤ s − 1. Then AB = BA if and only if pkA j,i j = p jAk,ik .
(ii) Let j + k > s − 1. Then AB = BA.

Proof. It is easily seen that AB = BA if and only if A j,i j Ak,ik = Ak,ik A j,i j .
(i) Suppose that A j,i j = p jE11 + a1E12 + b1E21, Ak,ik = a2E11 + pkE12 + b2E21, where a1, b1 ∈ 〈p j+1〉,

a2, b2 ∈ 〈pk+1〉. Then A j,i j Ak,ik = ?E11 + p j+kE12 + ?E21, Ak,ik A j,i j = ?E11 + ?p j+k+2E12 + ?E21.
Obviously, A j,i j Ak,ik , Ak,ik A j,i j . By similar arguments, it is easy to check that A j,i j Ak,ik , Ak,ik A j,i j when
A j,i j and Ak,ik have different forms.

Without loss of generality we assume that j ≥ k. Now suppose that A j,i j Ak,ik = Ak,ik A j,i j , where
A j,i j = p jE11 + a1E12 + b1E21, Ak,ik = p jE11 + a2E12 + b2E21, a1, b1 ∈ 〈p j+1〉, a2, b2 ∈ 〈pk+1〉. By
Lemma 2.1, we can assume that a1 =

∑s−1
i= j+1 ri pi, b1 =

∑s−1
i= j+1 ti pi, a2 =

∑s−1
i=k+1 ui pi and b2 =

∑s−1
i=k+1 vi pi,

where ri, ti, ui, vi ∈ T . Since A j,i j Ak,ik = Ak,ik A j,i j , it is obvious that r j+1 = uk+1, r j+2 = uk+2, · · · ,
rs−k−1 = us− j−1, and t j+1 = vk+1, t j+2 = vk+2, · · · , ts−k−1 = vs− j−1. It is immediately that pkA j,i j = p jAk,ik .
In other cases we conclude similarly that pkA j,i j = p jAk,ik .

Conversely, suppose that pkA j,i j = p jAk,ik . An easy computation shows that it occurs only when A j,i j

and Ak,ik have same form. Assume that A j,i j = p jE11 + a1E12 + b1E21, Ak,ik = p jE11 + a2E12 + b2E21 with
a1 =

∑s−1
i= j+1 ri pi, b1 =

∑s−1
i= j+1 ti pi, a2 =

∑s−1
i=k+1 ui pi and b2 =

∑s−1
i=k+1 vi pi, where ri, ti, ui, vi ∈ T . Since

pkA j,i j = p jAk,ik , it is easy to check that r j+1 = uk+1, r j+2 = uk+2, · · · , rs−k−1 = us− j−1, and t j+1 = vk+1,
t j+2 = vk+2, · · · , ts−k−1 = vs− j−1. It is clear that A j,i j Ak,ik = Ak,ik A j,i j . The proof for other cases is similar.

(ii) If j + k > s − 1, then A j,i j Ak,ik = 0 = Ak,ik A j,i j . Therefore, AB = BA. �

For fixed j, k ∈ {0, 1, · · · , s − 1} and ik ∈ {1, 2, · · · , |Pk|}, set

Rk,ik
j = {[A j,i j] ⊆ R j | pkA j,i j = p jAk,ik}.

By Lemma 3.3, we have the following proposition.

Proposition 3.4. Let A ∈ [Ak,ik], where k ∈ {0, 1, · · · , s − 1} and Ak,ik ∈ Pk.

(i) CR(A) =
s−1⋃
j=0

[p jA0,i0]
⋃

C(R).

(ii) Let 0 < k ≤ s − 1. Then CR(A) =
s−k−1⋃

j=0
Rk,ik

j

s−1⋃
j=s−k

R j
⋃

C(R).

For fixed k, j ∈ {0, 1, · · · , s − 1}, k ≥ j, ik ∈ {1, 2, · · · , |Pk|}, ik+1 ∈ {1, 2, · · · , |Pk+1|}, · · · , is−1 ∈

{1, 2, · · · , |Ps−1|}, if ps−1−kAk,ik = ps−1−(k+1)Ak+1,ik+1 = · · · = p0As−1,is−1 , then set

R j,is−1,··· ,ik+1,ik = {[A j,i j] ⊆ R j | pk− jA j,i j = Ak,ik},

N ik
k−1 = {ik−1 ∈ {1, · · · , |Pk−1| } | pAk−1,ik−1 = Ak,ik}.

