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Abstract: In this paper, we have discussed a class of second-order neutral stochastic differential
evolution systems, based on the Wiener process, with random impulses and state-dependent delay.
The system is an extension of impulsive stochastic differential equations, since its random effect is
not only from stochastic disturbances but also from the random sequence of the impulse occurrence
time. By using the cosine operator semigroup theory, stochastic analysis theorem, and the measure of
noncompactness, the existence of solutions was obtained. Then, giving appropriate assumptions, the
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to illustrate the effectiveness of our work.
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1. Introduction

As an essential topic in modern control theory, controllability plays an important role in designing
control systems. Approximate controllability is frequently considered by researchers because it
is relatively easier to realize than exact controllability, especially in infinite dimensional systems.
Therefore, approximate controllability problems for various types of control systems have been
investigated in many articles. Additionally, second-order differential equations have attracted more
attention due to their applications in physics, mechanics, and engineering [8, 9]. Recently, there are
several investigations about approximate controllability to second-order abstract differential equations.
For example, the approximate controllability of second-order differential equations with finite delay
and the impulsive integro-differential equations have been discussed in [16]. A set of sufficient
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conditions for the evolution of second-order nonlocal neutral differential inclusions to be approximately
controllable have been established in [28]. Palanisamy et al. [21] studied the following second-order
neutral stochastic differential:

d[x' (t) = f(t, x)] =[Ax (@) + Bu(®)]dt + g (t, x;) dW (¢)
+ [ h(t, x.m) N (dt,dn), 1 € J :=[0,b],
Xo=¢ € B, x(0)=¢.

Authors constructed a Cauchy sequence by means of the range condition, and then obtained the
sufficient conditions of its approximate controllability.

In many science engineering fields, differential equations with delay are usually used to simulate
dynamic systems. Application of delay differential equations in the field of biological sciences have
been explored by Rihan in his monograph [23]. Bellen et al. [4] established a numerical scheme to
analyze the stability of differential equations with time delay. Some researchers have noticed that the
time delay may not always be a constant; it may change with the state of the system. Differential
equations with state-dependent delay arise from applications and have attracted increasing attention
from scholars. Bélair [3] considered the population model with state-dependent delay. Herndndez et
al. [11] discussed the existence, uniqueness, and approximate controllability of solutions of first-order
differential equations based on state-dependent delay. Ravichandran et al. [22] combined the fixed
point theorem and resolvent operator to deduce the exact controllability of solutions of neutral integro-
differential equations with state-dependent delay, and further deduced the continuous dependence of
the system. The scholar of [19, 20] discussed the stability and existence of periodic solutions of state-
dependent delay differential equations, respectively.

On the other hand, impulse perturbations are ubiquitous in natural phenomena. Stochastic impulsive
differential equations have attracted considerable attention in current research. For the approximate
controllability problem of second-order neutral stochastic impulsive systems, we refer the readers
to [14,26] and the references therein. Very recently, Huang et al. [13] considered the following second-
order neutral impulsive stochastic equations with state-dependent delay and a Poisson jump:

dx (1) = F (t.x)] = [Ax(6) + f (t. x) + Bu ()] dt + o (1, Xp1,6)) AW (1)

+ [, @t x(@=), )N (@dt,dv), 1€ ] =[0,T],1 # 1,
ax(t) = I (x,), AX (4) = I (x,),k=1,2,--- ,n,
Xo=¢€B,x0)=x, € H,

where the history x; : (=o0,0] = H, x,(0) = x(z+6), t > 0, belongs to the phase space 8, p : /X8 — H,
I, I, : B> Hk=1,2,...), and Ax(t;) represents the jump of the function x at #,. Using Sadovskii’s
fixed point theorem, Lipschitz continuity, and phase space theory, the existence of a system solution
was proved, and then the sufficient conditions of the approximate controllability to the system were
established.

However, systems with determining impulse occurrence time may not adequately describe the
characteristics of some complex phenomena in real life. It is significant to study the systems with
the influence of random impulses, which means its impulse occurrence time is a group of random
sequences. So, the system with random impulses fairly differs from that with determining impulses.
In recent years, there are several articles devoted to the existence, uniqueness, and other quantitative
and qualitative properties of mild solutions of random impulsive differential equations. Guo et al. [10]
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obtained the existence of mild solutions of first-order Hamiltonian stochastic impulsive differential
equations by using a variational method and Legendre transformation. Jose et al. [15] deduced the
existence of solutions of integro-differential equations with random impulses through the Banach fixed
point theorem and appropriate estimation. Existence and Hyers-Ulam stability of stochastic functional
differential equations with random impulses and finite delays were investigated in [17]. In [25], the
following second-order neutral random impulsive stochastic equation was considered:

d[xX (®)—gt,x)] =[Ax @)+ f(t,x)]dt + o (t,x,)dW (t), t > 1o, t # &,
X&) =be (@) x (&), ¥ G = bt X (&), k=1,2,---,
Xy =@, X' (o) = .

The form of the solution of the equation was derived by Laplace transformation, and then the existence
of the solution was verified by noncompact measures and Monch’s fixed point theory. Then, the
exponential stability was given accordingly. Yang et al. [33] proved the existence of solutions of
random impulsive partial differential equations by using noncompact semigroup theory. Recently, the
existence of upper and lower solutions to second-order random impulsive differential equations with
a boundary value problem has been considered in [18]. In the latest research [5, 30, 31], random
impulses have been introduced into network models, chaotic systems, and so on. Stability, control, and
its application issues have been studied.

With the continuous advancement of the theory of random impulsive differential systems, great
progress has been made, but there is still much space for research on the approximate controllability
of random impulsive differential systems. Based on the previous cited works of [13, 21, 25], we
study the existence and approximate controllability of mild solutions to second-order neutral stochastic
differential equations with random impulsive and state-dependent delay as follows.

d[x'(t)—gt,x)]| =Ax(@®)dt + Bu(t)dt + f (t, xp(,’xt)) dt

+ 77 (8 X)) AW (1) £ € T = [0, TI\ (&) k= 1,2, -+, (1.1)

x (&) = qr (e0) x (&), X (&) = qi (&) X' (&) s (1.2)

X0 = ¢, x' (0) =y, (1.3)

where x(-) takes value in a Hilbert space X with the norm || - ||. A is the infinitesimal generator of a

strongly continuous cosine operator C(¢) on X. u(-) is the control function and u(-) € L*(J, L*(Q, U)).
B is a bounded linear operator from U to X. Suppose K is another Hilbert space, and W(¢) is a given
K—valued Wiener process with a finite trace Q. The functions f, g : /X8 — X,andnp : /X B —
Lo(K, X), where Ly(K, X) is the space of all Q-Hilbert-Schmidt operators. Function x; : (—oc0,0] — X,
x:(s) = x(t + 5) belongs to some phase space B, and x,, ., stands for time delay depending on the state
o(t, x;), where p : J X B — (—o0,T] is a continuous function. x (f,:) represents the left limit of x(&).

Suppose & = 0 and {&;} is an increasing sequence, that is, 0 = & < & < -+ < & < oo, satisfying
& =&+ &, (k=1,2,--). {&} is a sequence of random variables mutually independent from € to
Dy = (0,dy), where 0 < d;, < oo. g; maps Dy into R for each k = 1,2,---. Assume that ¢ € B and

Y € X are independent with &.

The main motivations and contributions in this paper are as follows:

(i) We consider the existence and approximate controllability problem to a class of second-order
impulsive stochastic differential equations with state-dependent delay, which is a more realistic abstract
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wave equation involving the Wiener process and random impulses sequences. As far as we know, there
are very few studies of such issues.

(i1) To prove the main result, we employ evolution operator theory, stochastic analysis skills, the
inequality technique, the Ascoli-Azela theorem, and combine the measure of noncompactness under
a stochastic case. Then corresponding sufficient conditions of existence of a mild solution result have
been established.

(i11)) We further discuss the approximate controllability of Eqs (1.1)—(1.3) based on the main
technique in [21]. Compared with [21], we considered the random impulsive effect and state-dependent
delay. We extend the corresponding conditions to the random impulse system. This method is different
from [13]. We also briefly analyzed the conclusion of the approximate controllability of the mild
solution to the system under nonlocal conditions.

(iv) Two examples are given to show the effectiveness of the results.

The framework of this paper is as follows: In Section 2, we give some notation and preparatory
knowledge adopted from [2,6,7,27] and so on. In Section 3, some assumptions are given to verify the
existence of solutions of differential systems. In Section 4, we study the approximate controllability of
random impulsive neutral stochastic differential equations, and give proper assumptions on the premise
that the corresponding equations are approximately controllable, and then obtain sufficient conditions
for the approximate controllability of the system. Section 5 proves the approximate controllability
of second-order differential equations under nonlocal conditions. We give examples to verify the
theoretical results of this paper in Section 6.

2. Preliminaries

Let (Q,F,{F:}»0, P) be a complete probability space with flow, w € Q. K and X are both
real separable Hilbert spaces. Let Q : K — K be a symmetric nonnegative trace family operator

with Tr(Q) = 2, 4, < oo, where {4,};”, is a nonnegative eigenvalue sequence of operator Q. Let
n=1

{fu}>2, be a set of complete orthogonal bases in space K, and then Qf, = A,f,. Assume S,(1)
is a sequence of real-valued one-dimensional standard Wiener process defined on (Q, 7, {F;}1>0, P).

W) = Z VA,B,(0) f,(2) is called a Q-Wiener process. Assume 7, = o(W(s) : 0 < s < t). Denote

L(K, X) as the space of all bounded operators from K to X. An operator ¢ € L(K, X) is called a
Q-Hilbert Schmidt operator if ||¢||, < oo, where || - || is defined by

el = Tr(eQ¢") = >INl
n=1

Let Ly(K, X) denote the space of all Q-Hilbert Schmidt operators. The completion Ly(K, X) of
L(K, X) with respect to the topology induced by the norm ||g0||2Q =< ¢, ¢ > is a Hilbert space. Assume
L*(Q, X) is the set of all strongly measurable and mean integrable X-valued random variables with norm
Ixll> = (EIIxI®)'"?, where E stands for expectation define as E(x) = [ x(w)dP, and then L(Q,X) is a
Banach space. The subset L2(Q, X) is defined as L3 (Q, X) = {x € L* (Q, X) : x is Fo-measurable}.

The family of bounded linear operators {C(?), t € R} is called a strongly continuous cosine family, if
AD)C+D)+C(s—1)=2C(s)C(r)forall s,t € R;
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(i) C0) = I;
(ii1) C(#)x is continuous in ¢ on R for each fixed x € X.

The strongly continuous sine family {S (7), r € R} associated with the cosine family is defined by
SHx = fot C(s)xds, x € X, t € R. For more details on the theory of the cosine function of operators,
one can see [27].

Referring to [12], the axioms of phase space 8 can be established.

Definition 2.1. [12] Assume phase space B consists of all Fy—adapted functions from (—c0,0] to X
with seminorm ||||g, and then the following axiomatic conditions hold:

) If x : (oo, +a] = X,a > 0, such that x, € 8 and x|}, ., € C([y,y + al; X), then for every
t € [y,y + al, the following conditions hold:

(a) x; € B;

®) [IxDIl < Kl|xlg;

(©) llxllg < Rt =y) supEllx ()|l + T (¢ + ) Ellx, lls;

y<s<t

where K > 0 is a constant, R(-), T(:) : [0, +c0) — [1,4+0c0), R(-) is continuous, 7'(-) is locally bounded,
and then K, R(:), and T(-) have no concern with x(-).
2) The space B is complete.

We denote DPC([a,b], L*(Q,X)) as the set of all piecewise continuous functions, with a
first derivative, mapping the interval [a,b] to L?>(Q,X) and ¥,-adapted processes. If x €
DPC((—o0,T], L* (Q, X)), then x is continuous as ¢ # &, x(&) = x(&), and x(&) exists, k
1,2,--- ,n. Then (DPC, |||l ppc) 1s @ Banach space with norm

2.1/2
IXllppe = sup (llx:llg)
teJ

where the estimate of ||x;||g is given by the following lemma.

Lemma 2.1. [32] Let x : (—oo,T] — X be an F;-adapted process such that Fy-adapted process
X0 = (1) € L(ZJ(Q, B), x|; € DPCJ, L*(Q, X)), and then

Ixsllg < TwE llgllg + Ry sup E|Ix(s)Il ,

0<s<T

where T, = sup T(¢) and R,, = sup R(¢).

teJ teJ

Lemma 2.2. [7] Note map m : J — X is an arbitrary Ly (K, X)-valued predictable process, and then
foreveryt e J, p> 2, the following inequality holds:

E

p t 2 g
< C,,( fo (Ellm(s)ll’é)”ds) ,

f m(s)dW(s)
0

D)2
where C,, = (%) :
Now, we introduce the definition and properties of the non-compactness measure used in the

theoretical proof of this paper.
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Definition 2.2. [2] B(:) represents the Hausdor{f non-compactness measure (NCM), which is defined
on bounded subset D of the Banach space by

B(D) =inf{e >0, D has a finite € — net in X}.

Lemma 2.3. [2] There exists nonempty bounded subsets C, D C X, where X is a real separable space,
and then the following properties hold:

(@) B (D) = 0iff D is pre-compact on X.

(i) BD) =B (Z_)) = B (conv (D)), where D and conv (D) are for the closure and convex hull of D,
respectively.

(@) If C € D, then (C) < B (D).

) BUxkIU D) =B (D), forall k € X.

WMBEC+D)<BC)+B(D),whereC+D ={k+1,keC,te D).

(vi) B(CU D) < max {B(C), B(D)}.

i) B (D) < |ulB (D), neR.

Lemma 2.4. [2] For bounded and equicontinuous set D C L*(Q, X), B(D) is continuous on J, and
B(D) = supB (D (1))

teJ

Lemma 2.5. [2] Suppose sequence {x"},”, relating to Bochner integrable functions maps J to
L*(Q, X), and then D = {xX"}2, is a bounded and countable set, and 5 (D (1)) is a Lebegue integral
on L*(Q, X), which satisfies

ﬁ({ftx"(s)ds ‘> 1}) < 2ft,3(z)(s))ds,
0 0

Lemma 2.6. [24] If the set D C LP(J, Lo(K, H)), W(t) is a Q-Wiener process, then for any p > 2,
t € [0, T, Hausdorf{f NCM B satisfies

B( f D(s)dW(s)) < \/T§<p— DTHQ)BD()),
0
where

! f
f D(s)dW(s) = {f u(s)dW(s) : forallu € D,t € [0, T]}.
0 0
Remark 2.1. Specially, when p = 2,

ﬁ(fo D(S)dW(S)) < \/Tr(Q)foﬂ(D(S))ds.

Lemma 2.7. [6] Let @ € R*, m(-) be nonnegative continuous function. If there is

u(t)Sa+fm(s)u(s)ds, forte[0,T],
0

then, t
u(r) < aed ™),
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3. Existence of mild solutions

In this section, the existence of mild solutions of evolution systems (1.1)—(1.3) will be derived.

Definition 3.1. [25] An F;-adapted process x : (—co, T — X is a mild solution of systems (1.1)—(1.3)
if X1y Xp40) € B, xl; € DPC, LX(Q, X)), and

(1) xo = (1) € LZ(Q B) for t € (—o0,0];

(i) x'(0) = y(t) € L? 0(Q,X) forr € J;

(iii) The function g (¢, x,) is continuous and f (t, xp(t,x,)) and n(t, xp(t,x,)) are integrable. For given
T € (0, 00), x(¢) satisfies:

x(t):i[
k=0

—+

:]»

4 (£)C (1) (0) + ]_[ g (£)S () [ - (0, )]

i

q] fC(t—s)g(s xs)ds+fC(t—s)g(s,xs)ds
&i-1 &k

Zﬂ f S (1= 5) (Bu(s) + f (5. X)) ds

+f (1= ) (Bu(s) + f (5, %)) 5

fk

+Z]_[qj &j fS(t—s)n(s o) AW (5)

i=1 j=i

»ﬁMw
A

- I
=~ T -~ -

+ f S—-s)n (s, xp(s,xs)) dW (s) ds]é[fk’fkﬂ) (v, tel0,T],
&k

k
where [] g; (s j) = qi (&) qi-1 (€k-1) - - - qi (&), and 4 () 1s the index function, that is,
j=i

0,1¢A,
5A(’):{ 1, teA

To acquire the desired results, we give the following assumptions:
(H,): For every vy,v, € B, t € J, there exists positive constant L; such that

Ellg(t,v) = gt v)IP+EIf (1, vi) = fE, v)IP+Eln(t, vi) = n(t, vo)lly < 3Ly [lvi = vall,
where Ly = sup £ {llg(t, O, 1 O, Tr(Q) (e, O}
te

k ~
(Hy): E {m_%x I ||q i(e j)||} is uniformly bounded, and there is M > 0 such that
i, j=i

k
E {n}%x [ ||‘lj(81)||2} <M
Jj=i
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forevery g, j=1,2,---.
(H3): C(¢) and S (t) are continuous in the uniform operator topology for every ¢ > 0, and there exists
constants M, M5 > 0O such that

sup [C(HI> < My, sup|IS@)I* < M,.

teR* teR*
(Hy): We assume function p : J X B8 — (—oo,T] is continuous. Function ¢+ — ¢, maps set
R) = {p(s,6) <0,0(s,6) : (s,6) € J X B} to B. There exists a continuous and bounded function
D? : R(p~) — (0, ) such that

ledls < D*Ollglls, 1 € RipD).

(Hs): The functions g, f: Jx B - L*(2,X)andn: JX B — Ly (K, L*(Q, X)) have the following
properties:

(a) The functions g (t,-), f(t,-) : B —» L*(2,X),and n(t,") : B — Lo (K, L (Q, X)) are continuous
forevery t € J,and forv e B, g(-,v), f(,v): J = L*(2,X),and n(-,v) : J — Ly (K, L*(Q, X)) are
measurable.

(b) There is integrable function n;, € L' (J,R*) and continuous nondecreasing function #;, : R* — R*
such that

Pu(r) _
- =

(c) There exists L, € L'(J,R*) and any bounded set D C L*(, X) such that Hausdorff NCM S
satisfies:

Ellh &I < m, (0P (EIVIG). lim inf 0.

B(h(t, D)) <L, (H)ysupB(D), supL, (t) = L, < oo,

teJ teJ

where it is effective for functions g, f, and n to replace 4 in (b) and (¢).

Lemma 3.1. [/] Let x € DPC((—o0, T], X), such that xo = ¢ and x'(0) = ¢, and then

[%ots0llg < (T + DP)llglls + Ry sup {E [1x(O)]] : 6 € [0, max {0, 5}1}, s € R(p7) U J,
where D¥ = sup {D*(¢) : t € R(p™)}.

Theorem 3.1. If hypotheses (H,)—(Hs) are satisfied, then evolution systems (1.1)—(1.3) have at least
one mild solution.

Proof: Define the function z : (-0, T] — X by
QO(I), re (—OO, 0]7
z() =

+00 k
kz—:() [ i=1 ai (E)C (@) ¢ 0) 5[§k»fk+1) ®, el

Then, we denote the function X that satisfies Definition 3.1, and can be decomposed as X = x(t) + z(f)
for t € J. From Lemmas 2.1 and 3.1, it is easy to get:

=112 2 2 2 2 2
Xl = llx: + zillp < 2llxcllg + 2llzllg < 2R, sup Ellx($)II” + c1, (3.1
0<s<t
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where ¢; = 4R, MM, E|lp(0)|* + 4T E|l¢ll%:

m

”)_Cp(s,xs)llfzg < 2||xp(s,xs)”(23 + 2||Zt||28 < ZR; SupE||X(S)||2 + (2, (32)
0<s<t
where ¢, = 4R2 MM, E||p(0)||> + 4(T,, + D)2 El|¢ll3,.
Let Y = {x € DPC : x(0) = 0} be a space endowed with a uniform convergence topology. Denote

B.(0,Y) = {x €Y E|xP< r} for r > 0. Define operator 8 : Y — Y, such that (6x)(r) = 0 as
t € (—00,0], and

+00

o
1=

(6x) (1) = q: (€)S () [y —g(0,9)]

+

% I I

q] fC(t—s)g(s xs)ds+fC(t—s)g(s,)'cS)ds

il 133

f S (t = 5) (Bu(s) + f (5. Koz ) ds

&i-1

w:» 13» s

S (-5 Bu(s)+f(s xp(”)))d

+Zr|q] £ fS(t—s)n(s xp(yxv))dW(s)

i=1 j=i

+ f S(t—s)n(s,Xp(s,)—cx))dW(s)]6[&,5“])(t), te[0,T].

&k

Now, we show that operator 6 has a fixed point by the following steps.
Step 1. We first prove that there exists an r such that  maps B, into B,. Without loss of generality, let
E||(6x) (t)||> > r, and then

r <E|x()|?

k
<10 [ [ llgie)IP MaLElwI? + 1200, @)IP]

i=1

-k Kk 2 ¢ 2
+50 7] [llastel] f IC( = I E llgs, X )l ds + f ||C(t—s)||E||g(s,xs>||ds]

Fi=l =i §i-1 &

& ]L i t 2
+5[ > | [lasenl f IS (2 = $)I| El|Bu(s)ll ds + ff ||S<r—s>||E||Bu<s)||ds]

S i=1 j=i Si-1 k
+50 > [ Tllasen] f IS (t = N E || £ (5. Eoisiz)|| s

£l ] |

S o

IS @= N[ T ds]

AIMS Mathematics Volume 9, Issue 10, 28906-28930.
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k k £
+5[ Zﬂllqj(sjﬂl f IS (2 = )1 E |[n(s, %pisz.)|| AW (s)
i=1 j=i ;

f IS (2 = I E [|ns, Fos.e)|| dW(s>]

<10 l—[ llgi(eDIP MaENlAP + llg(0, 9)II°]

i=1

!
LT [ 1€ 6= 9P El 5. 2lPds
0

1, f IS (¢ = DIPENS (5, Bocs.z )IPds

(1.7} T

+5Smax {1, M|T f t IS (¢t — 5)|*El|BulPds
(1.7} T
{1.)

+5max {1, M Tr(Q)f IS (¢ = )IPEl (5. Tz, lpds

<10MM, |E|WIP + Ly (1 + llgll3) | + 5 max {1, M} M Tllngllp 0P (2R2r + 1)
+ 5 max {1, M| MyTE |Bu(t)| ., + S max {1, M} MyTlnpllpi g Pr (2R + c2)
+ 5 max {1, M} MuTr(Q)lInyllpi Py (2Ror + c2)
Both sides of the above formula are divided by r at the same time, and it is not difficult to find

108 My [ EllAR + Ly (1 + ligll3)] , Smax (1, ¥} MyTE |Bu®)Il} .,

=0, asr — oo.

b

r r
Then, there is
_ P 2R,2nr + Cq
1 sSmax{l,M}M1T2||ng||Ll(J,X) g( )
~ Pr(2REr + c2
+ 5 max {1, M} Mo T?||ngllx) ( )
3 Py (Zanr + cz)
+ 5 max {1, M} MzTI’(Q)T””n”Ll(J,X)f’
where
P (2R,2nr + cl) Py (2R3,,7’ + Cl) 2R2r + ¢
lim = lim — =
r—o0 r r—oo 2R%nr + Cy r
(R rie ) 2 e . . .
Similarly, lim PrQRwr+ed) i PiCRte) g Thug 1 < 0, which is obviously contradictory.

rF—00 F—00

Accordingly, there exists an r > 0 such that 6 (B,) C B,.

Step 2. 6 : Y — Y is continuous. Assume {x"}'%) C Y such that x* — x, as n — co. Let control
function u(-) is continuous, and then

k Si
]_[Ilqj(s,-)ll f IC(t = $)IE ||gCs, %) = g(s, %) ds
i=1 j=i i1

EN@x")(1) — (0x)(0I* < 4
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! 2
+ f IC(t = I E ||gCs, &) = g(s, %) ds]
&k

kK k &
+4[Z]—[||qj<s,->|| f: IS (¢ = )1l E 1Bz (5) = us(s))ll ds

i=1 j=i

t 2

+ f 15 ¢ = I E 1Bl (5) - us( sl ds|
2
+ ff 18 6= 1 E£5 i) = 5 Gt ]

k k
+4[Zl—[||q,<s,)|| f 1St = SIE (s, % 00y = 15, Fogee)]| W)

i=1 j=i

M»

k
[ Tlasel] f IS (t = IE || (s, &gz = £5: Xos.0)]| ds

J=i

1l
—_

! 2
- f ||S(z—s>||E||n<s,xz(s,ﬂ)>—n(s,xp(s,m)lldW(s)],
&k

where x" — x implies X" — X. Since B is a bounded linear operator and |[uz(s) — uz(s)|| — 0 as
X" —Xx — 0, then B(uz(s) —uz(s)) — 0 as X" — x. In view of the continuity of g(¢,-), f(¢,-), and n(z, -),
we have

E||(0x")(1) = (@)D — 0.

Step 3. We prove that 6(B,) is equicontinuous on every [, &+1), (k = 1,2,---). Denote
=2R:r+cy, 1 = 2R2r + .

Leté <t <t <é&y1,and then as t; — 1,

+00 k k
(0x)(1) - (9x><r2><Z[Zﬂ (&) f [C(t1 = $) = C(t2 = 9)lg(s, %)ds
=1 j=

f [ty = ) = Clts — 5))g(s, £)ds — f (s - s)gls, %)ds
fk 1

+Zﬂq,(s,) f [S (11 — 5) — S(t2 — 5)]Bu(s)ds

zl]z

[S (t1 — 5) = S(t, — 5)]Bu(s)ds — fz S (t; — s)Bu(s)ds

141

* Z ﬂq,(sp f [S (01 = 5) = 8 (t2 = )L (5. Tyt

=1 j=i

. f (St = ) = S (12 = )1F(S: For)ds — f S(ty = $)f(s. Es.0,)ds

1

+ Z ]‘[q]@,) f [S (11 = 8) = S (12 = )5, Fyis.5,)dAW(5)

i=1 j=i
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+ f (St = ) = S (12 = V(s Fos1)AW(S)
&k

5]
_ f Stz = (5 Tpiem )W) [B1ee 00 (12,

51

and then,

El|(62)(11) = (0x)()I

1|
< Smax{l,M} TL(1+ rl)f |C(t, — s5) — C(t, — s)||2ds +8(t, —t)) M\ TL,(1 + 1))
0

3l
+ 8 max {1, M} E | Bu()Il}. ., fo IS (5, — s) — S (2 — 9)|*ds
+ 8(t2 - tl)MZE ”BM(S)”%}(J’X)

il
+ 8 max {1M} TL(1 + rz)f IS (t; = 5) = St — 5)|Pds + 8(t, — t,)MyTLy(1 + 12)
0

+ 8 max {1M} TrHQ)L,(1 + ry) fl ISt — ) — S(t2 — s)|ds
0

+ 8([2 - tl)MzTr(Q)Ll(l + }"2).

By the continuity of C(¢) and S (¢), E||(6x)(t;) — (t9x)(t2)||2 — 0 as f; — 1, which means that 6 is
equicontinuous.

Step 4. Let O = {x,},_, . We demonstrate O(¢) = {x, (?)|x, € B,(J),m =1,2,---} is relatively
compact. Let x,,.1 = 0x,,m = 0,1,2,---. According to the properties of the Hausdorff NCM in
Lemma 2.3, we have

BO) = B({xm}p=o) = B({x0} U {xuhno1) = B ({xXmbn=1) -

Subsequently,

B ({xm (D},21) = B (162 (D)},20)

k k 2 t 00
Sﬁ[{zr qj(sj)f C(t—s)g(s,)'c’f)ds+fC(t—s)g(s,)'c’f)ds} ]
i1 m=0

=1 j=i - "
{21
" fg S (=952 ) aw (S)}m=o]

k ,, ; oo
—l q; (ej) j:_l S (- s)f(s, )’cp’"(s’w))ds + L N s)f(s, )'cp’"(s’w))ds}mzo]
k
4 (81)
< 2max {1, M} M, Ly(r) f t B (s))) ds
0

1 j=i
) [ sa=sn(sz )aw e
i=1 j=i ‘El p(l’S)
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+2max {1, ¥} MaLy (1) f @) Jds
+ 2max {1, M} MaLy()) VTH(Q) f o xm)() )ds

2max {1, M| M, LR, f B (X (9)) ds
0

IA

+ 2 max {1, ]\71} M,L¢R,, f B(xn (}o_o)ds
0
+ 2 max {1, ]\71} M,L, NTr(Q)R,, f B({xn ()Y ds
0
= f B{xm (o) ds,
0

where U = 2 max {1, M} R, (Mll_,g + MyLy + M>L, \/Tr(Q)).
We acquire S(O (1)) < A fot B(O(s))ds. Due to Lemma 2.7, we have B(O(t)) < 0, and then we
can deduce that 8(O (1)) = 0, which implies O(¢) is relatively compact. Combining Steps 1-3, O is

uniformly bounded and equicontinuous. Thus, 8(0) = supB (O (¢)) and O is relatively compact. From
teJ

the Ascoli-Azela Theorem, there apparently exists a convergent subsequence of {x,,},._, and & such that
lim x,, = X. In addition, operator 8 is continuous, and then,

m—o0

X = lim x,, = lim 6x,,_; —9(hm Xy 1):9)%.

m—-0oo m—-0oo

A

Therefore, X € B,(0,Y) is called the fixed point of 8, which is also the mild solution of systems
(1.1)—(1.3).

4. Approximate controllability

In this section, we deduce the approximate controllability of systems (1.1)—(1.3).

Definition 4.1. [21] Let x(T, u) be a mild solution of evolution systems (1.1)—(1.3) corresponding to
the control u at terminal time T. Set

R(T) = {x(T,u) : u(-) € L*(J, L*(Q, U)}

denotes the reachable set of the systems (1.1)—(1.3) at terminal time 7. If R(T) = L*(Q, X), then
systems (1.1)—(1.3) are said to be approximately controllable on J.
Now, define the Nemytskil operator I" : DPC (J, X) — L* (J, X) related to the nonlinear function f

by
Ty ) (@0 = f (b X)) -

Definition 4.2. Define E and bounded linear operators

¢: L*(J,Ly(K, X)) = L*(2,X), ®: L*(J,X) > L*(2,X),
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and then,

+
8

[
I
—

gi()C(T)p(0) + ﬂ g1E)S (DY - (0, )]

>~
Il

+
M-

T
[aren | C(T — $)g(s, x)ds + L C(T = $)8(s. 2,)ds]Sie, 0, (D).

~:|» I}

1l

—_
~

1l

k
l_[ q(€j) f S(T — ) (s)ds + f ST - s)hl(s)ds]é[fk &),

]:1 - é:k

=

=

[
NgLa
M»

T
o
I

k T
Phy = l—[ q;(&;) S(T — $)hy(5)dW(s) + f S(T - S)hz(S)dW(S)]é[gk & (D),

]:l I— fk

"Mg
M»

Il
—

where h; € L*(J, X) and h, € L*(J, Ly(K, X)).

Similarly, we give the following assumptions to verify the approximate controllability of systems
(1.1)—(1.3).
(Hg): Systems (1.1*)—(1.3*) denote systems corresponding to (1.1)—(1.3) with f = 0 and = 0, and
R (0,0) is the reachable set of the systems (1.1%)—(1.3*) at terminal time 7. Systems (1.1%)—(1.3%)
are approximately controllable, i.e., Ry (0,0) = L*(Q, X).
(H;): (i) For every & > 0, h; € L*(J,X), and h, € L*(J, Ly(K, X)), there exists a control function
u € L2(J, L*(Q, U)) such that

E||®h; + ¢phy — DBu|l* < &.

(11) E”BMHLZ(J)() < C(E”hl ||L2(JX) +E ||h2||L2(JX))
where C is a constant independent of /; and h;.

(i11) 2CLIR’TL <1,

where

=[1- (le + ZQ + ig)]_lz, Zl = 4max{1,1\7I}M1L1T2R,2n,
L, = 4max{l, M}M,L,T*R?, L = 4max{1, M}M,TL,Tr(Q)R?,
L = 4max{1, M}M,T.

Lemma 4.1. Any mild solution of systems (1.1)—(1.3) satisfies the following inequality if hypotheses
(Hy)—(Hs) hold:

sup E||[x' - 2||" < L'ElBu; — Busle
0<t<T

where x"(m = 1,2) is the solution of systems (1.1)—(1.3) related to control u,,(m = 1,2).
Proof: x™ has the following form

+00 k

W= []_[ gi(ENCDP(0) + ]_[ gi(&)S (O - 20, 9)]

k= Ok i= ] | t

+ ( -)f Clt - sygts s + [ Ca= 9. 2
;l;lqjé‘j - §)g(s S A §)g(s S
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= Z H q;(&)) f S(t = $)(Buty(s) + f(5, X% )

i=1 j=i

+f S (t = $)(Butw(s) + f(s, x5 om))ds
&k

+Zl_[(]j(8,)f S - s)n(s, x p(vxm))dW(S)
i=1 j=i

'
+ f S(t = s)n(s, xzs,)dgl))dw(s):lé[fk~§k+l)(t)'
é

k

So, for x', x* € X, we obtain that

+00

ko k ,.
sup E|[x' —x2||2 < E{Z [Z l_[ ||Qj(8j)||f 1C(

0<t<T _ =1 j=i

+ f IC@ = 9)Il||g(s. x}) — g

+Zﬂ||q,(s]>|| f IS (¢ = $)II (1Bur(s) = Bus(s)|

i=1 j=i

Hf(S p(”)) f(s, x(cxz) ‘)ds

" f ||S(f—S)||(||BM1(S)—BM2(S)||+Hf(S RO

+Z]_[||qj(s,>|| f ISt = 9l s, 5l ) =152 )

i=1 j=i

')ds

) dW(s)

‘ dW(S)]5[$k ffkﬂ)(t)}z

f 15 (= )l [ncs. 2y = 16,22

< 4max{1, M}M,L,T*R’, sup E”X1 - x2||2
0<t<T

+4max{l, M}MyTE||Buy — Bual7,

+4max{1, M}M,L, T*R2 sup E||x1 - x2||2
0<t<T

+ 4 max{1, M}MzTLlTr(Q)Ri sup E||x1 — )c2||2
0<t<T

~ ~ ~ 2 T
= (Li+ Lo+ Ly) sup E|lx' ="+ LEIBu, = Bualz

Therefore,

> c L 7oag-ly
sup E”x1 - x2|| <[1-(Ly+ L+ L3)] LE|Bu; — BUZHiz(J,x)
0<t<T
= L'E||Buy — B[} x, -
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The proof is complete.
Now, we prove the approximate controllability of systems (1.1)—(1.3).

Theorem 4.1. Suppose that Lemma 4.1 and hypotheses (H¢)—(H7) hold. Then, systems (1.1)—(1.3) are
approximately controllable.

Proof: We can obtain the equivalent condition of approximate controllability of systems (1.1)—(1.3)
from Definition 4.1.

For any desired state of the terminal w € X, Ye > 0, if there exists a control function u, €
L*(J, L*(Q, U)) such that the mild solution of systems (1.1)—(1.3) satisfy:

Ellw -2 - @I (x,) - 6T, (xo) - @(Bu,)||* < &,

where x,; = x(-, u.), then systems (1.1)—(1.3) are approximately controllable.

Due to Ry (0,0) ¢ R(T), let w € Ry (0,0), and we construct a sequence that converges to w.
According to (Hg), systems (1.1*)—(1.3*) are approximately controllable. So, for Ve > 0, there exists
u € L>(J,L*(Q, U)) and n € Z* such that

Ell(w - E - ®(Bu)|* <

ot 4.1)

Let x' € L?(Q, X) be a mild solution of systems (1.1)—(1.3) under control u,. Because of (H7)(i),
there exists u, € L*(J, L>(Q, U)) such that

E|lo (B - 1y (")) - o, (x') - (I)(Buz)Hz < 2:’;4. (4.2)

Combining (4.1) and (4.2), we have

Ellw-2 - or,(x') - ¢r, (x') - (1)(13u2)H2
< 2E||lw - 5 — ®(Bu)|]?

4.3
+ 2E|0 ((Bu) - Iy () - o1, (x') - c1>(Buz)H2 4
<2
By using (H5) (i) again, there exists control function v, such that
Ejo (1 (2) - 1 () + 9 (1, () - 13 () - 0| < 505 (4.4)

Based on hypothesis (H7) (i) and Lemma 4.1, we have
E||Bvall}2 5, < C(ENp (22) () = Ty (x") Olay + BN, (57) O = Ty (x1) Ol )
T
. 2 — . 1
<C ( fo E|f2 )= FCx iy
! 2 1 2
* fo E||nc. 2, o) =t xp(s,xz.))”Q ds)
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<2CRALT sup E|x' - 2|

0<t<T

<2CR,L\TL'E ||Buy = Bual}s -

Set u3 = u, — v,, and combine (4.3) and (4.4),

Elw-2-or, () - ¢r,(x) - q)(Bu3)H2

< QE“w —E-or,(x) - or, (') - CD(Buz)Hz

5 4.5
+ 2E”c1> (1 () = Iy (+)) + ¢ (1 (#) = 1y (1)) - q)(sz)H
< (2n+l + Jn+2 )8'
By mathematical induction, we construct u,,; = u, — v, € L*(J, L*(Q, U)) satisfying
— n 2
E|w-&-or; ") - ¢, (x") — O(Buy)|
1 1 1 1 4.6)
<(§+?+'”+W)S<ZS’
and
E|Buty = Btpll7 ;) < 2CRyLiTL'E || Buty—y = By}, - 4.7)

Due to (H;) (iii), we infer that {Bu,} | is Cauchy and convergent. Then, for Ve > 0, there exists

n=1

positive integer number N, n > N such that
, &
E||DB(up) — ©B(upir)II” < 7

Hence,

El|lw - 5 - O (") - ¢, (") — ©(Bu,)|[

—_ n n 2
<2E|w - E - @ (x") = ¢T'; (x") = D(Buy1)||
+ 2E||®(Bu,) — ©(Bu, I < .

In summary, systems (1.1)—(1.3) are approximately controllable.
5. Nonlocal conditions

In this section, we study the approximate controllability of second-order stochastic differential
equations with nonlocal conditions.

d[x'(t) — g(t, x,)] = Ax(t)dt + Bu(t)dt + f(t, Xy x,))dt
+ (8, Xpr0))AW (), t € J =[0,T], t # &, k=1,2,---, (5.1
x(&) = qr(e)x(&), X' () = qulenx (&), (5.2)
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28923

Xo = ¢ + Hi(x), X'(0) = ¢ + Hy(x). (5.3)

In order to get the result, it is necessary to give some properties of functions H; and H,.
(Hg): Hi, H, are continuous and compact, and satisfy the following conditions.
(a) For any x,y € B,

E|H,(x) = HiO)I* < Ny llx = yll5 . ElHa(x) = HoO)IF < N llx =yl

(b) There are integrable functions ng,,ng, € L'(J,R*), and continuous nondecreasing functions
Py, Py, - Rt — R*, such that

Py ()

EIF(OIP < npo P (), lim inf—"— =0,
, \r

EIF(IP < npePr, (ElllI3), Tim inf ”() = 0.

Definition 5.1. An F;-adapted process x : (—o0, T] — X is a mild solution of systems (5.1)—(5.3), if
Xty Xpiex) € B, x|, € DPC(, L*(Q, X)), and

(1) xo = (1) + Hi(x) € Lz(Q B) fort € (—o0,0];

(ii) x'(0) = ¢(1) + Ha(x) € Lj(Q, X) for t € J;

(iii) The function g (¢, x,) is continuous and f (t, xp(l,x,)) and n(t, xp(l,x,)) are integrable. For given
T € (0, 00), x(¢) satisfies
@, (=00,0],

+00

s [ [ (6)C (1) [0 (0) + H, ()] + n 4 (e)S (O [0 + Hy (x) — 8(0,0)]

k=0
+Z qu(ej)fé_ C(t—s)g(s,xs)ds+ff Ct—-1s5)g(s,xg)ds

j l

c =] +3 Hq](s])fg' S (t = 5) (Bu(s) + f (5 X)) ds

i=1 j=i

+f S (t—9) (Bu (s) + f(s xp(sxj))) ds
+ Z ]_[qj (ej)f S (r— s)n(s xp(m))dW(s)

i=1 j=i

+ ffks (t=s)n(s. xp(s’xs))dW(s)]é[fkka)(t), te[0,T],

and then, the 7,-adapted stochastic process x : (—oo,T] — X is called a mild solution to systems
(5.1)-(5.3).

Theorem 5.1. If (H,)—(Hg) are established, referring to the proof process of Theorems 3.1 and 4.1,
then evolution systems (5.1)—(5.3) are approximately controllable.

6. Examples

Example 1. In order to verify the abstract conclusions, we give the following hyperbolic wave
equations with impulse at random moments:

at 6z(t y) f f c1(s—t,1,y)z(s,7) drds| = z(t y) + Bu(t,y)
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+f c2(s = Dz(s — p1(Op2(1z()], y)d's (6.1)
! d
+ b(f,f c3(s — Dz(s — p1(Dp2(|z()] ,y))ds) fl(tt)’ t# &k,
Z(‘fk’ }’) = P(k)ng(‘fl:’ y)’ Z,(é‘:k’ y) = p(k)gkzl(é:]:7 y)7 r= gk’ (62)
72(t,0) = z(t,m) =0, t € [0, 1], (6.3)
2t,y) =¢(t,y), —r<t<0,0<y<m re(0,o), (6.4)
0
a_tz (O,)’) = l//(y)’ (65)

where p; : [0,00) — [0,00) and p; : [0,00) — [0, c0) are continuous functions. ¢y, ¢;, and c3 are
suitable functions. S(f) denotes a standard cylindrical Wiener process in Hilbert space K = L*([0, 71])
defined on a stochastic space (Q, ¥, P). Let & be a random variable defined on Dy = (0, d;), where 0 <
dy < +oo, fork =1,2,--- . Suppose ¢; and g; are independent of each other asi # jfori,j=1,2,---.
So=to=0and & =& + & fork =1,2,---. pis afunction regarding k.

Let Z = K = L*([0, 7]) and define operator A : D(A) C Z — Z as Ax = x”’, where

D(A) = {z € Z : z,7 are absolutely continuous, 7z’ € Z, z(0) = z(xr) = 0}.

2 inz

Operator A has a discrete spectrum, and its eigenvalue is —n* and e,, = \/;e ,neZ {C() :teR}is
a family of strongly continuous cosine operators, and A is its infinitesimal generator. Then

[Se]

C(t)z = Z cos(nt)(z, e,)e,, 7 € Z.

n=1

The correlative sine family S (7) is given by

o

S(0)z = Z % sin(nt)(z, e,)e,, z € Z.

n=1

It is easy to infer ||S (|* < 1 and ||IC@)|* < 1. Hence, C(f) and S () are uniformly bounded for r € R.

B is a phase space with norm ||u|lg = supl|u (6)||, and define B as a set of bounded and uniformly
0<0

continuous functions from (—co, 0] to Z. Define the functions g, f: J X B — L*(Q,Z), n: J X B —
Lo(K.IAQ.2)), p: I X B = (0,00), 7T = [X(2,2), and gu(),

gt 1)) = f f 1 (5,7, ) i (5, 7) drds,
—o0 JO

0
Fl ) = f ex()u(s, y)ds,

(o)

0
n, W) = b(f,f c3(s)u(s, y)ds),

(%)

p(s, 1) = pr(Op2(Ju(s, VD, 2 = z(t = 1), qiler) = p(k)ey.
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In this way, we can rewrite the equations (6.1)—(6.5) in the form of (1.1)—(1.3). In order to get
controllable results, we need to make the following assumptions.
(a) Continuous functions ¢y, ¢3,¢3 : R — R satisfy:

0 0 0
L, = f f ci(s=t,7)drds < oo, L., = f e (s)ds < oo, L., = f c3(8)ds < o0,
—00 0 —00 —00

k
(b) E{m%XIIHp(j) 3j||2} < oo.
i, j=i

(¢c) D? : R (p”) — ¢, is continuous, and

lgdls < D? @ llglls, € R (p7).

(d) For (t,u) € (—00,0] X 8B,

T 0 T 2
fo (f fo ci(s—t,,y)u(s) (y)drds) dy} <h, ()G, (E||,u||§3),

T 0 2
| ( | Cz(S—f),U(S)(Y)) dy}shfc)gf(Euun;),

Ellg (r,pl* = E

Elf (I = E

(o)

Elly (el = E fo (b(1.G @GN dy < hy (G, (Elluly).

where G(u)(y) = f_ ODO c3(s)u(s,y)ds, hy, hy and h, are integral, and G,, G and G, are all positive
continuous nondecreasing functions.
Under the above conditions, for every ¢ € [0, 1], uy, u, € B,

T 0 T 2
f ( f f 01(s—t,T,y)[/ul(S)(y)—uz(S)(y)]deS) dy]
OO n—oo 0 )

S(f fcl (s—t,7) [y (s)—,uz(s)]drds)
o )
S(f focl (s—t,T)deS) I — ol

< Ll = /12”%-

Ellg(t,u) - gt )l = E

For arbitrary bounded set D € B,
P(e(.D) = i supB(D).
o<
Similarly, E||f (t, 1) — f (¢, wo)II* < Lollpy — :“2“28’ and for arbitrary bounded set D € B,

B 0. D) < \Jl;supB (D).

0<0
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Suppose b follows the Lipschitz condition:

Ellb (t,y1) = b (1, I < Llyr =72l

Let G be bounded,

Elln (¢, p11) = 0 (4 o)l = TF(Q)EJ; 16 (1, G (u1) ) = b (1, G (u2) O)llpedy
< TrHQLIGu = pall.

For arbitrary bounded set D € B,

B, D) < \JTr(QLIG] Ségopﬁ D).

Assume L = max{ly, Iy, Tr(Q)l ||G||}, and then conditions (H;) and (Hs) hold.

Define U = {u:u= Z u,e, with Z u2<ocop. B: U — L*(Q,X) and Bu = 2uye; + Zunen
n=2 n=2 n=2
Then assumption (H7) holds. For a more detailed explanation, see [34]. Then, as the related systems

with f = 0 and = O are approximately controllable, based on Theorem 4.1, systems (6.1)—(6.5) are
approximately controllable.

Example 2. We then provide a numerical example to further prove the feasibility of the theoretical
results.

df,  etsini-r)|_ cos (x(t ™)) esin(x(t =) gpir
E[x(t)— 51 o ]—x(t)+Bu— g + - 7 , t# &,
(6.6)
X&) =2"" nx (&), ¥ &) =2"" X' (&), t = &, (6.7)
x(t) = cost, a%x(t) =gint, —r<t<0, re(0,+c), (6.8)

where S(¢f) denotes a standard one-dimensional Wiener process. Let 7, be a random variable following
the exponential distribution. We assume A = 1, T = 30 and J = [0, 30].

We choose the state of terminal time T as x(T) = 5. For every h, € L*(J,X), h, € L*(J, Ly (K, X)),
let

6[§k7§k+l) (30),

+00 k k
@ hy = [ZZz Jrjf S(30—s)h1(s)ds+f S (30 — 5) Iy (5)ds
i=1 i
¢1h2=2[

k=0

i=1 j=i

k 30
3 Y2, f S (30 — 5)hz (s)dB(s) + f S (30 - )y (S)dﬁ“)k[fkfmo@o)'
&i

&k

Let B = 1, and we choose control function u as @,u = ¢1h + P h,.

Figure 1 shows a sample path of the systems (6.6)—(6.8) with Bu = 0, and it can see that the systems
(6.6)—(6.8) are not equal to 5 at # = 30. Figure 2 shows a sample path of the systems (6.6)—(6.8) under
control u. It can be seen that the state value of systems (6.6)—(6.8) is very close to 5 and the error is
very small.
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Figure 1. A sample path of the systems (6.6)—(6.8) with Bu = 0.
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Figure 2. A sample path of the systems (6.6)—(6.8).

7. Conclusions

In this paper, we pay attention to the existence and approximate controllability of mild solutions
to systems (1.1)—(1.3), which can be abstracted from the second-order stochastic wave equation and
extended to more general random impulses cases. To obtain the result of existence, we applied
evolution operator theory, stochastic analysis skills, and the measure of noncompactness. Then, under
some appropriate conditions, the approximate controllability was established. Further, we considered
relevant conclusions under the nonlocal conditions. At the end of this paper, two examples were given
to show the effectiveness of the results. Our work may generalize some existing results on this topic.

Stochastic differential systems with random impulsive effect have applications in many practical
problems, and there are many relative problem worth studying. In recent reference [29], Vinodkumar
et al. discussed the existence, uniqueness, and stability of solutions of fractional differential equations
with random impulses. As we know, the literature related to approximate controllability of fractional
stochastic differential systems with random impulses remains very limited. In later work, we will

AIMS Mathematics Volume 9, Issue 10, 28906-28930.
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continue to consider approximate controllability of fractional impulsive stochastic differential systems
under the interference of various random factors such as random sequence, fractional Brownian motion,
or Rosenblatt process.
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