Research article

Automorphism group of the commuting graph of 2×2 matrix ring over $\mathbb{Z}_{p^{s}}$

Hengbin Zhang*
College of Mathematical Science, Yangzhou University, Yangzhou, Jiangsu 225009, China
* Correspondence: Email: hengbinzhang @yzu.edu.cn.

Abstract

Let R be a ring with identity. The commuting graph of R is the graph associated to R whose vertices are non-central elements in R, and distinct vertices A and B are adjacent if and only if $A B=B A$. In this paper, we completely determine the automorphism group of the commuting graph of 2×2 matrix ring over $\mathbb{Z}_{p^{s}}$, where $\mathbb{Z}_{p^{s}}$ is the ring of integers modulo p^{s}, p is a prime and s is a positive integer.

Keywords: commuting graph; automorphism group; matrix ring
Mathematics Subject Classification: 20B25, 15B33

1. Introduction

Let R be a ring with identity, and let $C(R)$ be the center of R. The commuting graph $\Gamma(R)$ of R is the graph associated to R whose vertices are the elements of $R \backslash C(R)$ such that distinct vertices A and B are adjacent if and only if $A B=B A$. For the purpose of investigating the structures of a group or a ring, there are many associated graphs that have been studied extensively. Let $M_{n}(F)$ denote the ring of $n \times n$ matrices over F, where F is a field and $n \geq 2$ an arbitrary integer. In [1], if F is a finite field and $\Gamma(R) \cong \Gamma\left(M_{n}(F)\right)$, then $|R|=\left|M_{n}(F)\right|$. Furthermore, if F is a prime field and $n=2$, then $R \cong M_{2}(F)$. In [2], this result still holds if it is just assumed that F is a finite field. There are also some graph-theoretic properties of the commuting graphs that have been investigated, such as connectivity and domination number. In [3], Akbari et al. showed that $\Gamma\left(M_{n}(F)\right)$ is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. Also it is shown that for two fields F and E and integers $n, m \geq 2$, if $\Gamma\left(M_{n}(F)\right) \cong \Gamma\left(M_{m}(E)\right)$, then $n=m$ and $|F|=|E|$.

The commuting graph of a finite group $\Delta(G)$ is the graph whose vertex set is G with $x, y \in G, x \neq y$, joined by an edge whenever $x y=y x$, where G is a finite group. The graph $\Delta(G)$ has been studied in [4-7]. The set of all automorphisms of a graph forms a group known as the graph's automorphism group. The automorphism group of a graph describes its symmetries. In [6], it is proved that the automorphism group of $\Delta(G)$ is abelian if and only if $|G| \leq 2$. With the wreath product, Mirzargar
et al. [7] determined the automorphism group of $\Delta(G)$, where G is an AC-group. In [8], it is proved that the automorphism group of $\Gamma\left(M_{2}(F)\right)$ is a direct product of symmetric groups, where F is a finite field. In this paper, motivated by these works, we extend the finite field to the ring of integers modulo p^{s}, and we completely determine the automorphism group of $\Gamma\left(M_{2}\left(\mathbb{Z}_{p^{s}}\right)\right)$, where $\mathbb{Z}_{p^{s}}$ is the ring of integers modulo p^{s}, p is a prime and s is a positive integer. This paper is organized as follows. In section 2 , we give some preliminaries, notation, lemmas and definition of the wreath product. In section 3, we show that the automorphism group of $\Gamma\left(M_{2}\left(\mathbb{Z}_{p^{s}}\right)\right)$ is a subgroup of a direct product of some wreath products, and we completely characterize it in Theorem 3.8.

2. Preliminaries and notation

In this paper, let $M_{2}\left(\mathbb{Z}_{p^{s}}\right)$ denote the 2×2 matrix ring over $\mathbb{Z}_{p^{s}}$, we write it R for short. Let $E_{i j}$ denote the matrix in R having 1 in its (i, j) entry and zeros elsewhere, and let E denote the identity matrix. It is well known that $C(R)=\left\{a E \mid a \in \mathbb{Z}_{p^{s}}\right\}$. For $A \in R, C_{R}(A)=\{B \in R \mid A B=B A\}$ is called the centralizer of A in R. For the ring R, let us denote by $U(R)$ and $D(R)$ the unit group and the zero divisor set of R respectively. The commuting graph of R is the graph with vertices $R \backslash C(R)$, and distinct vertices A and B are adjacent if and only if $A B=B A$. In a graph G, if x is adjacent to y (denoted by $[x, y]$), then we say that x is a neighbor of y or that y is a neighbor of x. Let $N(x)$ denote the neighbors of x in G. A graph automorphism of a graph G is a bijection on vertex set (denoted by $V(G)$) which preserves adjacency. For $a \in \mathbb{Z}_{p^{s}}$, let $\langle a\rangle$ be the ideal of $\mathbb{Z}_{p^{s}}$ generated by a, we will denote by Ann (a) the set $\left\{b \in \mathbb{Z}_{p^{s}} \mid a b=0\right\}$, and by $\operatorname{Ass}(a)$ the set $\left\{u a \mid u \in U\left(\mathbb{Z}_{p^{s}}\right)\right\}$. Write $T=\{0,1, \cdots, p-1\} \subseteq \mathbb{Z}_{p^{s}}$. The subset of T consisting of all non-zero elements is denoted by T^{*}. Let us denote by S_{n} the symmetric group of degree n. For a set D, we will denote by $|D|$ the size of D, and by S_{D} the symmetric group on D.

Lemma 2.1. [9, p. 328] Every non-zero element in $\mathbb{Z}_{p^{s}}$ can be written uniquely as

$$
t_{0}+t_{1} p+\cdots+t_{s-1} p^{s-1}
$$

where $t_{i} \in T, i \in\{0,1, \cdots, s-1\}$. Furthermore, $\left|\left\langle p^{i}\right\rangle\right|=p^{s-i},\left|\operatorname{Ass}\left(p^{i}\right)\right|=p^{s-i}-p^{s-i-1}$, and $\operatorname{Ann}\left(p^{i}\right)=$ $\left\langle p^{s-i}\right\rangle$.

Definition 2.2. [10, p. 172] Let D and Q be groups, let Ω be a finite Q-set, and let $K=\prod_{\omega \in \Omega} D_{\omega}$, where $D_{\omega} \cong D$ for all $\omega \in \Omega$. Then the wreath product of D by Q, denoted by $D \imath_{\Omega} Q$, is the semidirect product of K by Q, where Q acts on K by $q \cdot\left(d_{\omega}\right)=\left(d_{q \omega}\right)$ for $q \in Q$ and $\left(d_{\omega}\right) \in \prod_{\omega \in \Omega} D_{\omega}$.

Lemma 2.3. ($\left[10\right.$, p. 178] or [11, Theorem 2.1.6]) Let $X=B_{1} \cup \cdots \cup B_{m}$ be a partition of a set X in which each B_{i} has k elements. If $G=\left\{g \in S_{X} \mid\right.$ for each i, there is j with $\left.g\left(B_{i}\right)=B_{j}\right\}$, then $G \cong S_{k} \imath_{\Omega_{m}} S_{m}$, where $\Omega_{m}=\{1,2, \cdots, m\}$.

Let $X=\bigcup_{i_{1}=1}^{m_{1}} B_{i_{1}}$ be a partition of a set X in which each $B_{i_{1}}$ has same size. Let $B_{i_{1}}=\bigcup_{i_{2}=1}^{m_{2}} B_{i_{1}, i_{2}}$ be a partition of a set $B_{i_{1}}$ in which each $B_{i_{1}, i_{2}}$ has same size, where $i_{1}=1,2, \cdots, m_{1}$. Continuing in this way we obtain partitions

$$
X=\bigcup_{i_{j}=1}^{m_{j}} \cdots \bigcup_{i_{1}=1}^{m_{1}} B_{i_{1}, \cdots, i_{j}}
$$

of X in which each $B_{i_{1}, \cdots, i_{j}}$ has same size for $j=1, \cdots, k$. With this notation, by Lemma 2.3, we have the following:

Corollary 2.4. ([12, p. 93] or [11, Theorem 2.1.15]) Let G be the largest subgroup of S_{X} preserving above partitions and $\left|B_{i_{1}, \cdots, i_{k}}\right|=m_{k+1}$. Then $G=\left\{g \in S_{X} \mid\right.$ for each i_{j}, there is i_{j}^{\prime} with $g\left(B_{i_{1}, \cdots, i_{j}}\right)=B_{i_{1}^{\prime}, \cdots, i_{j}^{\prime}}$, $j=1, \cdots, k\}$. Moreover, $G \cong\left(\cdots\left(S_{m_{k+1}} \imath_{\Omega_{m_{k}}} S_{m_{k}}\right)\left\langle\cdots \Omega_{\Omega_{m_{2}}} S_{m_{2}}\right) \ell_{\Omega_{m_{1}}} S_{m_{1}}\right.$, where $\Omega_{m_{i}}=\left\{1,2, \cdots, m_{i}\right\}$ for $i=1,2, \cdots, k+1$.

With the associativity of the wreath product (see [10, Theorem 7.26]), we will simply write $\left(\cdots\left(S_{m_{k+1}} \imath_{\Omega_{m_{k}}} S_{m_{k}}\right) \imath \cdots \imath_{\Omega_{m_{2}}} S_{m_{2}}\right) \imath_{\Omega_{m_{1}}} S_{m_{1}}$ as $S_{m_{k+1}} \imath S_{m_{k}} \imath \cdots \imath S_{m_{2}} \imath S_{m_{1}}$. In [11, p. 68], the iterated wreath product $S_{m_{k+1}} \backslash S_{m_{k}} \imath \cdots \backslash S_{m_{2}} \backslash S_{m_{1}}$ consists of all $f_{k+1} \backslash f_{k} \imath \cdots \backslash f_{2} \backslash f_{1}$, where $f_{1} \in S_{m_{1}}$ and

$$
\begin{equation*}
f_{j}=\prod_{i_{j-1}=1}^{m_{j-1}} \prod_{i_{j-2}=1}^{m_{j-2}} \cdots \prod_{i_{1}=1}^{m_{1}} g_{j, i_{1}, \cdots, i_{j-2}, i_{j-1}} \in \prod^{m_{j-1} m_{j-2} \cdots m_{1}} S_{m_{j}} \tag{2.1}
\end{equation*}
$$

$j=2,3, \cdots, k+1$, with the action on $\prod_{j=1}^{k+1} \Omega_{m_{j}}$ defined by

$$
\begin{equation*}
\left(f_{k+1} \backslash f_{k} \prec \cdots \backslash f_{2} \prec f_{1}\right)\left(x_{1}, x_{2}, \cdots, x_{k+1}\right)=\left(y_{1}, y_{2}, \cdots, y_{k+1}\right), \tag{2.2}
\end{equation*}
$$

where $y_{1}=f_{1}\left(x_{1}\right)$ and $y_{j}=g_{j, y_{1}, y_{2}, \cdots, y_{j-1}}\left(x_{j}\right), j=2,3, \cdots, k+1$ for all $\left(x_{1}, x_{2}, \cdots, x_{k+1}\right) \in \prod_{j=1}^{k+1} \Omega_{m_{j}}$ and $f_{k+1} \imath f_{k} \imath \cdots \imath f_{2} \imath f_{1} \in S_{m_{k+1}} \imath S_{m_{k}} \imath \cdots \backslash S_{m_{2}} \imath S_{m_{1}}$.

3. Automorphisms of $\Gamma(R)$

Let R_{0} denote the set $\left\{a E_{11}+b E_{12}+c E_{21}+d E_{22} \mid a-d \in U\left(\mathbb{Z}_{p^{s}}\right)\right.$ or $b \in U\left(\mathbb{Z}_{p^{s}}\right)$ or $\left.c \in U\left(\mathbb{Z}_{p^{s}}\right)\right\}$. Then $R \backslash R_{0}=\left\{a E_{11}+b E_{12}+c E_{21}+d E_{22} \mid a-d \in D\left(\mathbb{Z}_{p^{s}}\right), b \in D\left(\mathbb{Z}_{p^{s}}\right)\right.$ and $\left.c \in D\left(\mathbb{Z}_{p^{s}}\right)\right\}$. Since $\left|D\left(\mathbb{Z}_{p^{s}}\right)\right|=p^{s-1}$, an easy computation shows that $\left|R \backslash R_{0}\right|=p^{4 s-3}$. Therefore $\left|R_{0}\right|=p^{4 s}-p^{4 s-3}$. For $A, B \in R$, we write $A \sim B$ if there exist $a \in U\left(\mathbb{Z}_{p^{s}}\right)$ and $b \in \mathbb{Z}_{p^{s}}$ such that $A=a B+b E$. A trivial verification shows that \sim is an equivalence relation on R. Set $[A]=\{B \in R \mid B \sim A\}$. It follows immediately that $[A]$ is the equivalence class of A on R under the equivalence relation of \sim.

Lemma 3.1. Every equivalence class in R_{0} has size $p^{2 s}-p^{2 s-1}$. Moreover, there are $p^{2 s}+p^{2 s-1}+p^{2 s-2}$ distinct equivalence classes in R_{0}.

Proof. Assume that $A=a E_{11}+b E_{12}+c E_{21}+d E_{22} \in R_{0}$, where $a-d \in U\left(\mathbb{Z}_{p^{s}}\right)$ or $b \in U\left(\mathbb{Z}_{p^{s}}\right)$ or $c \in$ $U\left(\mathbb{Z}_{p^{s}}\right)$. Let $A_{1}=a_{1} A+b_{1} E$ and $A_{2}=a_{2} A+b_{2} E \in[A]$, where $a_{1}, a_{2} \in U\left(\mathbb{Z}_{p^{s}}\right)$ and $b_{1}, b_{2} \in \mathbb{Z}_{p^{s}}$. We claim that if $a_{1} \neq a_{2}$ or $b_{1} \neq b_{2}$, then $A_{1} \neq A_{2}$. If $a_{1}=a_{2}$ and $b_{1} \neq b_{2}$, then $A_{1}-A_{2}=\left(b_{1}-b_{2}\right) E$. It is clear that $A_{1} \neq A_{2}$. If $a_{1} \neq a_{2}$ and $b_{1}=b_{2}$, then $A_{1}-A_{2}=\left(\left(a_{1}-a_{2}\right)(a-d)+\left(a_{1}-a_{2}\right) d\right) E_{11}+\left(a_{1}-\right.$ $\left.a_{2}\right) b E_{12}+\left(a_{1}-a_{2}\right) c E_{21}+\left(a_{1}-a_{2}\right) d E_{22}$. If $\left(a_{1}-a_{2}\right) d=0$, then $\left(a_{1}-a_{2}\right)(a-d) \neq 0$ or $\left(a_{1}-a_{2}\right) b \neq 0$ or $\left(a_{1}-a_{2}\right) c \neq 0$ (i.e., $\left.A_{1} \neq A_{2}\right)$, since $a_{1}-a_{2} \neq 0, a-d \in U\left(\mathbb{Z}_{p^{s}}\right)$ or $b \in U\left(\mathbb{Z}_{p^{s}}\right)$ or $c \in U\left(\mathbb{Z}_{p^{s}}\right)$. If $\left(a_{1}-a_{2}\right) d \neq 0$, then it is obvious that $A_{1} \neq A_{2}$. If $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$, then $A_{1}-A_{2}=\left(\left(a_{1}-a_{2}\right)(a-\right.$ d) $\left.+\left(a_{1}-a_{2}\right) d+b_{1}-b_{2}\right) E_{11}+\left(a_{1}-a_{2}\right) b E_{12}+\left(a_{1}-a_{2}\right) c E_{21}+\left(\left(a_{1}-a_{2}\right) d+b_{1}-b_{2}\right) E_{22}$. Similarly, we have $A_{1} \neq A_{2}$. It is well known that $\left|U\left(\mathbb{Z}_{p^{s}}\right)\right|=p^{s}-p^{s-1}$. So $|[A]|=p^{2 s}-p^{2 s-1}$.

It is easily seen that if $A \in R_{0}$, then $[A] \subseteq R_{0}$. This fact makes it obvious that R_{0} is the disjoint union of some equivalence classes. Since $\left|R_{0}\right|=p^{4 s}-p^{4 s-3}$, there are exactly $p^{2 s}+p^{2 s-1}+p^{2 s-2}$ equivalence classes in R_{0}.

In fact, a trivial verification shows that the set of equivalence class representatives in R_{0} is

$$
\begin{aligned}
& \left\{E_{11}+a E_{12}+b E_{21}, a E_{11}+E_{12}+b E_{21}, a E_{11}+b E_{12}+E_{21},\right. \\
& E_{11}+c E_{12}+b E_{21}, E_{11}+b E_{12}+c E_{21}, b E_{11}+E_{12}+c E_{21}, \\
& \left.E_{11}+c E_{12}+d E_{21} \mid a, b \in\langle p\rangle, c, d \in U\left(\mathbb{Z}_{p^{s}}\right)\right\} .
\end{aligned}
$$

We denote this set by P_{0}. By Lemma 3.1, we can write

$$
P_{0}=\left\{A_{0,1}, A_{0,2}, \cdots, A_{0, p^{2 s}+p^{2 s-1}+p^{2 s-2}}\right\} .
$$

It is immediate that $R_{0}=\bigcup_{i_{0}=1}^{\left|P_{0}\right|}\left[A_{0, i_{0}}\right]$.
Let $j \in\{1,2, \cdots, s-1\}$. Set $P_{j}=p^{j} P_{0}$. Since $\mathbb{Z}_{p^{s}}$ is a principal ideal ring,

$$
\begin{aligned}
P_{j}= & \left\{p^{j} E_{11}+a E_{12}+b E_{21}, a E_{11}+p^{j} E_{12}+b E_{21}, a E_{11}+b E_{12}+p^{j} E_{21},\right. \\
& p^{j} E_{11}+c E_{12}+b E_{21}, p^{j} E_{11}+b E_{12}+c E_{21}, b E_{11}+p^{j} E_{12}+c E_{21}, \\
& \left.p^{j} E_{11}+c E_{12}+d E_{21} \mid a, b \in\left\langle p^{j+1}\right\rangle, c, d \in \operatorname{Ass}\left(p^{j}\right)\right\} .
\end{aligned}
$$

From Lemma 3.1, $\left|P_{j}\right|=p^{2 s-2 j}+p^{2 s-2 j-1}+p^{2 s-2 j-2}$. Write $P_{j}=\left\{A_{j, 1}, A_{j, 2}, \cdots, A_{\left.j, \mid P_{j}\right\}}\right\}$. Set

$$
\begin{equation*}
R_{j}=\bigcup_{i_{j}=1}^{\left|P_{j}\right|}\left[A_{j, i_{j}}\right] \tag{3.1}
\end{equation*}
$$

Accordingly, there are seven forms in $\bigcup_{j=0}^{s-1} P_{j}$. For example, let $j, k \in\{0,1, \cdots, s-1\}$, if $A_{j, i_{j}}=$ $p^{j} E_{11}+a_{1} E_{12}+b_{1} E_{21}, A_{k, i_{k}}=a_{2} E_{11}+p^{k} E_{12}+b_{2} E_{21}$, where $a_{1}, b_{1} \in\left\langle p^{j+1}\right\rangle, a_{2}, b_{2} \in\left\langle p^{k+1}\right\rangle$, then we say that $A_{j, i_{j}}$ and $A_{k, i_{k}}$ have different forms.
Lemma 3.2. Let $R_{j}=\bigcup_{i_{j}=1}^{\left|P_{j}\right|}\left[A_{j, i_{j}}\right]$, where $j=0,1, \ldots, s-1$. Then

$$
R=\bigcup_{j=0}^{s-1} R_{j} \bigcup C(R)=\bigcup_{j=0}^{s-1}\left(\cup_{i_{j}=1}^{\left|P_{j}\right|}\left[A_{j, i_{j}}\right]\right) \bigcup C(R)
$$

is a partition of R.
Proof. By the definition of $C(R)$, we have $C(R) \cap R_{j}=\varnothing$ for all $j \in\{0,1, \cdots, s-1\}$. By construction, $C(R) \nsubseteq R_{0}$ and hence $C(R) \nsubseteq R_{j}$ for $j \in\{1,2, \cdots, s-1\}$. Let $A_{j, i_{j}} \in P_{j}$. Then $A_{j, i_{j}}=p^{j} A_{0, i_{0}}$ for a certain $A_{0, i_{0}} \in P_{0}$. Consequently, $\left[A_{j, i_{j}}\right]=\left[p^{j} A_{0, i_{0}}\right]=\left\{a p^{j} A_{0, i_{0}}+b E \mid a \in U\left(\mathbb{Z}_{p^{s}}\right)\right.$ and $\left.b \in \mathbb{Z}_{p^{s}}\right\}=$ $\left\{a A_{0, i_{0}}+b E \mid a \in \operatorname{Ass}\left(p^{j}\right)\right.$ and $\left.b \in \mathbb{Z}_{p^{j}}\right\}$. By Lemma 2.1, in much the same way as Lemma 3.1, the size of an equivalence class in R_{j} is $p^{2 s-j}-p^{2 s-j-1}$. It follows that $\left|R_{j}\right|=p^{4 s-3 j}-p^{4 s-3 j-3}$. Then

$$
\sum_{j=0}^{s-1}\left|R_{j}\right|+|C(R)|=\sum_{j=0}^{s-1}\left(p^{4 s-3 j}-p^{4 s-3 j-3}\right)+p^{s}=p^{4 s}=|R| .
$$

It remains to prove that $R_{j_{1}} \cap R_{j_{2}}=\varnothing$ for all $j_{1} \neq j_{2} \in\{0,1, \cdots, s-1\}$. Assume that $A \in R_{j_{1}} \cap$ $R_{j_{2}} \neq \varnothing$. Then there exist $a_{1}, a_{2} \in U\left(\mathbb{Z}_{p^{s}}\right), b_{1}, b_{2} \in \mathbb{Z}_{p^{s}}, A_{j_{1}, i_{j 1}} \in P_{j_{1}}$ and $A_{j_{2}, i_{j_{2}}} \in P_{j_{2}}$ such that $A=a_{1} A_{j_{1}, i_{1}}+b_{1} E=a_{2} A_{j_{2}, i_{j_{2}}}+b_{2} E$. It implies that $A_{j_{1}, i_{j_{1}}}=a_{1}^{-1} a_{2} A_{j_{2}, i_{j_{2}}}+a_{1}^{-1}\left(b_{2}-b_{1}\right) E$. Since the $(2,2)$ entries of $A_{j_{1}, i_{1}}$ and $A_{j_{2}, i_{j_{2}}}$ are equal to $0, a_{1}^{-1}\left(b_{2}-b_{1}\right)=0$. Thus, $A_{j_{1}, i_{j_{1}}}=a_{1}^{-1} a_{2} A_{j_{2}, i_{j_{2}}}$. Suppose that $A_{j_{1}, i_{1}}=p^{j_{1}} E_{11}+\star p^{j_{1}+1} E_{12}+\star E_{21}$ and $A_{j_{2}, i_{j_{2}}}=p^{j_{2}} E_{11}+\star p^{j_{2}+1} E_{12}+\star E_{21}$. We thus get $j_{1}=j_{2}$. This contradicts our assumption $j_{1} \neq j_{2}$. Similarly, we obtain contradictions in the other cases of $A_{j_{1}, j_{j_{1}}}$ and $A_{j_{2}, i_{2}}$. This completes the proof.

Lemma 3.3. Let $A \in\left[A_{j, i_{j}}\right], B \in\left[A_{k, i_{k}}\right]$, where $j, k \in\{0,1, \cdots, s-1\}, A_{j, i_{j}} \in P_{j}$ and $A_{k, i_{k}} \in P_{k}$.
(i) Let $j+k \leq s-1$. Then $A B=B A$ if and only if $p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}$.
(ii) Let $j+k>s-1$. Then $A B=B A$.

Proof. It is easily seen that $A B=B A$ if and only if $A_{j, i_{j}} A_{k, i_{k}}=A_{k, i_{k}} A_{j, i_{j}}$.
(i) Suppose that $A_{j, i_{j}}=p^{j} E_{11}+a_{1} E_{12}+b_{1} E_{21}, A_{k, i_{k}}=a_{2} E_{11}+p^{k} E_{12}+b_{2} E_{21}$, where $a_{1}, b_{1} \in\left\langle p^{j+1}\right\rangle$, $a_{2}, b_{2} \in\left\langle p^{k+1}\right\rangle$. Then $A_{j, i_{j}} A_{k, i_{k}}=\star E_{11}+p^{j+k} E_{12}+\star E_{21}, A_{k, i_{k}} A_{j, i_{j}}=\star E_{11}+\star p^{j+k+2} E_{12}+\star E_{21}$. Obviously, $A_{j, i_{j}} A_{k, i_{k}} \neq A_{k, i_{k}} A_{j, i_{j}}$. By similar arguments, it is easy to check that $A_{j, i j} A_{k, i_{k}} \neq A_{k, i_{k}} A_{j, i_{j}}$ when $A_{j, i_{j}}$ and $A_{k, i_{k}}$ have different forms.

Without loss of generality we assume that $j \geq k$. Now suppose that $A_{j, i_{j}} A_{k, i_{k}}=A_{k, i_{k}} A_{j, i_{j}}$, where $A_{j, i_{j}}=p^{j} E_{11}+a_{1} E_{12}+b_{1} E_{21}, A_{k, i_{k}}=p^{j} E_{11}+a_{2} E_{12}+b_{2} E_{21}, a_{1}, b_{1} \in\left\langle p^{j+1}\right\rangle, a_{2}, b_{2} \in\left\langle p^{k+1}\right\rangle$. By Lemma 2.1, we can assume that $a_{1}=\sum_{i=j+1}^{s-1} r_{i} p^{i}, b_{1}=\sum_{i=j+1}^{s-1} t_{i} p^{i}, a_{2}=\sum_{i=k+1}^{s-1} u_{i} p^{i}$ and $b_{2}=\sum_{i=k+1}^{s-1} v_{i} p^{i}$, where $r_{i}, t_{i}, u_{i}, v_{i} \in T$. Since $A_{j, i_{j}} A_{k, i_{k}}=A_{k, i_{k}} A_{j, i_{j}}$, it is obvious that $r_{j+1}=u_{k+1}, r_{j+2}=u_{k+2}, \cdots$, $r_{s-k-1}=u_{s-j-1}$, and $t_{j+1}=v_{k+1}, t_{j+2}=v_{k+2}, \cdots, t_{s-k-1}=v_{s-j-1}$. It is immediately that $p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}$. In other cases we conclude similarly that $p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}$.

Conversely, suppose that $p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}$. An easy computation shows that it occurs only when $A_{j, i_{j}}$ and $A_{k, i_{k}}$ have same form. Assume that $A_{j, i_{j}}=p^{j} E_{11}+a_{1} E_{12}+b_{1} E_{21}, A_{k, i_{k}}=p^{j} E_{11}+a_{2} E_{12}+b_{2} E_{21}$ with $a_{1}=\sum_{i=j+1}^{s-1} r_{i} p^{i}, b_{1}=\sum_{i=j+1}^{s-1} t_{i} p^{i}, a_{2}=\sum_{i=k+1}^{s-1} u_{i} p^{i}$ and $b_{2}=\sum_{i=k+1}^{s-1} v_{i} p^{i}$, where $r_{i}, t_{i}, u_{i}, v_{i} \in T$. Since $p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}$, it is easy to check that $r_{j+1}=u_{k+1}, r_{j+2}=u_{k+2}, \cdots, r_{s-k-1}=u_{s-j-1}$, and $t_{j+1}=v_{k+1}$, $t_{j+2}=v_{k+2}, \cdots, t_{s-k-1}=v_{s-j-1}$. It is clear that $A_{j, i_{j}} A_{k, i_{k}}=A_{k, i_{k}} A_{j, i_{j}}$. The proof for other cases is similar.
(ii) If $j+k>s-1$, then $A_{j, i, j} A_{k, i_{k}}=0=A_{k, i_{k}} A_{j, i_{j}}$. Therefore, $A B=B A$.

For fixed $j, k \in\{0,1, \cdots, s-1\}$ and $i_{k} \in\left\{1,2, \cdots,\left|P_{k}\right|\right\}$, set

$$
R_{j}^{k, i_{k}}=\left\{\left[A_{j, i_{j}}\right] \subseteq R_{j} \mid p^{k} A_{j, i_{j}}=p^{j} A_{k, i_{k}}\right\} .
$$

By Lemma 3.3, we have the following proposition.
Proposition 3.4. Let $A \in\left[A_{k, i_{k}}\right]$, where $k \in\{0,1, \cdots, s-1\}$ and $A_{k, i_{k}} \in P_{k}$.
(i) $C_{R}(A)=\bigcup_{j=0}^{s-1}\left[p^{j} A_{0, i_{0}}\right] \cup C(R)$.
(ii) Let $0<k \leq s-1$. Then $C_{R}(A)=\bigcup_{j=0}^{s-k-1} R_{j}^{k, i_{k}} \bigcup_{j=s-k}^{s-1} R_{j} \cup C(R)$.

For fixed $k, j \in\{0,1, \cdots, s-1\}, k \geq j, i_{k} \in\left\{1,2, \cdots,\left|P_{k}\right|\right\}, i_{k+1} \in\left\{1,2, \cdots,\left|P_{k+1}\right|\right\}, \cdots, i_{s-1} \in$ $\left\{1,2, \cdots,\left|P_{s-1}\right|\right\}$, if $p^{s-1-k} A_{k, i_{k}}=p^{s-1-(k+1)} A_{k+1, i_{k+1}}=\cdots=p^{0} A_{s-1, i_{s-1}}$, then set

$$
\begin{gathered}
R_{j, i_{s-1}, \cdots, i_{k+1}, i_{k}}=\left\{\left[A_{j, i_{j}}\right] \subseteq R_{j} \mid p^{k-j} A_{j, i_{j}}=A_{k, i_{k}}\right\}, \\
N_{k-1}^{i_{k}}=\left\{i_{k-1} \in\left\{1, \cdots,\left|P_{k-1}\right|\right\} \mid p A_{k-1, i_{k-1}}=A_{k, i_{k}}\right\} .
\end{gathered}
$$

Since $p^{s-1-j} P_{j}=p^{s-1-(j+1)} P_{j+1}=\cdots=P_{s-1}$,

$$
R_{j}=\bigcup_{i_{s-1}=1}^{\left|P_{s-1}\right|} R_{j, i_{s-1}}=\cdots=\bigcup_{i_{j} \in N_{j}^{i j+1}} \bigcup_{i_{j+1} \in N_{j+1}^{i_{j+2}}} \cdots \bigcup_{i_{s-1}=1}^{\left|P_{s-1}\right|} R_{j, i_{s-1}, \cdots, i_{j+1}, i_{j}} .
$$

Lemma 3.5. Let $0 \leq j \leq k \leq s-1, A_{k, i_{k}} \in P_{k}, A_{k+1, i_{k+1}} \in P_{k+1}, \cdots, A_{s-1, i_{s-1}} \in P_{s}$ and $p^{s-1-k} A_{k, i_{k}}=$ $p^{s-1-(k+1)} A_{k+1, i_{k+1}}=\cdots=p^{0} A_{s-1, i_{s-1}}$. Then the number of equivalence classes in $R_{j, i_{s-1}, \cdots, i_{k+1}, i_{k}}$ is $p^{2(k-j)}$.

Proof. From the construction of P_{j} and P_{k}, we know that $p^{k-j} P_{j}=p^{k} P_{0}=P_{k}$. Define two maps $f:\left\langle p^{j+1}\right\rangle \rightarrow\left\langle p^{k+1}\right\rangle$ by $\sum_{i=j+1}^{s-1} t_{i} p^{i} \mapsto \sum_{i=j+1}^{s-k+j-1} t_{i} p^{i+k-j}$ and $g: \operatorname{Ass}\left(p^{j}\right) \rightarrow \operatorname{Ass}\left(p^{k}\right)$ by $\sum_{i=j}^{s-1} t_{i} p^{i} \mapsto$ $\sum_{i=j}^{s-k+j-1} t_{i} p^{i+k-j}$, where $t_{j} \in T^{*}, t_{i} \in T, i=j+1, j+2, \cdots, s-1$. Clearly, f, g are surjective, and we have $\operatorname{ker}(f)=\left\{\sum_{i=s-k+j}^{s-1} t_{i} p^{i} \mid t_{i} \in T, i=s-k+j, s-k+j+1, \cdots, s-1\right\}=\left\langle p^{s-k+j}\right\rangle$ and $\operatorname{ker}(g)=\left\{p^{j}+\sum_{i=s-k+j}^{s-1} t_{i} p^{i} \mid t_{i} \in T, i=s-k+j, s-k+j+1, \cdots, s-1\right\}$. By Lemma 2.1 and $|T|=p$, $|\operatorname{ker}(f)|=|\operatorname{ker}(g)|=p^{k-j}$. Then the size of the inverse image of each element in $\left\langle p^{k+1}\right\rangle$ and $\operatorname{Ass}\left(p^{k}\right)$ under f and g is p^{k-j} respectively. Moreover, it is evident that the number of solutions of $p^{k-j} X=A_{k, i_{k}}$ in P_{j} is $p^{2(k-j)}$. In fact, the number of equivalence classes in $R_{j, i_{s-1}, \cdots, i_{k+1}, i_{k}}$ is equal to the number of solutions of $p^{k-j} X=A_{k, i_{k}}$ in P_{j}, which completes the proof.

From Lemma 3.5, $\left|N_{k-1}^{i_{k}}\right|=p^{2}$ for all $k \in\{1,2, \cdots, s-1\}$ and $i_{k} \in\left\{1,2, \cdots\left|P_{k}\right|\right\}$. Recall that $\Omega_{p^{2}}=\left\{1,2, \cdots, p^{2}\right\}$. It is easily seen that there exists a unique map $\varphi_{i_{k}}: N_{k-1}^{i_{k}} \rightarrow \Omega_{p^{2}}$ such that for $i, j \in N_{k-1}^{i_{k}}$, if $i<j$, then $\varphi_{i_{k}}(i)<\varphi_{i_{k}}(j)$. Let $i_{k}^{\prime} \in\left\{1,2, \cdots\left|P_{k}\right|\right\}$. Define a map

$$
\begin{equation*}
\varphi_{k-1}^{i_{k}^{\prime}}: N_{k-1}^{i_{k}} \rightarrow N_{k-1}^{i_{k}^{\prime}} \tag{3.2}
\end{equation*}
$$

by $i \mapsto j$ if $\varphi_{i_{k}}(i)=\varphi_{i_{k}^{\prime}}(j)$.
Corollary 3.6. Let $R=M_{2}\left(\mathbb{Z}_{p^{s}}\right)$, with p prime and spositive integer. Let $A, B \in R$. Then $C_{R}(A)=C_{R}(B)$ if and only if $[A]=[B]$.

Proof. If $A, B \in C(R)$, it is obviously that $C_{R}(A)=R=C_{R}(B)$ if and only if $[A]=C(R)=[B]$. If $A \in C(R)$ and $B \notin C(R)$, it is clear that $C_{R}(A)=R \neq C_{R}(B)$. Similarly, if $A \notin C(R)$ and $B \in C(R)$, then $C_{R}(A) \neq C_{R}(B)$.

Now let $A, B \in R \backslash C(R)$. Suppose that $C_{R}(A)=C_{R}(B)$, where $A \in\left[A_{j, i_{j}}\right], B \in\left[A_{k, i_{k}}\right], j, k \in$ $\{0,1, \cdots, s-1\}$. We claim that $j=k$ and $i_{j}=i_{k}$. If $j=0$ and $k \neq 0$, by Proposition 3.4, we know that $C_{R}(A) \neq C_{R}(B)$, a contradiction. Similarly, if $j \neq 0$ and $k=0$, then $C_{R}(A) \neq C_{R}(B)$, a contradiction. If $0<j \neq k \leq s-1$, then $\bigcup_{l=s-j}^{s-1} R_{l} \neq \bigcup_{l=s-k}^{s-1} R_{l}$. By Proposition 3.4 (ii), $C_{R}(A)=\bigcup_{l=0}^{s-j-1} R_{l}^{j, i_{j}} \bigcup_{l=s-j}^{s-1} R_{l} \neq$ $\bigcup_{l=0}^{s-k-1} R_{k}^{k, i_{k}} \bigcup_{l=s-k}^{s-1} R_{l}=C_{R}(B)$, a contradiction. If $j=k=0$ and $i_{j} \neq i_{k}$, then $\left[A_{0, i_{j}}\right] \neq\left[A_{0, i_{k}}\right]$. By Proposition 3.4 (i), $C_{R}(A)=\left[A_{0, i_{j}}\right] \bigcup_{l=1}^{s-1}\left[p^{l} A_{0, i_{j}}\right] \neq\left[A_{0, i_{k}}\right] \bigcup_{l=1}^{s-1}\left[p^{l} A_{0, i_{k}}\right]=C_{R}(B)$, a contradiction. If $0<j=k \leq s-1$ and $i_{j} \neq i_{k}$, then $A_{j, i_{j}} \neq A_{j, i_{k}}$. Thus, by the proof of Lemma 3.5, $R_{0}^{j, i_{j}}=R_{0, i_{s-1}, \cdots, i_{j}} \neq$ $R_{0, i_{s-1}, \cdots, i_{k}}=R_{0}^{j, i_{k}}$. Furthermore, $C_{R}(A)=R_{0}^{j, i_{j}} \bigcup_{l=1}^{s-j-1} R_{l}^{j, i_{j}} \bigcup_{l=s-j}^{s-1} R_{l} \neq R_{0}^{j, i_{k}} \bigcup_{l=1}^{s-j-1} R_{l}^{j, i_{k}} \bigcup_{l=s-j}^{s-1} R_{l}=C_{R}(B)$ by Proposition 3.4 (ii), a contradiction. Therefore $j=k$ and $i_{j}=i_{k}$ as claimed. This means that $A_{j, i_{j}}=A_{k, i_{k}}$ (i.e. $\left.[A]=[B]\right)$. The converse is straightforward.

Corollary 3.7. Let $R=M_{2}\left(\mathbb{Z}_{p^{s}}\right)$, with p prime and spositive integer. If $f \in \operatorname{Aut}(\Gamma(R))$, then $f\left(R_{j}\right)=R_{j}$ for $j \in\{0,1, \cdots, s-1\}$, where R_{j} is as defined in (3.1).

Proof. For $j=0,1, \cdots, s-1$, if $A \in R_{j}$, then $\left|C_{R}(A) \backslash C(R)\right|=p^{2 s+2 j}-p^{s}$ by Proposition 3.4 and the proof of Lemma 3.5. This means that if $A \in R_{j}, B \in R_{k}$ and $j \neq k$, then $|N(A)| \neq|N(B)|$, where $j, k \in\{0,1, \cdots, s-1\}$. Since automorphisms of a graph must preserve the number of neighbors of vertices, $f\left(R_{j}\right)=R_{j}$, where $j \in\{0,1, \cdots, s-1\}$.

Recall that a graph automorphism of a graph G is a bijection on vertex set which preserves adjacency. If $|V(G)|=n$, then in the obvious way $\operatorname{Aut}(G)$ is isomorphic to a subgroup of S_{n}. Specifically, $\operatorname{Aut}(G)=\left\{f \in S_{n} \mid\right.$ for all $\left.x, y \in V(G),[x, y] \Leftrightarrow[f(x), f(y)]\right\}$. It is easy to show that $\operatorname{Aut}(G)=\left\{f \in S_{n} \mid\right.$ for all $\left.x \in V(G), f(N(x))=N(f(x))\right\}$. For $\Gamma(R), N(A)=C_{R}(A) \backslash\{C(R) \cup A\}$. This means that $\operatorname{Aut}(\Gamma(R))=\left\{f \in S_{\sum_{j=1}^{s-1} R_{j} \mid} \mid\right.$ for all $\left.A \in V(\Gamma(R)), f(N(A))=N(f(A))\right\}$.

We now prove our main result about the automorphism group of the commuting graph of $M_{2}\left(\mathbb{Z}_{p^{s}}\right)$. To state it, we need to define a group. For each $j \in\{0,1, \cdots, s-1\}$ denote

$$
G_{s-1-j}=S_{p^{2 s-j-p^{2 s-j-1}}}\langle\underbrace{S_{p^{2}}\left\langle\cdots \imath S_{p^{2}}\right.}_{s-1-j}\left\langle S_{p^{2}+p+1} .\right.
$$

Let G be a subset of $\prod_{j=0}^{s-1} G_{s-1-j}$ and define:

$$
\begin{align*}
G= & \left\{\left(h_{0} \backslash g_{0} \backslash \cdots \backslash g_{s-2} \backslash g_{s-1}, h_{1} \backslash g_{1} \backslash \cdots \backslash g_{s-2} \backslash g_{s-1}, \cdots, h_{s-1} \backslash g_{s-1}\right)\right. \tag{3.3}\\
& \left.\mid h_{j} \backslash g_{j} \prec \cdots \imath g_{s-2} \backslash g_{s-1} \in G_{s-1-j}, j=0,1, \ldots, s-1\right\} .
\end{align*}
$$

The multiplication law of the iterated wreath product is defined in [11, p. 68], the proof that G is a subgroup of $\prod_{j=0}^{s-1} G_{s-1-j}$ is routine.

Theorem 3.8. Let $R=M_{2}\left(\mathbb{Z}_{p^{s}}\right)$, with p prime and s positive integer. Then $\operatorname{Aut}(\Gamma(R)) \cong G$, where G is a group defined in (3.3).
Proof. By Lemma 3.2 and Corollary 3.7, $\operatorname{Aut}\left(\Gamma(R)\right.$) is isomorphic to a subgroup of $\prod_{j=0}^{s-1} S_{R_{j}}$. So $f \in$ $\operatorname{Aut}(\Gamma(R))$ can be written as a product $\prod_{j=0}^{s-1} f_{j}$, where $f_{j} \in S_{R_{j}}$. We claim that

$$
\left\{f_{j} \in S_{R_{j}} \mid\left(\cdots, f_{j}, \cdots\right)=f \in \operatorname{Aut}(\Gamma(R))\right\} \cong G_{s-1-j},
$$

where $j=0,1, \cdots, s-1$.
Let $j \in\{1, \cdots, s-1\}$ and $\left(\cdots, f_{j}, \cdots\right)=f \in \operatorname{Aut}(\Gamma(R))$. Assume that $A \in\left[A_{j, i_{j}}\right], B \in\left[A_{j, i_{j}^{\prime}}\right]$ with $f_{j}(A)=B$. By Proposition 3.4 (ii) and $f(N(A))=N(f(A))$,

$$
f\left(R_{0}^{j, i_{j}} \bigcup_{k=1}^{s-j-1} R_{k}^{j, i_{j}} \bigcup_{k=s-j}^{s-1} R_{k}\right)=R_{0}^{j, i_{j}^{\prime}} \bigcup_{k=1}^{s-j-1} R_{k}^{j, i_{j}^{\prime}} \bigcup_{k=s-j}^{s-1} R_{k} .
$$

Then $f\left(R_{0}^{j, i_{j}}\right)=R_{0}^{j, i_{j}^{\prime}}$ by Corollary 3.7. It is immediate that $f\left(\left[A_{s-1, i_{s-1}}\right]\right)=\left[A_{s-1, i, i_{s-1}^{\prime}}\right]$ by Proposition 3.4 (i), where $\left[A_{s-1, i_{s-1}}\right]=p^{s-1} R_{0}^{j, i_{j}},\left[A_{s-1, i_{s-1}^{\prime}}\right]=p^{s-1} R_{0}^{j, i_{j}^{j}}$. Since Proposition 3.4 (ii) and $f\left(N\left(\left[A_{s-1, i_{s-1}}\right]\right)\right)=N\left(f\left(\left[A_{s-1, i_{s-1}}\right]\right)\right)$,

$$
f\left(R_{0}^{s-1, i_{s-1}} \bigcup_{k=1}^{s-1} R_{k}\right)=R_{0}^{s-1, i_{s-1}^{\prime}} \bigcup_{k=1}^{s-1} R_{k}
$$

Thus $f\left(R_{0}^{s-1, i_{s-1}}\right)=R_{0}^{s-1, i_{s-1}^{\prime}}$. It is evident that $f\left(p^{j} R_{0}^{s-1, i_{s-1}}\right)=p^{j} R_{0}^{s-1, i_{s-1}^{\prime}}$ by Proposition 3.4 (i), i.e.,

$$
f_{j}\left(R_{j, i_{s-1}}\right)=R_{j, i_{s-1}^{\prime}} .
$$

Similarly, we have

$$
\begin{aligned}
& f_{j}\left(R_{j, i_{s-1}, i_{s-2}}\right)=R_{j, i_{s-1}^{\prime}, i_{s-2}^{\prime}}, \\
& \cdots \\
& f_{j}\left(R_{j, i_{s-1}, \cdots, i_{j+2}, i_{j+1}}\right)=R_{j, i i_{s-1}^{\prime}, \cdots, i_{j+2}^{\prime}, i_{j+1}^{\prime}},
\end{aligned}
$$

where $i_{s-2}, i_{s-2}^{\prime} \in\left\{1, \cdots,\left|P_{s-2}\right|\right\}, \cdots, i_{j+2}, i_{j+2}^{\prime} \in\left\{1, \cdots,\left|P_{j+2}\right|\right\}, i_{j+1}, i_{j+1}^{\prime} \in\left\{1, \cdots,\left|P_{j+1}\right|\right\}$ with

$$
\begin{gathered}
A_{s-2, i_{s-2}}=p^{s-2-j} A_{j, i_{j}}, A_{s-2, i_{s-2}^{\prime}}=p^{s-2-j} A_{j, i_{j}^{\prime}}, \\
\ldots \\
A_{j+2, i_{j+2}}=p^{2} A_{j, i_{j}}, A_{j+2, i_{j+2}}=p^{2} A_{j, i_{j}^{\prime}}, \\
A_{j+1, i_{j+1}}=p A_{j, i_{j}}, A_{j+1, i_{j+1}^{\prime}}=p A_{j, i_{j}^{\prime}} .
\end{gathered}
$$

Obviously,

$$
f_{j}\left(R_{j, i_{s-1}, \cdots, i_{j+1}, i_{j}}\right)=f_{j}\left(\left[A_{j, i_{j}}\right]\right)=\left[A_{j, i_{j}^{\prime}}\right]=R_{j, i_{s-1}^{\prime}, \cdots, \cdots, i_{j+1}^{\prime}, i_{j}^{\prime}}
$$

Hence, for $i_{s-1} \in\left\{1,2, \cdots,\left|P_{s-1}\right|\right\}, i_{s-2} \in N_{s-2}^{i_{s-1}}, \cdots, i_{j+1} \in N_{j+1}^{i_{j+2}}, i_{j} \in N_{j}^{i_{j+1}}$, there are $i_{s-1}^{\prime} \in\left\{1,2, \cdots,\left|P_{s-1}\right|\right\}, i_{s-2}^{\prime} \in N_{s-2}^{i_{s-1}^{\prime}}, \cdots, i_{j+1}^{\prime} \in N_{j+1}^{i_{j+2}^{\prime}}, i_{j}^{\prime} \in N_{j}^{i_{j+1}^{\prime}}$ such that

$$
\begin{aligned}
f_{j}\left(R_{j, i_{s-1}}\right) & =R_{j, i_{s-1}^{\prime}}, \\
f_{j}\left(R_{j, i_{s-1}, i_{s-2}}\right) & =R_{j, i_{s-1}^{\prime}, i_{s-2}^{\prime}}, \\
\cdots & \\
f_{j}\left(R_{j, i_{s-1}, \cdots, i_{j+1}, i_{j}}\right) & =R_{j, i_{s-1}^{\prime}, \cdots, i_{j+1}^{\prime}, i_{j}^{\prime}} .
\end{aligned}
$$

By Lemma 3.5, $\left|N_{k}^{i_{k+1}}\right|=p^{2}, k=j, j+1, \cdots, s-2$. In the proof of Lemma 3.2, we know that $|[A]|=$ $p^{2 s-j}-p^{2 s-j-1}$ for $A \in R_{j}$. Therefore $\left\{f_{j} \in S_{R_{j}} \mid\left(\cdots, f_{j}, \cdots\right)=f \in \operatorname{Aut}(\Gamma(R))\right\} \cong G_{s-1-j}$ by Corollaries 2.4 and 3.6. The proof for $j=0$ is similar.

From the above proof, it follows that $\operatorname{Aut}(\Gamma(R))$ is a subgroup of $\prod_{j=0}^{s-1} G_{s-1-j}$. Let $j \in\{0,1, \cdots, s-$ 2\}. Let ϕ_{j} be an isomorphism between $\left\{f_{j} \in S_{R_{j}} \mid\left(\cdots, f_{j}, \cdots\right)=f \in \operatorname{Aut}(\Gamma(R))\right\}$ and G_{s-1-j}. Suppose that $\left(\cdots, f_{j}, f_{j+1}, \cdots\right)=f \in \operatorname{Aut}(\Gamma(R))$, where $\phi_{j}\left(f_{j}\right)=h_{j} \imath g_{j} \imath \cdots \imath g_{s-2} \imath g_{s-1} \in G_{s-1-j}$. As defined in (2.1), $g_{s-1} \in S_{p^{2}+p+1}$,

$$
g_{k}=\prod_{i_{k+1} \in N_{k+1}^{k+2}+i_{k+2} \in N_{k+2}^{k+3}} \cdots \prod_{i_{s-1}=1}^{p^{2}+p+1} g_{k, i_{s-1}, \cdots, i_{k+2}, i_{k+1}} \in \prod_{i_{k+1} \in N_{k+1}^{i k+1}} \prod_{k_{k+2} \in N_{k+2}^{k+3}} \cdots \prod_{i_{s-1}=1}^{p^{2}+p+1} S_{N_{k}^{k+1}},
$$

$k=s-2, s-3, \cdots, j$, and

$$
h_{j}=\prod_{i_{i j} \in N_{j}^{i} j_{j+1}} \prod_{i_{j+1} \in N_{j+1}^{i j+2}} \cdots \prod_{i_{s-1}=1}^{p^{2}+p+1} h_{j, i_{s-1}, \cdots, i_{j+1}, i_{j}} \in \prod_{i_{j} \in N_{j}^{i j+1}} \prod_{i_{j+1} \in N_{j+1}^{i_{j+2}}} \cdots \prod_{i_{s-1}=1}^{p^{2}+p+1} S_{\left[A_{j, i}\right]} .
$$

As the action defined in (2.2), we define $f_{j}\left(R_{j, i_{s-1}}\right)=R_{j, y_{s-1}}$,

$$
f_{j}\left(R_{j, i_{s-1}, \cdots, i_{k+1}, i_{k}}\right)=R_{j, y_{s-1}, \cdots, y_{k+1}, y_{k}},
$$

where $y_{s-1}=g_{s-1}\left(i_{s-1}\right), y_{k}=g_{k, y_{s-1}, \cdots, y_{k+2}, y_{k+1}}\left(\varphi_{k}^{y_{k+1}}\left(i_{k}\right)\right), \varphi_{k}^{y_{k+1}}$ is defined in (3.2), $k=s-2, s-3, \cdots, j$ and $f_{j}\left(a A_{j, i_{j}}+b E\right)=h_{j y_{s-1}, \cdots, y_{j+1}, y_{j}}\left(a A_{j, y_{j}}+b E\right)$ for all $a \in \operatorname{Ass}\left(p^{j}\right), b \in \mathbb{Z}_{p^{s}}$. Suppose that $\phi_{j+1}\left(f_{j+1}\right)=$ $h_{j+1} \backslash g_{j+1}^{\prime} \imath \cdots \backslash g_{s-2}^{\prime} \backslash g_{s-1}^{\prime} \in G_{s-1-(j+1)}$. We next claim that $g_{j+1}=g_{j+1}^{\prime}, g_{j+2}=g_{j+2}^{\prime}, \cdots, g_{s-1}=g_{s-1}^{\prime}$. If there exists $k \in\{j+1, j+2, \cdots, s-1\}$ such that $g_{j+1}=g_{j+1}^{\prime}, \cdots, g_{k-1}=g_{k-1}^{\prime}, g_{k} \neq g_{k}^{\prime}, g_{k+1}=g_{k+1}^{\prime}, \cdots$, $g_{s-1}=g_{s-1}^{\prime}$, then there exist $i_{s-1} \in\left\{1,2, \cdots, p^{2}+p+1\right\}, \cdots, i_{k+1} \in N_{k+1}^{i_{k+2}}, i_{k} \in N_{k}^{i_{k+1}}$ such that $y_{k} \neq y_{k}^{\prime}$, where y_{k}, y_{k}^{\prime} are defined above. Assume that $f_{j}\left(R_{j, i_{s-1}, \cdots, i_{k+1}, i_{k}}\right)=R_{j, y_{s-1}, \cdots, y_{k+1}, y_{k}}$ and $f_{j+1}\left(R_{j+1, i_{s-1}, \cdots, i_{k+1}, i_{k}}\right)=$ $R_{j+1, y_{s-1}, \cdots, y_{k+1}, y_{k}^{\prime}}$. By Proposition 3.4 (i) and $f(N(A))=N(f(A))$ for all $A \in R \backslash C(R), f_{0}\left(R_{0, i_{s-1}, \cdots, i_{k}}\right)=$ $R_{0, y_{s-1}, \cdots, y_{k+1}, y_{k}}$ and $f_{0}\left(R_{0, i_{s-1}, \cdots, i_{k}}\right)=R_{0, y_{s-1}, \cdots, y_{k+1}, y_{k}^{\prime}}$. Since $y_{k} \neq y_{k}^{\prime}, R_{0, y_{s-1}, \cdots, y_{k+1}, y_{k}} \neq R_{0, y_{s-1}, \cdots, y_{k+1}, y_{k}^{\prime}}$, i.e., $f_{0}\left(R_{0, i_{s-1}, \cdots, i_{k}}\right) \neq f_{0}\left(R_{0, i_{s-1}, \cdots, i_{k}}\right)$, which is impossible. By this claim, we know that $f \in \operatorname{Aut}(\Gamma(R))$ can be
 $G_{s-1-j}, j=0,1, \ldots, s-1$. Therefore $\operatorname{Aut}(\Gamma(R)) \cong G$.

4. Conclusions

In this paper, we show that the automorphism group of $\Gamma\left(M_{2}\left(\mathbb{Z}_{p^{s}}\right)\right)$ is a subgroup of a direct product of some wreath products, and we completely characterize it in Theorem 3.8.

Acknowledgments

The author wishes to express his thanks to the referees for their time and comments.

Conflict of interest

The author declares no conflicts of interest in this paper.

References

1. A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl., $\mathbf{4 2 8}$ (2008), 2947-2954.
2. A. Mohammadian, On commuting graphs of finite matrix rings, Commun. Algebra, 38 (2010), 988-994.
3. S. Akbari, H. Bidkhori, A. Mohammadian, Commuting graphs of matrix algebras, Commun. Algebra, 36 (2008), 4020-4031.
4. D. Bundy, The connectivity of commuting graphs, J. Comb. Theory Ser. A, 113 (2006), 995-1007.
5. M. Herzog, P. Longobardi, M. Maj, On a commuting graph on conjugacy classes of groups, Commun. Algebra, 37 (2009), 3369-3387.
6. M. Mirzargar, P. P. Pach, A. R. Ashrafi, The automorphism group of commuting graph of a finite group, Bull. Korean Math. Soc., 51 (2014), 1145-1153.
7. M. Mirzargar, P. P. Pach, A. R. Ashrafi, Remarks on commuting graph of a finite group, Electron. Notes Discrete Math., 45 (2014), 103-106.
8. J. Zhou, Automorphisms of the commuting graph over 2×2 matrix ring, Acta Sci. Nat. Univ. Sunyatseni, 55 (2016), 39-43.
9. B. R. McDonald, Finite rings with identity, New York: Marcel Dekker, Inc., 1974.
10. J. J. Rotman, An introduction to the theory of groups, 4 Eds., New York: Springer-Verlag, 1995.
11. T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Representation theory and harmonic analysis of wreath products of finite groups, Cambridge University Press, 2014.
12. M. D. Neusel, L. Smith, Invariant theory of finite groups, American Mathematical Society, 2001.
© 2021 the Author(s), licensee AIMS Press. This
AIMS Press is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