Since ps−1− jP j = ps−1−( j+1)P j+1 = · · · = Ps−1,

R j =

|Ps−1 |⋃
is−1=1

R j,is−1 = · · · =
⋃

i j∈N
i j+1
j

⋃
i j+1∈N

i j+2
j+1

· · ·

|Ps−1 |⋃
is−1=1

R j,is−1,··· ,i j+1,i j .
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Lemma 3.5. Let 0 ≤ j ≤ k ≤ s − 1, Ak,ik ∈ Pk, Ak+1,ik+1 ∈ Pk+1,· · · ,As−1,is−1 ∈ Ps and ps−1−kAk,ik =

ps−1−(k+1)Ak+1,ik+1 = · · · = p0As−1,is−1 . Then the number of equivalence classes in R j,is−1,··· ,ik+1,ik is p2(k− j).

Proof. From the construction of P j and Pk, we know that pk− jP j = pkP0 = Pk. Define two maps
f : 〈p j+1〉 → 〈pk+1〉 by

∑s−1
i= j+1 ti pi 7→

∑s−k+ j−1
i= j+1 ti pi+k− j and g : Ass(p j) → Ass(pk) by

∑s−1
i= j ti pi 7→∑s−k+ j−1

i= j ti pi+k− j, where t j ∈ T ∗, ti ∈ T , i = j + 1, j + 2, · · · , s − 1. Clearly, f , g are surjective, and
we have ker( f ) = {

∑s−1
i=s−k+ j ti pi | ti ∈ T, i = s − k + j, s − k + j + 1, · · · , s − 1} = 〈ps−k+ j〉 and

ker(g) = {p j +
∑s−1

i=s−k+ j ti pi | ti ∈ T, i = s − k + j, s − k + j + 1, · · · , s − 1}. By Lemma 2.1 and |T | = p,
|ker( f )| = |ker(g)| = pk− j. Then the size of the inverse image of each element in 〈pk+1〉 and Ass(pk)
under f and g is pk− j respectively. Moreover, it is evident that the number of solutions of pk− jX = Ak,ik

in P j is p2(k− j). In fact, the number of equivalence classes in R j,is−1,··· ,ik+1,ik is equal to the number of
solutions of pk− jX = Ak,ik in P j, which completes the proof. �

From Lemma 3.5, |N ik
k−1| = p2 for all k ∈ {1, 2, · · · , s − 1} and ik ∈ {1, 2, · · · |Pk|}. Recall that

Ωp2 = {1, 2, · · · , p2}. It is easily seen that there exists a unique map ϕik : N ik
k−1 → Ωp2 such that for

i, j ∈ N ik
k−1, if i < j, then ϕik(i) < ϕik( j). Let i′k ∈ {1, 2, · · · |Pk|}. Define a map

ϕ
i′k
k−1 : N ik

k−1 → N
i′k
k−1 (3.2)

by i 7→ j if ϕik(i) = ϕi′k
( j).

Corollary 3.6. Let R = M2(Zps), with p prime and s positive integer. Let A, B ∈ R. Then CR(A) = CR(B)
if and only if [A] = [B].

Proof. If A, B ∈ C(R), it is obviously that CR(A) = R = CR(B) if and only if [A] = C(R) = [B]. If
A ∈ C(R) and B < C(R), it is clear that CR(A) = R , CR(B). Similarly, if A < C(R) and B ∈ C(R), then
CR(A) , CR(B).

Now let A, B ∈ R \ C(R). Suppose that CR(A) = CR(B), where A ∈ [A j,i j], B ∈ [Ak,ik], j, k ∈
{0, 1, · · · , s − 1}. We claim that j = k and i j = ik. If j = 0 and k , 0, by Proposition 3.4, we know that
CR(A) , CR(B), a contradiction. Similarly, if j , 0 and k = 0, then CR(A) , CR(B), a contradiction. If
0 < j , k ≤ s − 1, then

⋃s−1
l=s− j Rl ,

⋃s−1
l=s−k Rl. By Proposition 3.4 (ii), CR(A) =

⋃s− j−1
l=0 R j,i j

l

⋃s−1
l=s− j Rl ,⋃s−k−1

l=0 Rk,ik
k

⋃s−1
l=s−k Rl = CR(B), a contradiction. If j = k = 0 and i j , ik, then [A0,i j] , [A0,ik]. By

Proposition 3.4 (i), CR(A) = [A0,i j]
⋃s−1

l=1 [plA0,i j] , [A0,ik]
⋃s−1

l=1 [plA0,ik] = CR(B), a contradiction. If
0 < j = k ≤ s − 1 and i j , ik, then A j,i j , A j,ik . Thus, by the proof of Lemma 3.5, R j,i j

0 = R0,is−1,··· ,i j ,

R0,is−1,··· ,ik = R j,ik
0 . Furthermore, CR(A) = R j,i j

0

⋃s− j−1
l=1 R j,i j

l

⋃s−1
l=s− j Rl , R j,ik

0

⋃s− j−1
l=1 R j,ik

l

⋃s−1
l=s− j Rl = CR(B)

by Proposition 3.4 (ii), a contradiction. Therefore j = k and i j = ik as claimed. This means that
A j,i j = Ak,ik (i.e. [A] = [B]). The converse is straightforward. �

Corollary 3.7. Let R = M2(Zps), with p prime and s positive integer. If f ∈ Aut(Γ(R)), then f (R j) = R j

for j ∈ {0, 1, · · · , s − 1}, where R j is as defined in (3.1).

Proof. For j = 0, 1, · · · , s − 1, if A ∈ R j, then |CR(A) \ C(R)| = p2s+2 j − ps by Proposition 3.4 and
the proof of Lemma 3.5. This means that if A ∈ R j, B ∈ Rk and j , k, then |N(A)| , |N(B)|, where
j, k ∈ {0, 1, · · · , s − 1}. Since automorphisms of a graph must preserve the number of neighbors of
vertices, f (R j) = R j, where j ∈ {0, 1, · · · , s − 1}. �
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Recall that a graph automorphism of a graph G is a bijection on vertex set which preserves
adjacency. If |V(G)| = n, then in the obvious way Aut(G) is isomorphic to a subgroup of S n.
Specifically, Aut(G) = { f ∈ S n | f or all x, y ∈ V(G), [x, y] ⇔ [ f (x), f (y)]}. It is easy to show that
Aut(G) = { f ∈ S n | f or all x ∈ V(G), f (N(x)) = N( f (x))}. For Γ(R), N(A) = CR(A) \ {C(R) ∪ A}. This
means that Aut(Γ(R)) = { f ∈ S∑s−1

j=0 |R j |
| f or all A ∈ V(Γ(R)), f (N(A)) = N( f (A))}.

We now prove our main result about the automorphism group of the commuting graph of M2(Zps).
To state it, we need to define a group. For each j ∈ {0, 1, · · · , s − 1} denote

Gs−1− j = S p2s− j−p2s− j−1 o S p2 o · · · o S p2︸          ︷︷          ︸
s−1− j

oS p2+p+1.

Let G be a subset of
∏s−1

j=0 Gs−1− j and define:

G = {(h0 o g0 o · · · o gs−2 o gs−1, h1 o g1 o · · · o gs−2 o gs−1, · · · , hs−1 o gs−1)
| h j o g j o · · · o gs−2 o gs−1 ∈ Gs−1− j, j = 0, 1, . . . , s − 1}.

(3.3)

The multiplication law of the iterated wreath product is defined in [11, p. 68], the proof that G is a
subgroup of

∏s−1
j=0 Gs−1− j is routine.

Theorem 3.8. Let R = M2(Zps), with p prime and s positive integer. Then Aut(Γ(R)) � G, where G is
a group defined in (3.3).

Proof. By Lemma 3.2 and Corollary 3.7, Aut(Γ(R)) is isomorphic to a subgroup of
∏s−1

j=0 S R j . So f ∈
Aut(Γ(R)) can be written as a product

∏s−1
j=0 f j, where f j ∈ S R j . We claim that

{ f j ∈ S R j | (· · · , f j, · · · ) = f ∈ Aut(Γ(R))} � Gs−1− j,

where j = 0, 1, · · · , s − 1.
Let j ∈ {1, · · · , s − 1} and (· · · , f j, · · · ) = f ∈ Aut(Γ(R)). Assume that A ∈ [A j,i j], B ∈ [A j,i′j] with

f j(A) = B. By Proposition 3.4 (ii) and f (N(A)) = N( f (A)),

f (R j,i j

0

s− j−1⋃
k=1

R j,i j

k

s−1⋃
k=s− j

Rk) = R
j,i′j
0

s− j−1⋃
k=1

R
j,i′j
k

s−1⋃
k=s− j

Rk.

Then f (R j,i j

0 ) = R
j,i′j
0 by Corollary 3.7. It is immediate that f ([As−1,is−1]) = [As−1,i′s−1

] by

Proposition 3.4 (i), where [As−1,is−1] = ps−1R j,i j

0 , [As−1,i′s−1
] = ps−1R

j,i′j
0 . Since Proposition 3.4 (ii) and

f (N([As−1,is−1])) = N( f ([As−1,is−1])),

f (Rs−1,is−1
0

s−1⋃
k=1

Rk) = R
s−1,i′s−1
0

s−1⋃
k=1

Rk.

Thus f (Rs−1,is−1
0 ) = R

s−1,i′s−1
0 . It is evident that f (p jRs−1,is−1

0 ) = p jR
s−1,i′s−1
0 by Proposition 3.4 (i), i.e.,

f j(R j,is−1) = R j,i′s−1
.
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Similarly, we have
f j(R j,is−1,is−2) = R j,i′s−1,i

′
s−2
,

· · ·

f j(R j,is−1,··· ,i j+2,i j+1) = R j,i′s−1,··· ,i
′
j+2,i

′
j+1
,

where is−2, i′s−2 ∈ {1, · · · , |Ps−2|}, · · · ,i j+2, i′j+2 ∈ {1, · · · , |P j+2|}, i j+1, i′j+1 ∈ {1, · · · , |P j+1|} with

As−2,is−2 = ps−2− jA j,i j , As−2,i′s−2
= ps−2− jA j,i′j ,

· · ·

A j+2,i j+2 = p2A j,i j , A j+2,i′j+2
= p2A j,i′j ,

A j+1,i j+1 = pA j,i j , A j+1,i′j+1
= pA j,i′j .

Obviously,
f j(R j,is−1,··· ,i j+1,i j) = f j([A j,i j]) = [A j,i′j] = R j,i′s−1,··· ,i

′
j+1,i

′
j
.

Hence, for is−1 ∈ {1, 2, · · · , |Ps−1|}, is−2 ∈ N is−1
s−2, · · · , i j+1 ∈ N i j+2

j+1, i j ∈ N i j+1

j , there are

i′s−1 ∈ {1, 2, · · · , |Ps−1|}, i′s−2 ∈ N
i′s−1
s−2, · · · , i′j+1 ∈ N

i′j+2

j+1, i′j ∈ N
i′j+1

j such that

f j(R j,is−1) = R j,i′s−1
,

f j(R j,is−1,is−2) = R j,i′s−1,i
′
s−2
,

· · ·

f j(R j,is−1,··· ,i j+1,i j) = R j,i′s−1,··· ,i
′
j+1,i

′
j
.

By Lemma 3.5, |N ik+1
k | = p2, k = j, j + 1, · · · , s − 2. In the proof of Lemma 3.2, we know that |[A]| =

p2s− j − p2s− j−1 for A ∈ R j. Therefore { f j ∈ S R j | (· · · , f j, · · · ) = f ∈ Aut(Γ(R))} � Gs−1− j by
Corollaries 2.4 and 3.6. The proof for j = 0 is similar.

From the above proof, it follows that Aut(Γ(R)) is a subgroup of
∏s−1

j=0 Gs−1− j. Let j ∈ {0, 1, · · · , s −
2}. Let φ j be an isomorphism between { f j ∈ S R j | (· · · , f j, · · · ) = f ∈ Aut(Γ(R))} and Gs−1− j. Suppose
that (· · · , f j, f j+1, · · · ) = f ∈ Aut(Γ(R)), where φ j( f j) = h j o g j o · · · o gs−2 o gs−1 ∈ Gs−1− j. As defined
in (2.1), gs−1 ∈ S p2+p+1,

gk =
∏

ik+1∈N
ik+2
k+1

∏
ik+2∈N

ik+3
k+2

· · ·

p2+p+1∏
is−1=1

gk,is−1,··· ,ik+2,ik+1 ∈
∏

ik+1∈N
ik+2
k+1

∏
ik+2∈N

ik+3
k+2

· · ·

p2+p+1∏
is−1=1

S N
ik+1
k
,

k = s − 2, s − 3, · · · , j, and

h j =
∏

i j∈N
i j+1
j

∏
i j+1∈N

i j+2
j+1

· · ·

p2+p+1∏
is−1=1

h j,is−1,··· ,i j+1,i j ∈
∏

i j∈N
i j+1
j

∏
i j+1∈N

i j+2
j+1

· · ·

p2+p+1∏
is−1=1

S [A j,i j ].

As the action defined in (2.2), we define f j(R j,is−1) = R j,ys−1 ,

f j(R j,is−1,··· ,ik+1,ik) = R j,ys−1,··· ,yk+1,yk ,
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where ys−1 = gs−1(is−1), yk = gk,ys−1,··· ,yk+2,yk+1(ϕ
yk+1
k (ik)), ϕ

yk+1
k is defined in (3.2), k = s − 2, s − 3, · · · , j

and f j(aA j,i j + bE) = h j,ys−1,··· ,y j+1,y j(aA j,y j + bE) for all a ∈ Ass(p j), b ∈ Zps . Suppose that φ j+1( f j+1) =

h j+1 o g′j+1 o · · · o g
′
s−2 o g

′
s−1 ∈ Gs−1−( j+1). We next claim that g j+1 = g′j+1, g j+2 = g′j+2, · · · , gs−1 = g′s−1. If

there exists k ∈ { j + 1, j + 2, · · · , s − 1} such that g j+1 = g′j+1,· · · , gk−1 = g′k−1, gk , g′k, gk+1 = g′k+1,· · · ,
gs−1 = g′s−1, then there exist is−1 ∈ {1, 2, · · · , p2 + p + 1}, · · · , ik+1 ∈ N ik+2

k+1, ik ∈ N ik+1
k such that yk , y′k,

where yk, y′k are defined above. Assume that f j(R j,is−1,··· ,ik+1,ik) = R j,ys−1,··· ,yk+1,yk and f j+1(R j+1,is−1,··· ,ik+1,ik) =

R j+1,ys−1,··· ,yk+1,y′k
. By Proposition 3.4 (i) and f (N(A)) = N( f (A)) for all A ∈ R \ C(R), f0(R0,is−1,··· ,ik) =

R0,ys−1,··· ,yk+1,yk and f0(R0,is−1,··· ,ik) = R0,ys−1,··· ,yk+1,y′k
. Since yk , y′k, R0,ys−1,··· ,yk+1,yk , R0,ys−1,··· ,yk+1,y′k

, i.e.,
f0(R0,is−1,··· ,ik) , f0(R0,is−1,··· ,ik), which is impossible. By this claim, we know that f ∈ Aut(Γ(R)) can be
written as (h0 o g0 o · · · o gs−2 o gs−1, h1 o g1 o · · · o gs−2 o gs−1, · · · , hs−1 o gs−1), where h j o g j o · · · o gs−2 o gs−1 ∈

Gs−1− j, j = 0, 1, . . . , s − 1. Therefore Aut(Γ(R)) � G. �

4. Conclusions

In this paper, we show that the automorphism group of Γ(M2(Zps)) is a subgroup of a direct product
of some wreath products, and we completely characterize it in Theorem 3.8.
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