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Abstract: Let R be a commutative ring with the identity 1, and let R* be the multiplicative group of
units in R. An element a € R* is called an exceptional unit if there exists a b € R* such thata + b = 1.
We set R** to be the set of all exceptional units in R. In this paper, we consider the residue-class ring
Z,. For any positive integers n, s, and ¢ € Z,, let Ns(n,¢) := #{(x1, .., x5) € (Z2)* : x; + ...+ x, = ¢
(mod n)}. In 2016, Sander (J.Number Theory 159 (2016)) got a formula for N;(n, ¢). Later on, Yang
and Zhao (Monatsh. Math. 182 (2017)) extended Sander’s theorem to finite terms by using exponential
sum theory. In this paper, using matrix theory, we present an explicit formula for Ny(n, ¢). This extends
and improves earlier results.
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1. Introduction

Let R be a commutative ring with the identity 1g, and let R* be the multiplicative group consisting
of all the units in R. An element a € R* is said to be an exceptional unit if 1z — a € R*, i.e., if
a— 1g € R*, or, in other words, if there exists a b € R* satisfying a + b = 1. In 1969, exceptional units
were first introduced by Nagell [7] to study certain cubic diophantine equations. From then on, many
types of diophantine equations have been studied by means of exceptional units, for example, Thue
equations [15], Thue-Mahler equations [16] , and discriminant form equations [12].

Exceptional units also became a useful tool in number theory. For example, in 1977, Lenstra [5]
introduced a new method to find Euclidean number fields by using exceptional units. Later on, many
new Euclidean number fields were found with this method (see [4, 6]). Furthermore, exceptional
units also have connections with cyclic resultants [13, 14] and Lehmer’s conjecture related to Mahler’s
measure [10, 11].

Let Z, Z*, and P be the sets of integers, positive integers, and primes, respectively. For n € Z*, let
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Z, = {0,1,...,n — 1} be the ring of residue classes modulo n. By definition, one has Z; = {a € Z, :
ged(a,n) = 1}. In this note, we set Z,* to be the set of all exceptional units in Z,, i.e., Z," := {a €
Zy, : ged(a,n) = ged(a — 1,n) = 1}. Given p € P, we denote by v,(n) the p-adic valuation of n, i.e.,
v,(n) is the unique nonnegative integer r satisfying p’ln and p™*! ¥ n. Moreover, we let &, stand for the
primitive n-th root of unity, i.e., &, := e*/".

In 2010, Harrington and Jones [3] obtained the following identity:

o 2
HZ: = n ]—[(1 p).

pln,peP

This result can also be deduced immediately from the theorems of Deaconescu [2] or Sander [8]. By
the definition of an exceptional unit, we can see that

42, = f{wv) € (Z)) tu+v=1 (mod n).

For ¢ € Z,, in 2009, it was proved by Sander [8] that

#luv) e @) iu+v=c (modm)=n ]—[ (1—1) ]—[ (1—%).

peP peP
pln,ple pln,pte

In this paper, we shall describe the elements in Z,, which could be written as the sum of one or
more expected units. In addition, for these elements, we will derive the number of representations as
such a sum. More specifically, for n, s € Z*, and ¢ € Z,, we set

Ni(n,0) == #{(x1....x) € Z) s x1 + .+ x,=c  (mod n)l.

In 2016, Sander [9] presented an explicit formula for N,(n,c). Now, we state Sander’s theorem as
follows:

Theorem 1.1. (Sander /8]) Given n,k € Z* and c € Z,. The number N>(n, c) satisfies the following
relations:

Mok, 0) =0, N3k, c) = {W fe=1 (mod3),

0 otherwise,

while for all primes p > 5,
Pl (p=2) ifc=1 (mod p),

No(p*,0) ={p*"(p=3) ifc=0 (mod p)orc=2 (mod p),
P (p—4) otherwise.

Let w(n) := ., e 1 be the number of distinct prime divisors of n. In 2017, Yang and Zhao [17]
extended Sander’s theorem to finite terms by means of exponential sums, as below.

Theorem 1.2. (Yang and Zhao [17]) For n, s € Z, and ¢ € Z,, we have

Ns(l’l, C) — (_1)sw(n) l_[ pvp(n)(s—])—s(p Z (j) + (2 _ p)s _ 2s)

,PEP Jj=0
pll’l P j=c¢ (mod p)
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In this paper, by using matrix theory, we give the following two results:

Theorem 1.3. Let p € P, s € Z*, and let &; := ¢*™!). Then

p—1
(p-2°+ X (-1-&"y
Ni(p,0) S
N ) | 1] =20+ R g1
: p !
Ni(p,p—-1) 1
(P-2'+ % Eri-1-¢&"

The second main result of this paper is the following corollary:
Corollary 1.1. Let n, s € Z, and ¢ € Z,. We have

Ni(n,c) = n p(v,,<n)—1)<s—1> Ni(p,c),

pln,peP
where Ny(p, c) is determined by Theorem 1.3.

This paper is organized as follows: Section 2 provides several lemmas that are needed in the proof
of Theorem 1.3 and Corollary 1.1. Then we give the proofs of Theorem 1.3 and Corollary 1.1 in
Section 3.

2. Preliminary lemmas

In this section, we supply several lemmas that will be needed in the proof of Theorem 1.3 and
Corollary 1.1. We begin with the following result, which can be proved by using the Chinese remainder
theorem:

Lemma 2.1. [I] Let k,s € Z*, f(x1,...,xs) € Z[X1, ..., Xs], and let my, ...,my be pairwise relatively
prime positive integers. For any integer jwith 1 < j < k, let N; be the number of zeros of f(xi, ..., x;) =
0 (mod m;), and let N denote the number of zeros of f(xi,...,x;) = 0 (mod ]_[];:1 m;). Then N =

HI;':I Nj.
Lemma 2.2. Let k € Z*, p € P. For any integer c, we have N(p**',c) = p*~'N,(p, ¢).

Proof. Let (b, - ,by) be asolution of x; +---+x, = ¢ (mod p*), with bj (1 < j < s)being exceptional
units. One has ged(bj,p) = 1. Letby +---+ by —c = ap® for some a € Z. For ky,--- ,k, € Zy, the
congruence

(b1 +kip") + -+ (bs + kp*) = ¢ (mod p**)

holds if and only if
a+ki+---+k,=0 (mod p). 2.1

Clearly, the number of solutions to (2.1) is p*~1.
Thus, one get Ny(p**!, ¢) = p* ' Ny(p*, ). o
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In this paper, we view vector v as a column vector and v’ as the transpose of v. For a € Z, we let
< a >, denote the unique integer r such that r = a (mod m) withO <r <m — 1.

Definition 2.1. Letv = (ag, - - ,a,_1)’ be a complex vector. The circulant matrix A, associated with v
is a m X m complex matrix having the form

ap ap - Ay
ap-1 Ao -+ dp-2
A, =
al a2 .o .. ao

In other words, if we let A, = (4; ), then A; ; = a.j_;s,.

Lemma 2.3. Let A, be a circulant matrix associated to the vector v = (ag, - ,au_1)",and let
f(x) = Z;'Q)l a,-gc’ﬂ Then, for each j = 0,1,---,m — 1, f( ) is an eigenvalue of A, and v; =
(1, &, & ... &N is an eigenvector corresponding to f(£L) .

Proof. Let w be any m-th root of unity. Set

1
w
a=| .
wm—l
Consider
ao ay - Ap-1 1 bl
apm—1 do - Ap-2 w by
A = =
a, a - ap )\"! b,
Clearly,
by =ay+ 1w+ W’ + -+ A" + a1 0™ = f(W).

For any k > 2, one has

by =pps1 + Apgso@ + + + A1 O+ o + a1+ + 4y 0™

=(Anir1 0"+ g2+t 0" O

k-1
=f(w)w" .

Therefore, we obtain that
f(w)
fw)w
Aa = . = f(w)a.
flw)w™!
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In particular, take w = f,{,, where j runs from O to m — 1. It then follows that f (f,’,;) is an eigenvalue and

1
fj
é;j('1.1—1)
is an eigenvector corresponding to f(f,{q) foreach j=0,1,--- ,m—1.
This completes the proof of Lemma 2.3. m|

Lemma 2.4. Let k be a nonnegative integer and m be a positive integer. Then
mz_lgkj _ {m if m | k,
= 0, if mf1k.

Proof. First, if m | k, then % = 1 for any integer j. So

-1 -1

& = 1 =m.

3
3

Il
(=]
Il
(=]

J J

Next, we let m 1 k. Then k = gm + r for 0 < r < m. Then one has
&y = EMT = (E0)IE, = & # L
It follows that

m—1 m—1

| R N |
Y-S egi- ol 1ol
Lyt = L T e T T g1

j
The proof of Lemma 2.4 is complete. O

We also need the following result, which can be found in any standard linear algebra textbook.

Lemma 2.5. Let A be a m X m matrix. Let Ay, A>,- -+ , A, be all the eigenvalues of A, and «; be an
eigenvector corresponding to A; for every 1 < j < m. If ay, @, -+ , @, are linearly independent, then
Q_IAQ = diag(/ll’ /12, T, /lm) Wlth Q = (all’ (05 T a,m)'

Lemma 2.6. Let V be a Vandermonde matrix of the form

1 1 1 1
2 -1
1 &, & 2?11 )
2 4 -
1 & & 2(m
_ 2(m—1 ~1)(m—1
1 6;211 m(m ) L. ’(:l” )(m—1)
Then V is invertible, and
1 1 1 1
_ 2(m—1 ~D(m—1
| 1 ‘J;’;Z 1 gfm 2) f;(nm 2)(m )
_ _ - —2)(m—1
oLl g e |
m
2 -1
1 §m m e Ir?rll
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Proof. The proof follows from a direct calculation. O
3. Proof of Theorem 1.3 and Corollary 1.1

Proof of Theorem 1.3. Let (xy, ..., x;) € (Z;")°. It then follows that x; # 0 and x; # 1. Since
Ni(n,¢) = #{(x1..ox) € (Z) :x + o+ x,= ¢ (mod ),

it is easy to see that for any integer i with 0 < k < p — 1, one has

p-1
Nip. k)= > Neap, ).
j#k,i;gbp
That is,
N(p,0) 0 1 L 0\( Nui(p,0)
Ni(p, 1) 00 L 1f Neap, 1)
Ni(p.p-1) L1 - 0 0J\Nei(p,p—1)
Ni1(p,0)
= AV Ns—l‘(P,l)
Nia(p,p—1)
It is clear that A, is a circulant matrix associated with the vector v = (0, 1,---,1,0)7. For simplicity,

we set £ := &, in the following. Then & := &, & = &,---, &, = &' are all the primitive p-th

roots of unity. Let f(x) = x + x* +--- + x”~>. By Lemma 2.3, for each j = 0,1,---, p = 1, f(¢/) is an

eigenvalue of A, and v; = (1,&[,&), -+, &))" is an eigenvector corresponding to the eigenvalue f(&/).
Let

1 1 | |
L& g g
_ _[1 ¢ g ...oog!
B_(V(),vl’"',‘}p—l)_ 2 2 2 .
1 é‘:p—l ;_] fﬁ:i
Since det(B) = [ (§;—&) # 0, one has vy, vy, -+ ,v,_; are linearly independent. By Lemmas 2.5
O<i<j<p-1
and 2.6, we have
I 1 | |
Lt gt e
o1 P2 ep-2 b2
B =—|1 61 2 p-1
Pl : :
1 & & - &
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and

A, = B diag(f(€°), f(¢"),---, f(&")) B,
Notice that N(p,0) = Ni(p,1) =0, Ni(p,j) = 1for2< j<p-1l,andfor1 < j< p-—1,

fE)=-1-¢7
by Lemma 2.4. Therefore, one has
Ni(p,0) Ni-1(p,0)
Ns(p, 1) N-i(p, D)
P = Bdiag(£@), €, e ) B Y
/Vs(P’P - 1) Nv—l(p’p - 1)
Ni(p,0)
,1
— Bdiag(fs_l(fo),fs_](fl), .. ,fs_](é:p_l)) B_] Nl(p )
Ni(p,p—1)
0
0
= Bdiag((p - 2)", (-1 =& ) (1= ) B
1
0
. s—1 —1ys—1 -1 \s—-1 -1 0
= Bdiag((p-2)" (-1 - (-1=§ D7) BT
1
(P=-2"" (=) (=g 0
_ (p=-27"  &(=1=&N 0 EL(=1=£1)! 5 0
(p=-2"" &=y e A== 1
(P=2"" (=& e FL=E)T Y p-2
1 (p=20"  &E1=Y" o Ea1=61) | -1 -
P : : : :
(p _ 2)s—1 ff_l(—l _ é:l_l)s_l - é‘;‘;’:ll(_l _ é:;ll)s—] -1-= é':l
(P=2"" (=g e L= Y p2
1 (p=-2"  &EL=D7" o ELT=E)TH | -1 -4
P : : : :
(p=-27" =) gL =g - =g
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-1
(=2 + T 1-&")

-1
1| -2+ g1

r-1
(p=2+ L &1-8"
j:
This completes the proof of Theorem 1.3.
Proof of Corollary 1.1. Let n = [] p"»'™ be the canonical decomposition of n. By Lemmas 2.1 and 2.2,

pln
we get

Ny = | [ Np ™. = [ | oD N (p. o).

pln pln

This finishes the proof of Corollary 1.1.
4. Conclusions

In the current study, by means of matrix theory, we present an explicit expression for ﬂ{(xl, ey Xg) €
(Z7) x5+ ..+ xf =c (mod n)} with k = 1. Naturally, one will ask for the formula for ﬁ{(xl, ey Xg) €

(Z;)) - x’{ +...+xf =¢ (mod n)} with k > 1. Moreover, exceptional units are interesting and deserve
further research.
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