Research article

Counting sums of exceptional units in $ \mathbb{Z}_n $

  • Received: 27 May 2024 Revised: 28 July 2024 Accepted: 12 August 2024 Published: 21 August 2024
  • MSC : 11B13, 11D45, 15A18

  • Let $ R $ be a commutative ring with the identity $ 1_{R} $, and let $ R^* $ be the multiplicative group of units in $ R $. An element $ a\in R^* $ is called an exceptional unit if there exists a $ b\in R^* $ such that $ a+b = 1_{R} $. We set $ R^{**} $ to be the set of all exceptional units in $ R $. In this paper, we consider the residue-class ring $ \mathbb{Z}_n $. For any positive integers $ n, s $, and $ c\in\mathbb{Z}_n $, let $ {\mathcal N}_{s}(n, c): = \sharp\big\{(x_1, ..., x_s)\in (\mathbb{Z}_n^{**})^s : x_1+...+x_s\equiv c \pmod n\big\} $. In 2016, Sander (J.Number Theory 159 (2016)) got a formula for $ {\mathcal N}_{2}(n, c) $. Later on, Yang and Zhao (Monatsh. Math. 182 (2017)) extended Sander's theorem to finite terms by using exponential sum theory. In this paper, using matrix theory, we present an explicit formula for $ {\mathcal N}_{s}(n, c) $. This extends and improves earlier results.

    Citation: Junyong Zhao. Counting sums of exceptional units in $ \mathbb{Z}_n $[J]. AIMS Mathematics, 2024, 9(9): 24546-24554. doi: 10.3934/math.20241195

    Related Papers:

  • Let $ R $ be a commutative ring with the identity $ 1_{R} $, and let $ R^* $ be the multiplicative group of units in $ R $. An element $ a\in R^* $ is called an exceptional unit if there exists a $ b\in R^* $ such that $ a+b = 1_{R} $. We set $ R^{**} $ to be the set of all exceptional units in $ R $. In this paper, we consider the residue-class ring $ \mathbb{Z}_n $. For any positive integers $ n, s $, and $ c\in\mathbb{Z}_n $, let $ {\mathcal N}_{s}(n, c): = \sharp\big\{(x_1, ..., x_s)\in (\mathbb{Z}_n^{**})^s : x_1+...+x_s\equiv c \pmod n\big\} $. In 2016, Sander (J.Number Theory 159 (2016)) got a formula for $ {\mathcal N}_{2}(n, c) $. Later on, Yang and Zhao (Monatsh. Math. 182 (2017)) extended Sander's theorem to finite terms by using exponential sum theory. In this paper, using matrix theory, we present an explicit formula for $ {\mathcal N}_{s}(n, c) $. This extends and improves earlier results.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
    [2] M. Deaconescu, Adding units mod $n$, Elem. Math., 55 (2000), 123–127. https://doi.org/10.1007/s000170050078 doi: 10.1007/s000170050078
    [3] J. Harrington, L. Jones, On the iteration of a function related to Euler's $\varphi$-function, Integers, 10 (2010), 497–515.
    [4] J. Houriet, Exceptional units and Euclidean number fields, Arch. Math., 88 (2007), 425–433. https://doi.org/10.1007/s00013-006-1019-0 doi: 10.1007/s00013-006-1019-0
    [5] H. W. Lenstra, Euclidean number fields of large degree, Invent. Math., 38, (1976/1977), 237–254. https://doi.org/10.1007/BF01403131 doi: 10.1007/BF01403131
    [6] A. Leutbecher, G. Niklasch, On cliques of exceptional units and Lenstra's construction of Euclidean fields, In: H.P. Schlickewei, E. Wirsing (eds.), Number Theory, Springer, 1989,150–178. https://doi.org/10.1007/BFb0086541
    [7] T. Nagell, Sur un type particulier d'unites algebriques, Ark. Mat., 8 (1969), 163–184. https://doi.org/10.1007/BF02589556 doi: 10.1007/BF02589556
    [8] J. W. Sander, On the addition of units and nonunits mod $m$, J. Number Theory, 129 (2009), 2260–2266. https://doi.org/10.1016/j.jnt.2009.04.010 doi: 10.1016/j.jnt.2009.04.010
    [9] J. W. Sander, Sums of exceptional units in residue class rings, J. Number Theory, 159 (2016), 1–6. https://doi.org/10.1016/j.jnt.2015.07.018 doi: 10.1016/j.jnt.2015.07.018
    [10] J. H. Silverman, Exceptional units and numbers of small Mahler measure, Exp. Math., 4 (1995), 69–83. https://doi.org/10.1080/10586458.1995.10504309 doi: 10.1080/10586458.1995.10504309
    [11] J. H. Silverman, Small Salem numbers, exceptional units, and Lehmer's conjecture, Rocky Mt. J. Math., 26 (1996), 1099–1114.
    [12] N. P. Smart, Solving discriminant form equations via unit equations, J. Symbolic Comput., 21 (1996), 367–374. https://doi.org/10.1006/jsco.1996.0018 doi: 10.1006/jsco.1996.0018
    [13] C. L. Stewart, Exceptional units and cyclic resultants, Acta Arith., 155 (2012), 407–418. https://doi.org/10.4064/aa155-4-5 doi: 10.4064/aa155-4-5
    [14] C. L. Stewart, Exceptional units and cyclic resultants, Contemp. Math., 587 (2013), 191–200.
    [15] N. Tzanakis, B. M. M. deWeger, On the practical solution of the Thue equation, J. Number Theory, 31 (1989), 99–132. https://doi.org/10.1016/0022-314X(89)90014-0 doi: 10.1016/0022-314X(89)90014-0
    [16] N. Tzanakis, B. M. M. deWeger, How to explicitly solve a Thue-Mahler equation, Compos. Math., 84 (1992), 223–288.
    [17] Q. H. Yang, Q. Q. Zhao, On the sumsets of exceptional units in $\mathbb{Z}_n$, Monatsh. Math., 182 (2017), 489–493. https://doi.org/10.1007/s00605-015-0872-y doi: 10.1007/s00605-015-0872-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(374) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog