Research article

Chaos detection in predator-prey dynamics with delayed interactions and Ivlev-type functional response

  • Received: 06 June 2024 Revised: 21 July 2024 Accepted: 01 August 2024 Published: 21 August 2024
  • MSC : 34C15, 34C23, 37G15, 37N25

  • Regarding delay-induced predator-prey systems, extensive research has focused on the phenomenon of delayed destabilization. However, the question of whether delays contribute to stabilizing or destabilizing the system remains a subtle one. In this paper, the predator-prey interaction with discrete delay involving Ivlev-type functional response is studied by theoretical analysis and numerical simulations. The positivity and boundedness of the solution for the delayed model have been discussed. When time delay is accounted as a bifurcation parameter, stability analysis for the coexistence equilibrium is given in theoretical aspect. Supercritical Hopf bifurcation is detected by numerical simulation. Interestingly, by choosing suitable groups of parameter values, the chaotic solutions appear via a cascade of period-doubling bifurcations, which is also detected. The theoretical analysis and numerical conclusions demonstrate that the delay mechanism plays a crucial role in the exploration of chaotic solutions.

    Citation: Qinghui Liu, Xin Zhang. Chaos detection in predator-prey dynamics with delayed interactions and Ivlev-type functional response[J]. AIMS Mathematics, 2024, 9(9): 24555-24575. doi: 10.3934/math.20241196

    Related Papers:

  • Regarding delay-induced predator-prey systems, extensive research has focused on the phenomenon of delayed destabilization. However, the question of whether delays contribute to stabilizing or destabilizing the system remains a subtle one. In this paper, the predator-prey interaction with discrete delay involving Ivlev-type functional response is studied by theoretical analysis and numerical simulations. The positivity and boundedness of the solution for the delayed model have been discussed. When time delay is accounted as a bifurcation parameter, stability analysis for the coexistence equilibrium is given in theoretical aspect. Supercritical Hopf bifurcation is detected by numerical simulation. Interestingly, by choosing suitable groups of parameter values, the chaotic solutions appear via a cascade of period-doubling bifurcations, which is also detected. The theoretical analysis and numerical conclusions demonstrate that the delay mechanism plays a crucial role in the exploration of chaotic solutions.



    加载中


    [1] H. P. Zhu, S. A. Campbell, G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636–682. https://doi.org/10.1137/S0036139901397285 doi: 10.1137/S0036139901397285
    [2] J. F. Wang, J. P. Shi, J. J Wei, Predator-prey system with strong allee effect in prey, J. Math. Biol., 62 (2011), 291–331. https://doi.org/10.1007/s00285-010-0332-1 doi: 10.1007/s00285-010-0332-1
    [3] W. S. Yang, Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response, Nonlinear Anal. Real World Appl., 14 (2013), 1323–1330. https://doi.org/10.1016/j.nonrwa.2012.09.020 doi: 10.1016/j.nonrwa.2012.09.020
    [4] S. M. Fu, H. S. Zhang, Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105807. https://doi.org/10.1016/j.cnsns.2021.105807 doi: 10.1016/j.cnsns.2021.105807
    [5] S. A. Kashchenko, A. O. Tolbey, Dynamics of a system of two equations with a large delay, Dokl. Math., 108 (2023), 369–373. https://doi.org/10.1134/S1064562423701259 doi: 10.1134/S1064562423701259
    [6] A. Teslya, G. S. K. Wolkowicz, Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation, Differ. Equ. Dyn. Syst., 31 (2023), 613–649. https://doi.org/10.1007/s12591-020-00546-4 doi: 10.1007/s12591-020-00546-4
    [7] S. Pandey, U. Ghosh, D. Das, S. Chakraborty, A. Sarkar, Rich dynamics of a delay-induced stage-structure prey-predator model with cooperative behaviour in both species and the impact of prey refuge, Math. Comput. Simulation, 216 (2024), 49–76. https://doi.org/10.1016/j.matcom.2023.09.002 doi: 10.1016/j.matcom.2023.09.002
    [8] D. P. Hu, Y. Y. Li, M. Liu, Y. Z. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response, Nonlinear Dyn., 99 (2020), 3323–3350. https://doi.org/10.1007/s11071-020-05467-z doi: 10.1007/s11071-020-05467-z
    [9] Y. Liu, Z. L. Shen, J. J. Wei, Pattern dynamics of a predator-prey system with Ivlev-type functional response, Discrete Cont. Dyn.-B, 29 (2024), 3802–3823. https://doi.org/10.3934/dcdsb.2024024 doi: 10.3934/dcdsb.2024024
    [10] M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab, B. Math. Biol., 69 (2007), 931–956. https://doi.org/10.1007/s11538-006-9062-3 doi: 10.1007/s11538-006-9062-3
    [11] S. Li, C. D. Huang, X. Y. Song, Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator-prey model via crossing curves method, Chaos Solitons Fract., 175 (2023), 114012. https://doi.org/10.1016/j.chaos.2023.114012 doi: 10.1016/j.chaos.2023.114012
    [12] W. Wang, J. H. Sun, On the predator-prey system with Holling-(n+1) functional response, Acta Math. Sin. Engl. Ser., 23 (2007), 1–6. https://doi.org/10.1007/s10114-005-0603-8 doi: 10.1007/s10114-005-0603-8
    [13] Z. Z. Zhang, W. S. Zhang, P. Anbalagan, M. M. Arjunan, Global dissipativity and adaptive synchronization for fractional-order time-delayed genetic regulatory networks, Asian J. Control, 24 (2022), 3289–3298. https://doi.org/10.1002/asjc.2726 doi: 10.1002/asjc.2726
    [14] X. P. Yan, C. H. Zhang, Bifurcation analysis in a diffusive Logistic population model with two delayed density-dependent feedback terms, Nonlinear Anal. Real World Appl., 63 (2022), 103394. https://doi.org/10.1016/j.nonrwa.2021.103394 doi: 10.1016/j.nonrwa.2021.103394
    [15] T. W. Zhang, H. Z. Qu, J. W. Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, Fuzzy Set. Syst., 471 (2023), 108676. https://doi.org/10.1016/j.fss.2023.108676 doi: 10.1016/j.fss.2023.108676
    [16] T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic caputo-fabrizio bam fuzzy neural networks via exponential Euler technique, Knowl.-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [17] J. Arino, L. Wang, G. S. K. Wolkowicz, An alternative formulation for a delayed logistic equation, J. Theor. Biol., 241 (2006), 109–119. https://doi.org/10.1016/j.jtbi.2005.11.007 doi: 10.1016/j.jtbi.2005.11.007
    [18] X. Zhang, Hopf bifurcation in a prey-predator model with constant delay, Int. J. Nonlin. Mech., 117 (2019), 103235. https://doi.org/10.1016/j.ijnonlinmec.2019.103235 doi: 10.1016/j.ijnonlinmec.2019.103235
    [19] X. Zhang, R. X. Shi, R. Z. Yang, Z. Z. Wei, Dynamical behaviors of a delayed prey-predator model with Beddington-Deangelis functional response: Stability and periodicity, Int. J. Bifurcat. Chaos, 30 (2020), 2050244. https://doi.org/10.1142/S0218127420502442 doi: 10.1142/S0218127420502442
    [20] X. H. Wang, H. H. Liu, C. L. Xu, Hopf bifurcations in a predator-prey system of population allelopathy with a discrete delay and a distributed delay, Nonlinear Dyn., 69 (2012), 2155–2167. https://doi.org/10.1007/s11071-012-0416-0 doi: 10.1007/s11071-012-0416-0
    [21] A. Singh, P. Deolia, Dynamical analysis and chaos control in discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 195313. https://doi.org/10.1016/j.cnsns.2020.105313 doi: 10.1016/j.cnsns.2020.105313
    [22] Z. X. Li, A delayed ratio-dependent predator-prey system with stage-structured and impulsive effect, J. Syst. Sci. Complex., 24 (2011), 1118–1129. https://doi.org/10.1007/s11424-011-8198-x doi: 10.1007/s11424-011-8198-x
    [23] B. Y. Xie, F. Xu, Stability analysis for a time-delayed nonlinear predator-prey model, Adv. Differ., 122 (2018), 2018. https://doi.org/10.1186/s13662-018-1564-4 doi: 10.1186/s13662-018-1564-4
    [24] M. R. Xu, S. Liu, Y. Lou, Persistence and extinction in the anti-symmetric Lotka-Volterra systems, J. Differ., 387 (2024), 299–323. https://doi.org/10.1016/j.jde.2023.12.032 doi: 10.1016/j.jde.2023.12.032
    [25] G. Zhu, J. J. Wei, Global stability and bifurcation analysis of a delayed predator-prey system with prey immigration, Electron J. Qual. Theo., 2016 (2016), 1–20. https://doi.org/10.14232/ejqtde.2016.1.13 doi: 10.14232/ejqtde.2016.1.13
    [26] J. K. Hale, Theory of functional differential equations, 2 Eds., New York: Springer Press, 1977.
    [27] F. D. Chen, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 33–49. https://doi.org/10.1016/j.cam.2004.10.001 doi: 10.1016/j.cam.2004.10.001
    [28] K. Fang, Z. L. Zhu, F. D. Chen, Z. Li, Qualitative and bifurcation analysis in a Leslie-Gower model with allee effect, Qual. Theory Dyn. Syst., 21 (2022), 33–49. https://doi.org/10.1007/s12346-022-00591-0 doi: 10.1007/s12346-022-00591-0
    [29] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
    [30] L. F. Shampine, S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001), 441–458. https://doi.org/10.1016/S0168-9274(00)00055-6 doi: 10.1016/S0168-9274(00)00055-6
    [31] K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), 1–21. https://doi.org/10.1145/513001.513002 doi: 10.1145/513001.513002
    [32] H. Y. Shu, L. Wang, J. H. Wu, Bounded global Hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30 (2017), 943–964. https://doi.org/10.1088/1361-6544/aa5497 doi: 10.1088/1361-6544/aa5497
    [33] J. H. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Am. Math. Soc., 350 (1998), 4799–4838. https://doi.org/10.1090/S0002-9947-98-02083-2 doi: 10.1090/S0002-9947-98-02083-2
    [34] Y. L. Song, J. J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1–21. https://doi.org/10.1016/j.jmaa.2004.06.056 doi: 10.1016/j.jmaa.2004.06.056
    [35] H. K. Qi, B. Liu, S. Li, Stability, bifurcation, and chaos of a stage-structured predator-prey model under fear-induced and delay, Appl. Math. Comput., 476 (2024), 128780. https://doi.org/10.1016/j.amc.2024.128780 doi: 10.1016/j.amc.2024.128780
    [36] L. Glass, M. Mackey, Mackey-Glass equation, Scholarpedia, 5 (2009), 6908. https://doi.org/10.4249/scholarpedia.6908 doi: 10.4249/scholarpedia.6908
    [37] W. L. Duan, L. Lin, Noise and delay enhanced stability in tumor-immune responses to chemotherapy system, Chaos Solitons Fract., 148 (2021), 111019. https://doi.org/10.1016/j.chaos.2021.111019 doi: 10.1016/j.chaos.2021.111019
    [38] W. L. Duan, C. H. Zeng, Statistics for anti-synchronization of intracellular calcium dynamics, Appl. Math. Comput., 293 (2017), 611–616. https://doi.org/10.1016/j.amc.2016.07.041 doi: 10.1016/j.amc.2016.07.041
    [39] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
    [40] Q. Gao, J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn., 58 (2009), 209–216. https://doi.org/10.1007/s11071-009-9472-5 doi: 10.1007/s11071-009-9472-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(363) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog