Research article

Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay

  • Received: 27 July 2024 Revised: 19 September 2024 Accepted: 25 September 2024 Published: 14 October 2024
  • MSC : 34F05, 34K45, 34K50

  • In this paper, we have discussed a class of second-order neutral stochastic differential evolution systems, based on the Wiener process, with random impulses and state-dependent delay. The system is an extension of impulsive stochastic differential equations, since its random effect is not only from stochastic disturbances but also from the random sequence of the impulse occurrence time. By using the cosine operator semigroup theory, stochastic analysis theorem, and the measure of noncompactness, the existence of solutions was obtained. Then, giving appropriate assumptions, the approximate controllability of the considered system was inferred. Finally, two examples were given to illustrate the effectiveness of our work.

    Citation: Chunli You, Linxin Shu, Xiao-bao Shu. Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay[J]. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403

    Related Papers:

  • In this paper, we have discussed a class of second-order neutral stochastic differential evolution systems, based on the Wiener process, with random impulses and state-dependent delay. The system is an extension of impulsive stochastic differential equations, since its random effect is not only from stochastic disturbances but also from the random sequence of the impulse occurrence time. By using the cosine operator semigroup theory, stochastic analysis theorem, and the measure of noncompactness, the existence of solutions was obtained. Then, giving appropriate assumptions, the approximate controllability of the considered system was inferred. Finally, two examples were given to illustrate the effectiveness of our work.



    加载中


    [1] B. Ahmad, Instability of impulsive hybrid state dependent delay differential systems, Vietnam J. Math., 35 (2007), 285–298.
    [2] J. Banas, K. Goebel, Measure of noncompactness in Banach Space, New York: Mercel Dekker, 1980.
    [3] J. Bélair, Population models with state-dependent delays, In: Mathematical population dynamics, Boca Raton: CRC Press, 1991,165–176. https://doi.org/10.1201/9781003072706-13
    [4] A. Bellen, N. Guglielmi, M. Zennaro, Numerical stability of nonlinear delay differential equations of neutral type, J. Comput. Appl. Math., 125 (2000), 251–263. https://doi.org/10.1016/S0377-0427(00)00471-4 doi: 10.1016/S0377-0427(00)00471-4
    [5] A. J. G. Bento, J. J. Oliveira, C. M. Silva, Existence and stability of a periodic solution of a general difference equation with applications to neural networks with a delay in the leakage terms, Commun. Nonlinear Sci., 126 (2023), 107429. https://doi.org/10.1016/j.cnsns.2023.107429 doi: 10.1016/j.cnsns.2023.107429
    [6] C. Corduneanu, Principles of differential and integral equations, Boston: Allyn and Bacon, 1971.
    [7] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. http://doi.org/10.1017/CBO9780511666223
    [8] J. Q. Duan, W. Wang, Effective dynamics of stochastic partial differential equations, Amsterdam: Elsevier, 2014. https://doi.org/10.1016/C2013-0-15235-X
    [9] W. E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation, SIAM J. Math. Anal., 13 (1982), 739–745. https://doi.org/10.1137/0513050 doi: 10.1137/0513050
    [10] Y. Guo, X. B. Shu, Q. B. Yin, Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions, Discrete Cont. Dyn. B, 27 (2022), 4455–4471. https://doi.org/10.3934/dcdsb.2021236 doi: 10.3934/dcdsb.2021236
    [11] E. Hernández, J. H. Wu, A. Chadha, Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Differ. Equations, 269 (2020), 8701–8735. https://doi.org/10.1016/j.jde.2020.06.030 doi: 10.1016/j.jde.2020.06.030
    [12] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Heidelberg: Springer, 1991. http://doi.org/10.1007/bfb0084432
    [13] H. Huang, Z. Wu, X. F. Su, Approximate controllability of second-order impulsive neutral stochastic differential equations with state-dependent delay and Poisson jumps, J. Inequal. Appl., 2023 (2023), 53. https://doi.org/10.1186/s13660-023-02959-5 doi: 10.1186/s13660-023-02959-5
    [14] M. Johnson, V. Vijayakumar, A. Shukla, K. S. Nisar, B. Hazarika, Existence and approximate controllability results for second-order impulsive stochastic neutral differential systems, Appl. Anal., 103 (2024), 481–505. https://doi.org/10.1080/00036811.2023.2196293 doi: 10.1080/00036811.2023.2196293
    [15] S. A. Jose, W. Yukunthorn, J. E. N. Valdes, H. Leiva, Some existence, uniqueness and stability results of nonlocal random impulsive integro-differential equations, Appl. Math. E-Notes, 20 (2020), 481–492.
    [16] A. Kumar, R. K. Vats, A. Kumar, Approximate controllability of second-order non-autonomous system with finite delay, J. Dyn. Control Syst., 26 (2020), 611–627. https://doi.org/10.1007/s10883-019-09475-0 doi: 10.1007/s10883-019-09475-0
    [17] S. Li, L. X. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400
    [18] Z. H. Li, X. B. Shu, F. Xu, The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem, AIMS Mathematics, 5 (2020), 6189–6210. https://doi.org/10.3934/math.2020398 doi: 10.3934/math.2020398
    [19] P. Magal, O. Arino, Existence of periodic solutions for a state dependent delay differential equation, J. Differ. Equations, 165 (2000), 61–95. https://doi.org/10.1006/jdeq.1999.3759 doi: 10.1006/jdeq.1999.3759
    [20] J. Mallet-Paret, R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Differ. Equations, 250 (2011), 4085–4103. https://doi.org/10.1016/j.jde.2010.10.023 doi: 10.1016/j.jde.2010.10.023
    [21] M. Palanisamy, R. Chinnathambi, Approximate controllability of second-order neutral stochastic differential equations with infinite delay and Poisson jumps, J. Syst. Sci. Complex., 28 (2015), 1033–1048. http://doi.org/10.1007/s11424-015-3075-7 doi: 10.1007/s11424-015-3075-7
    [22] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001 doi: 10.1016/j.jfranklin.2018.12.001
    [23] F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [24] L. X. Shu, X. B. Shu, J. Z. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. https://doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057
    [25] L. X. Shu, X. B. Shu, Q. X. Zhu, F. Xu, Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 11 (2021), 59–80. https://doi.org/10.11948/20190089 doi: 10.11948/20190089
    [26] S. Sivasankar, R. Udhayakumar, A note on approximate controllability of second-order neutral stochastic delay integro-differential evolution inclusions with impulses, Math. Method. Appl. Sci., 45 (2022), 6650–6676. https://doi.org/10.1002/mma.8198 doi: 10.1002/mma.8198
    [27] C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae, 32 (1978), 75–96. http://doi.org/10.1007/bf01902205 doi: 10.1007/bf01902205
    [28] V. Vijayakumar, R. Udhayakumar, C. Dineshkumar, Approximate controllability of second order nonlocal neutral differential evolution inclusions, IMA J. Math. Control I., 38 (2021), 192–210. https://doi.org/10.1093/imamci/dnaa001 doi: 10.1093/imamci/dnaa001
    [29] A. Vinodkumar, K. Malar, M. Gowrisankar, P. Mohankumar, Existence, uniqueness and stability of random impulsive fractional differential equations, Acta Math. Sci., 36 (2016), 428–442. http://doi.org/10.1016/S0252-9602(16)30010-8 doi: 10.1016/S0252-9602(16)30010-8
    [30] A. Vinodkumar, T. Senthilkumar, S. Hariharan, J. Alzabut, Exponential stabilization of fixed and random time impulsive delay differential system with applications, Math. Biosci. Eng., 18 (2021), 2384–2400. https://doi.org/10.3934/mbe.2021121 doi: 10.3934/mbe.2021121
    [31] A. Vinodkumar, T. Senthilkumar, H. Işık, S. Hariharan, N. Gunasekaran, An exponential stabilization of random impulsive control systems and its application to chaotic systems, Math. Method. Appl. Sci., 46 (2023), 3237–3254. https://doi.org/10.1002/mma.8688 doi: 10.1002/mma.8688
    [32] Z. M. Yan, X. X. Yan, Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent delay, Collect. Math., 64 (2013), 235–250. https://doi.org/10.1007/s13348-012-0063-2 doi: 10.1007/s13348-012-0063-2
    [33] Q. C. Yang, D. Wu, X. B. Shu, Existence and stability results of mild solutions for random impulsive stochastic partial differential equations with noncompact semigroups, Stochastics, 95 (2023), 168–190. https://doi.org/10.1080/17442508.2022.2056415 doi: 10.1080/17442508.2022.2056415
    [34] H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 21 (1983), 551–565. https://doi.org/10.1137/0321033 doi: 10.1137/0321033
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(22) PDF downloads(1) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog