
Citation: Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu. New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity[J]. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447
[1] | Chun Huang, Zhao Li . New soliton solutions of the conformal time derivative generalized $ q $-deformed sinh-Gordon equation. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206 |
[2] | Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi . Lump-type kink wave phenomena of the space-time fractional phi-four equation. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637 |
[3] | Canlin Gan, Weiwei Wang . Existence result for the critical Klein-Gordon-Maxwell system involving steep potential well. AIMS Mathematics, 2023, 8(11): 26665-26681. doi: 10.3934/math.20231364 |
[4] | Sayed Saifullah, Amir Ali, Zareen A. Khan . Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293 |
[5] | Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV . An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243 |
[6] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[7] | Zeliha Korpinar, Mustafa Inc, Ali S. Alshomrani, Dumitru Baleanu . The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers. AIMS Mathematics, 2020, 5(3): 2326-2345. doi: 10.3934/math.2020154 |
[8] | Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426 |
[9] | Yaojun Ye, Lanlan Li . Global existence and blow-up of solutions for logarithmic Klein-Gordon equation. AIMS Mathematics, 2021, 6(7): 6898-6914. doi: 10.3934/math.2021404 |
[10] | Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Nabil Mlaiki, Thabet Abdeljawad . The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method. AIMS Mathematics, 2022, 7(6): 10807-10827. doi: 10.3934/math.2022604 |
Nonlinear conformable evolution equations (NLCEEs) became significantly useful tools in the modeling of many problems in sciences and technology. Exact wave solutions of these models are very important and active research area. NLCEEs are getting the attention of researchers and becoming phenomenal subject in the contemporary science. Many systems in mathematical physics and fluid dynamics are modeled via fractional differential equations. Exact wave solutions of these models are quite active and important research area in science. For the numerical and exact solutions of NLCEEs, there are some efficient techniques in the literature such as method of (G′/G)−expansion, extended sinh-Gordon equation expansion, Kudryashov, exp-function, exponential rational function, modified Khater, functional variable, improved Bernoulli sub-equation function, sub-equation, tanh, Jacobi elliptic function expansion, auxiliary equation, extended direct algebraic, etc., see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]. The functional variable (FV) method was introduced in [28] and was further developed in the studies [29,30,31,32,33]. FV method treats nonlinear PDEs with linear techniques and constructs interesting type of soliton solutions (kink, black, white, pattern, etc). The conformable fractional derivatives don’t have a physical meaning as the Caputo or Riemann-Liouville derivatives. This situation is a general open problem for fractional calculus. Despite this many physical applications of conformable fractional derivative appear in the literature. Dazhi Zhao and Maokang Luo generalized the conformable fractional derivative and give the physical interpretation of generalized conformable derivative. In addition, with the help of this fractional derivative and some important formulas, one can convert conformable fractional partial differential equations into integer-order differential equations by travelling wave transformation [39].
The aim of the present paper is present new exact solutions to conformable Klein-Gordon (KG) equation with quintic nonlinearity by employing FV method. Nonlinear conformable Klein-Gordon equation has the form (for α=1, see [34])
D2αtu−k2uxx+γu−λun+σu2n−1=0, | (1.1) |
in which u represents wave profile, and k,γ,λ,σ≠0 are real valued constants. KG equation arises in theoretical physics, particularly in the area of relativistic quantum mechanics and it is used in modeling of dislocations in crystals.
For n=3, Eq (1.1) is known as conformable Klein-Gordon equation with quintic nonlinearity [24]
∂2αu∂t2α−k2∂2u∂x2+γu−λu3+σu5=0,σ≠0. | (1.2) |
In particular, if σ=0, then Eq (1.2) reduces to some other PDEs including the ones in [35,36].
(i) Conformable Klein-Gordon equation
∂2αu∂t2α−∂2u∂x2+κu+βu3=0. | (1.3) |
(ii) Conformable Landau-Ginzburg-Higgs equation
∂2αu∂t2α−p∂2u∂x2−m2u+g2u3=0. | (1.4) |
(iii) Conformable Φ-four equation
∂2αu∂t2α−∂2u∂x2+u−u3=0. | (1.5) |
(iv) Conformable Duffing equation
∂2αu∂t2α+bu+cu3=0. | (1.6) |
(v) Conformable Sine-Gordon equation
∂2αu∂t2α−∂2u∂x2+u−16u3=0. | (1.7) |
Next, we overview method of functional variable.
Consider the NLCEE:
F(u,Dαtu,ux,D2αtu,uxx,…)=0,t≥0,0<α≤1, | (2.1) |
in which F is a polynomial function in terms of unknown function u, and Dαtu is defined as [37]
Dαtu(x,t)=limε→0u(x,t+εt1−α)−u(x,t)ε, | (2.2) |
where 0<t,α∈(0,1].
Now, let us define the wave variable [38]
u(x,t)=U(ξ),ξ=x−ωtαα, | (2.3) |
in which ω is a parameter which will be determined later. Hence, we can write that
Dαtu=−ωU′(ξ),ux=U′(ξ),D2αtu=ω2U″(ξ),…. |
By writing Eq (2.3) in Eq (2.1), we get ordinary differential equations:
G(U(ξ),U′(ξ),U″(ξ),U‴(ξ),…)=0. | (2.4) |
Now, define a transformation:
Uξ=F(U), | (2.5) |
from which, we obtain
Uξξ=12(F2)′, |
Uξξξ=12(F2)″√F2, | (2.6) |
Uξξξξ=12[(F2)‴F2+(F2)″(F2)′], |
⋮ |
in which "′'' stands for ddU.
Using Eq (2.6) in Eq (2.3), ordinary differential Eq (2.3) can be reduced to:
G(U,F,F′,F″,F‴,…)=0. | (2.7) |
Now, let us consider the equation
(U(ξ)ξ)2=aU2(ξ)+bU2+n(ξ)+cU2+2n(ξ),0<n, | (2.8) |
in which a,b,c are parameters.
Next, we present a set of exact wave solutions of (2.8), see e.g., [39]:
Case 1. If a>0, then (2.8) admits hyperbolic function solution:
U1(ξ)=[−absech2(n√a2ξ)b2−ac(1−tanh(n√a2ξ))2]1n. | (2.9) |
Case 2. If a,c>0, then (2.8) admits the following hyperbolic function solution
U2(ξ)=[acsch2(n√a2ξ)b+2√accoth(n√a2ξ)]1n, | (2.10) |
U3(ξ)=[4a(cosh(n√aξ)+sinh(n√aξ))4ac−(b+cosh(n√aξ)+sinh(n√aξ))2]1n, | (2.11) |
U4(ξ)=[8a2sech(n√aξ)b2+4a(a−c)−4absech(n√aξ)+(b2−4a(a+c))tanh(n√aξ)]1n, | (2.12) |
U5(ξ)=[acsch(n√a2ξ)bsinh(n√a2ξ)+2√accosh(n√a2ξ)]1n, | (2.13) |
U6(ξ)=[asech(n√a2ξ)2√acsinh(n√a2ξ)−bcosh(n√a2ξ)]1n. | (2.14) |
Case 3. If a>0 and b2−4ac>0, then (2.8) admits the following hyperbolic function solution
U7(ξ)=[2asech(n√aξ)−bsech(n√aξ)±√b2−4ac]1n. | (2.15) |
Case 4. If a>0 and b2−4ac<0, then (2.8) admits the following hyperbolic function solution
U8(ξ)=[2acsch(n√aξ)±√4ac−b2−bcsch(n√aξ)]1n. | (2.16) |
Case 5. If a>0 and b2−4ac=0, then (2.8) admits the following hyperbolic function solution
U9(ξ)=[−ac(1±tanh(n2√aξ))]1n, | (2.17) |
U10(ξ)=[−ac(1±coth(n2√aξ))]1n. | (2.18) |
Case 6. If a<0 and c>0, then (2.8) admits the following triangular function solution
U11(ξ)=[2a−b±√b2−4acsin(n√−aξ)]1n, | (2.19) |
U12(ξ)=[2a−b±√b2−4accos(n√−aξ)]1n, | (2.20) |
U13(ξ)=[asec2(n√−a2ξ)−b+2√−actan(n√−a2ξ)]1n, | (2.21) |
U14(ξ)=[acsc2(n√−a2ξ)−b+2√−accot(n√−a2ξ)]1n, | (2.22) |
U15(ξ)=[−a(1+(tan(n√−aξ)±sec(n√−aξ))2)b−2√−actan(n√−aξ)±sec(n√−aξ)]1n, | (2.23) |
U16(ξ)=[−acsc(n√−a2ξ)bsin(n√−a2ξ)+2√−accos(n√−a2ξ)]1n, | (2.24) |
U17(ξ)=[asec(n√−a2ξ)2√−acsin(n√−a2ξ)−bcos(n√−a2ξ)]1n. | (2.25) |
Case 7. If a>0and b=0, then (2.8) admits the following hyperbolic function solution
U18(ξ)=[±√accsch(n√aξ)]1n,(c>0), | (2.26) |
U19(ξ)=[±√−acsech(n√aξ)]1n,(c<0). | (2.27) |
Case 8. If a<0and b=0, then (2.8) admits the following triangular function solution
U20(ξ)=[±√−accsc(n√aξ)]1n,(c>0), | (2.28) |
U21(ξ)=[±√−acsec(n√−aξ)]1n,(c<0). | (2.29) |
Case 9. If a>0 and c=0, then (2.8) admits the following hyperbolic function solution
U22(ξ)=[−abcsch2(n√a2ξ)]1n, | (2.30) |
U23(ξ)=[absech2(n√a2ξ)]1n. | (2.31) |
Case 10. If a<0 and c=0, then (2.8) admits the following triangular function solution
U24(ξ)=[abcsc2(n√−a2ξ)]1n, | (2.32) |
U25(ξ)=[absec2(n√−a2ξ)]1n. | (2.33) |
Using transformation of traveling wave; u(x,t)=U(ξ),ξ=x−ωtαα, Eq (1.1) is written as:
(w2−k2)Uξξ+γU−λU3+σU5=0, | (3.1) |
or
Uξξ=1w2−k2[−γU+λU3−σU5]. | (3.2) |
Writing Eq (2.5) in Eq (3.2), we get:
12(F2)′=1w2−k2[−γU+λU3−σU5], | (3.3) |
where the prime denotes differentiation for ξ. From the integrating of Eq (3.3), we obtain:
F(U)2=1w2−k2[−γU2+2λ4U4−σ3U6]. | (3.4) |
Using the traveling wave transformation (2.5), we have
(Uξ)2=aU2+bU4+cU6, | (3.5) |
where
a=−γw2−k2,b=λ2(w2−k2),c=−σ3(w2−k2). |
By using the relations (16–40), we obtain exact solutions of conformable KG equation with quintic nonlinearity (1.2).
Case 1. If γw2−k2<0, then (1.2) admits the following hyperbolic function solution
u1(x,t)=[γλ2sech2(√−γw2−k2(x−ωtαα))λ22−γσ3(1−tanh(√−γw2−k2(x−ωtαα)))2]12. | (3.6) |
Case 2. If γw2−k2<0,σ3(w2−k2)<0, then (1.2) admits the following hyperbolic function solution
u2(x,t)=[−γcsch2(√−γw2−k2(x−ωtαα))λ2+2√γσ3coth(√−γw2−k2(x−ωtαα))]12, | (3.7) |
U3(x,t)=[−4γ(cosh(2√−γw2−k2(x−ωtαα))+sinh(2√−γw2−k2(x−ωtαα)))4γσ3(w2−k2)−(λ2+cosh(2√−γw2−k2(x−ωtαα))+sinh(2√−γw2−k2(x−ωtαα)))2]12, | (3.8) |
u4(x,t)=[8γ2sech(2√−γw2−k2(x−ωtαα))λ24+4γ(γ−σ3)+2γλsech(2√−γw2−k2(x−ωtαα))+(λ24−4γ(γ−σ3))tanh(2√−γw2−k2(x−ωtαα))]12, | (3.9) |
u5(x,t)=[−γcsch(√−γw2−k2(x−ωtαα))λ2sinh(√−γw2−k2(x−ωtαα))+2√γσ3cosh(√−γw2−k2(x−ωtαα))]12, | (3.10) |
u6(x,t)=[−γsech(√−γw2−k2(x−ωtαα))2√γσ3sinh(√−γw2−k2(x−ωtαα))−λ2cosh(√−γw2−k2(x−ωtαα))]12. | (3.11) |
Case 3. If γw2−k2<0 and λ2>163γσ, then (1.2) admits the following hyperbolic function solution
u7(x,t)=[−2γsech(2√−γw2−k2(x−ωtαα))−λ2sech(2√−γw2−k2(x−ωtαα))±√3λ2−16γσ]12. | (3.12) |
Case 4. If γw2−k2<0 and λ2<163γσ, then (1.2) admits the following hyperbolic function solution
u8(x,t)=[−2γcsch(2√−γw2−k2(x−ωtαα))±√16γσ−3λ2−λ2csch(2√−γw2−k2(x−ωtαα))]12. | (3.13) |
Case 5. If γw2−k2<0 and λ=±4√γσ3, then (1.2) admits the following hyperbolic function solution
u9(x,t)=[−3γσ(1±tanh(√−γw2−k2(x−ωtαα)))]12, | (3.14) |
u10(x,t)=[−3γσ(1±coth(√−γw2−k2(x−ωtαα)))]12. | (3.15) |
Case 6. If γw2−k2>0 and σ3(w2−k2)<0, then (1.2) admits the following triangular function solution
u11(x,t)=[−2γ−λ2±√3λ2−16γσsin(2√γw2−k2(x−ωtαα))]12, | (3.16) |
u12(x,t)=[−2γ−λ2±√3λ2−16γσcos(2√γw2−k2(x−ωtαα))]12, | (3.17) |
u13(x,t)=[−γsec2(√γw2−k2(x−ωtαα))−λ2+2√−γσ3tan(√γw2−k2(x−ωtαα))]12, | (3.18) |
u14(x,t)=[−γcsc2(√γw2−k2(x−ωtαα))−λ2+2√−γσ3cot(√γw2−k2(x−ωtαα))]12, | (3.19) |
u15(x,t)=[γ(1+(tan(2√γw2−k2(x−ωtαα))±sec(2√γw2−k2(x−ωtαα)))2)λ2−2√−γσ3tan(2√γw2−k2(x−ωtαα))±sec(2√γw2−k2(x−ωtαα))]12, | (3.20) |
u16(x,t)=[γcsc(√γw2−k2(x−ωtαα))λ2sin(√γw2−k2(x−ωtαα))+2√−γσ3ccos(√γw2−k2(x−ωtαα))]12, | (3.21) |
u17(x,t)=[−γsec(√γw2−k2(x−ωtαα))2√−γσ3sin(√γw2−k2(x−ωtαα))−λ2cos(√γw2−k2(x−ωtαα))]12. | (3.22) |
Case 7. If γw2−k2<0 and λ=0, then (1.2) admits the following hyperbolic function solution
u18(x,t)=[±√3γσcsch(2√−γw2−k2(x−ωtαα))]12,(σ3(w2−k2)<0), | (3.23) |
u19(x,t)=[±√−3γσsech(2√−γw2−k2(x−ωtαα))]12,(σ3(w2−k2)>0). | (3.24) |
Case 8. If γw2−k2>0 and λ=0, then (1.2) admits the following triangular function solution
u20(x,t)=[±√−3γσcsc(2√γw2−k2(x−ωtαα))]12,(σ3(w2−k2)<0), | (3.25) |
u21(x,t)=[±√−3γσsec(2√γw2−k2(x−ωtαα))]12,(σ3(w2−k2)>0). | (3.26) |
Case 9. If γw2−k2<0 and σ=0, then (1.2) admits the following hyperbolic function solution
u22(x,t)=[2γλcsch2(√−γw2−k2(x−ωtαα))]12, | (3.27) |
u23(x,t)=[−2γλsech2(√−γw2−k2(x−ωtαα))]12. | (3.28) |
Case 10. If γw2−k2>0 and σ=0, then ((1.2)) admits the following triangular function solution
u24(x,t)=[−2γλcsc2(√γw2−k2(x−ωtαα))]12, | (3.29) |
u25(x,t)=[−2γλsec2(√γw2−k2(x−ωtαα))]12. | (3.30) |
In this part, some graphical representations of exact wave solutions of conformable KG equation are presented in three different forms. 3D plots of exact solutions |u3|,|u3|,|u3| are displayed in Figures 1(a), 2(a), 3(a), respectively. Figures 1(b), 2(b), and 3(b) demonstrate the shape of contour plot of exact wave solutions |u3|,|u3| and |u3|. 2D line plot of exact wave solutions |u3|,|u3| and |u3| are presented in Figures 1(c), 2(c), and 3(c) with t=0.2,t=0.4,t=0.6,t=0.8,t=1.
Solitary wave solutions (3.6)–(3.15), (3.23), (3.24), (3.26) and (3.27) represent bell-profile and kink-profile solitary wave solutions, and solutions (3.16)–(3.22), (3.25) and (3.28) are triangular periodic wave solutions. These solutions may be useful to explain some physical phenomena in dynamical systems that are described by the system of conformable fractional equations for Klein-Gordon with quantic nonlinearity.
We presented new exact solutions of conformable Klein-Gordon equation with quantic nonlinearity by using method of functional variable. Solutions were expressed in terms of solitary waves such as kink-profile and bell-profile. Moreover, we obtain exact periodic solutions of the KG equation. Computational results show that FV method is a highly efficient technique in the solutions of conformable PDEs. In a future research work, we will investigate the applicability of these results to some fractional-stochastic differential equations.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[1] |
M. M. Khater, D. Kumar, Implementation of three reliable methods for finding the exact solutions of (2+1) dimensional generalized fractional evolution equations, Opt. Quant. Electron., 50 (2018), 1-16. doi: 10.1007/s11082-017-1266-2
![]() |
[2] |
M. M. Khater, A. R. Seadawy, D. Lu, New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G'/G)-expansion method, Pramana, 90 (2018), 1-20. doi: 10.1007/s12043-017-1492-y
![]() |
[3] | M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations, Appl. Math. Comput., 285 (2016), 141-148. |
[4] | M. M. A. Khater, D. Lu, R. A. M. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Advances, 9 (2019), 025003. |
[5] |
H. Qin, R. A. M. Attia, M. Khater, et al. Ample soliton waves for the crystal lattice formation of the conformable time-fractional (N+ 1) Sinh-Gordon equation by the modified Khater method and the Painleve property, J. Intell. Fuzzy Syst., 38 (2020), 2745-2752. doi: 10.3233/JIFS-179560
![]() |
[6] |
F. S. Khodadad, F. Nazari, M. Eslami, et al. Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Opt. Quant. Electron., 49 (2017), 1-12. doi: 10.1007/s11082-016-0848-8
![]() |
[7] |
H. Tariq, G. Akram, New traveling wave exact and approximate solutions for the nonlinear CahnAllen equation: Evolution of a nonconserved quantity, Nonlinear Dynam., 88 (2017), 581-594. doi: 10.1007/s11071-016-3262-7
![]() |
[8] |
H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, et al. New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172 (2018), 545-553. doi: 10.1016/j.ijleo.2018.06.111
![]() |
[9] | M. Inc, Z. Korpinar, F. Tchier, On optical solitons of the fractional (3+ 1)-dimensional NLSE with conformable derivatives, Front. Phys., 8 (2020), 87. |
[10] | Z. Korpinar, F. Tchier, M. Inc, et al. New soliton solutions of the fractional Regularized Long Wave Burger equation by means of conformable derivative, Results Phys., 14 (2019), 1-7. |
[11] | Z. Korpinar, F. Tchier, M. Inc, et al. New solutions of the fractional Boussinesq-like equations by means of conformable derivatives, Results Phys., 13 (2019), 1-8. |
[12] |
A. Korkmaz, O. E. Hepson, K. Hosseini, et al. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci., 32 (2020), 567-574. doi: 10.1016/j.jksus.2018.08.013
![]() |
[13] |
A. Zafar, H. Rezazadeh, K. K. Ali, On finite series solutions of conformable time-fractional CahnAllen equation, Nonlinear Engineering, 9 (2020), 194-200. doi: 10.1515/nleng-2020-0008
![]() |
[14] | K. K. Ali, C. Cattani, J. F. Gómez-Aguilar, et al. Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model, Chaos, Soliton. Fract., 139 (2020), 1-9. |
[15] |
K. K. Ali, M. S. Osman, M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method, Alex. Eng. J., 59 (2020), 1191-1196. doi: 10.1016/j.aej.2020.01.037
![]() |
[16] | M. S. Osman, K. K. Ali, Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations, Optik, 209 (2020), 1-12. |
[17] | K. K. Ali, A. R. Hadhoud, New solitary wave solutions of a highly dispersive physical model, Results Phys., 17 (2020), 1-5. |
[18] |
J. J. Yang, S. F. Tian, W. Q. Peng, et al. The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions, Math. Method. Appl. Sci., 43 (2020), 2458-2472. doi: 10.1002/mma.6055
![]() |
[19] |
T. Y. Xu, S. F. Tian, W. Q. Peng, Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations, Math. Method. Appl. Sci., 43 (2020), 865-880. doi: 10.1002/mma.5964
![]() |
[20] | W. Q. Peng, S. F. Tian, X. B. Wang, et al. Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146 (2019), 1-9. |
[21] | S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 1-8. |
[22] | L. D. Zhang, S. F. Tian, W. Q. Peng, et al. The dynamics of lump, lumpoff and rogue wave solutions of (2+ 1)-dimensional Hirota-Satsuma-Ito equations, E. Asian J. Appl. Math., 10 (2020), 243-255. |
[23] | W. Q. Peng, S. F. Tian, T. T. Zhang, Initial Value Problem for the Pair Transition Coupled Nonlinear Schrödinger Equations via the Riemann-Hilbert Method, Complex Anal. Oper. Th., 14 (2020), 1- 15. |
[24] | X. Wu, S. F. Tian, J. J. Yang, Inverse scattering transform and multi-solition solutions for the sextic nonlinear Schrödinger equation, arXiv:2005.00829, 2020. |
[25] | L. Li, F. Yu, C. Duan, A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential, Appl. Math. Lett., 110 (2020), 1-8. |
[26] |
F. Yu, Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross-Pitaevskii equation with PT-symmetric external potentials, Appl. Math. Lett., 92 (2019), 108-114. doi: 10.1016/j.aml.2019.01.010
![]() |
[27] | F. Yu, R. Fan, Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations, Appl. Math. Lett., 103 (2020), 1-8. |
[28] |
H. Rezazadeh, J. Manafian, F. S. Khodadad, et al. Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan(1/2ϕ(ξ))-expansion method, Opt. Quant. Electron., 50 (2018), 1-15. doi: 10.1007/s11082-017-1266-2
![]() |
[29] | A. Zerarka, S. Ouamane, S., A. Attaf, On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. Comput., 217 (2010), 2897-2904. |
[30] | H. Aminikhaha, A. R. Sheikhanib, H. Rezazadeha, Exact solutions of some nonlinear systems of partial differential equations by using the functional variable method, Mathematica, 56 (2014), 103-116. |
[31] | M. Eslami, M. Mirzazadeh,Functional variable method to study nonlinear evolution equations, Open Engineering, 3 (2013), 451-458. |
[32] |
H. Aminikhah, A. H. R. Sheikhani, H. Rezazadeh, Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method, Bol. Soc. Paran. Mat., 34 (2016), 213-229. doi: 10.5269/bspm.v34i1.26193
![]() |
[33] |
A. Nazarzadeh, M. Eslami, M. Mirzazadeh, Exact solutions of some nonlinear partial differential equations using functional variable method, Pramana, 81 (2013), 225-236. doi: 10.1007/s12043-013-0565-9
![]() |
[34] | H. Aminikhah, B. P. Ziabary, H. Rezazadeh, Exact traveling wave solutions of partial differential equations with power law nonlinearity, Nonlinear Engineering, 4 (2015), 181-188. |
[35] |
A. M. Wazwaz, Compactons, solitons and periodic solutions for some forms of nonlinear Klein- Gordon equations, Chaos, Soliton. Fract., 28 (2006), 1005-1013. doi: 10.1016/j.chaos.2005.08.145
![]() |
[36] |
M. Song, Z. Liu, E. Zerrad, et al. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity, Front. Math. China, 8 (2013), 191-201. doi: 10.1007/s11464-012-0252-z
![]() |
[37] |
A. Biswas, A. H. Kara, A. H. Bokhari, et al. Solitons and conservation laws of Klein-Gordon equation with power law and log law nonlinearities, Nonlinear Dynam., 73 (2013), 2191-2196. doi: 10.1007/s11071-013-0933-5
![]() |
[38] |
R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
![]() |
[39] |
M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475-485. doi: 10.1007/s10092-015-0158-8
![]() |
1. | Behzad Ghanbari, Chun-Ku Kuo, Abundant wave solutions to two novel KP-like equations using an effective integration method, 2021, 96, 0031-8949, 045203, 10.1088/1402-4896/abde5a | |
2. | Jalil Manafian, Onur Alp Ilhan, Sherin Youns Mohyaldeen, Subhiya M. Zeynalli, Gurpreet Singh, New strategic method for fractional mitigating internet bottleneck with quadratic–cubic nonlinearity, 2021, 2008-1359, 10.1007/s40096-020-00373-2 | |
3. | Behzad Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, 2021, 0170-4214, 10.1002/mma.7302 | |
4. | Nehad Ali Shah, Mustafa Inc, An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator, 2021, 2021, 1563-5147, 1, 10.1155/2021/5516392 | |
5. | M. Akher Chowdhury, M. Mamun Miah, H.M. Shahadat Ali, Yu-Ming Chu, M.S. Osman, An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions, 2021, 23, 22113797, 104013, 10.1016/j.rinp.2021.104013 | |
6. | Mostafa M. A. Khater, Behzad Ghanbari, On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01457-1 | |
7. | Kamsing Nonlaopon, Nikita Mann, Sachin Kumar, S. Rezaei, M.A. Abdou, A variety of closed-form solutions, Painlevé analysis, and solitary wave profiles for modified KdV–Zakharov–Kuznetsov equation in (3+1)-dimensions, 2022, 36, 22113797, 105394, 10.1016/j.rinp.2022.105394 | |
8. | Lanre Akinyemi, Mehmet Şenol, Emad Az-Zo’bi, P. Veeresha, Udoh Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, 2022, 36, 0217-9849, 10.1142/S0217984921505308 | |
9. | N’Gbo N’Gbo, Yonghui Xia, Traveling Wave Solution of Bad and Good Modified Boussinesq Equations with Conformable Fractional-Order Derivative, 2022, 21, 1575-5460, 10.1007/s12346-021-00541-2 | |
10. | Sachin Kumar, Amit Kumar, Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes, 2022, 201, 03784754, 254, 10.1016/j.matcom.2022.05.009 | |
11. | M. Tantawy, H. I. Abdel-Gawad, Complex physical phenomena of a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer heterogeneous liquid, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03199-0 | |
12. | Sachin Kumar, Brij Mohan, A novel and efficient method for obtaining Hirota’s bilinear form for the nonlinear evolution equation in (n+1) dimensions, 2022, 5, 26668181, 100274, 10.1016/j.padiff.2022.100274 | |
13. | Yan Cao, Foroud Parvaneh, Sagr Alamri, Ali A. Rajhi, Ali E. Anqi, Some exact wave solutions to a variety of the Schrödinger equation with two nonlinearity laws and conformable derivative, 2021, 31, 22113797, 104929, 10.1016/j.rinp.2021.104929 | |
14. | Sachin Kumar, Brij Mohan, Amit Kumar, Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions, 2022, 97, 0031-8949, 035201, 10.1088/1402-4896/ac4f9d | |
15. | Attia Rani, Aniqa Zulfiqar, Jamshad Ahmad, Qazi Mahmod Ul Hassan, New soliton wave structures of fractional Gilson-Pickering equation using tanh-coth method and their applications, 2021, 29, 22113797, 104724, 10.1016/j.rinp.2021.104724 | |
16. | Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457 | |
17. | Fan Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, 2021, 28, 22113797, 104644, 10.1016/j.rinp.2021.104644 | |
18. | Mir Sajjad Hashemi, Hadi Rezazadeh, Hassan Almusawa, Hijaz Ahmad, A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, 2021, 6, 2473-6988, 13392, 10.3934/math.2021775 | |
19. | Asim Zafar, M. Raheel, M. Asif, Kamyar Hosseini, Mohammad Mirzazadeh, Lanre Akinyemi, Some novel integration techniques to explore the conformable M-fractional Schrödinger-Hirota equation, 2022, 7, 24680133, 337, 10.1016/j.joes.2021.09.007 | |
20. | Arzu Akbulut, S. M. Rayhanul Islam, Hadi Rezazadeh, Filiz Taşcan, Obtaining exact solutions of nonlinear partial differential equations via two different methods, 2022, 36, 0217-9792, 10.1142/S0217979222500412 | |
21. | Nauman Raza, Ziyad A. Alhussain, Extraction of new bright and Kink soliton solutions related to Ginzburg Landau equation incorporating fractal effects, 2022, 54, 0306-8919, 10.1007/s11082-021-03402-z | |
22. | Guoan Xu, Jibin Li, Yi Zhang, Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity, 2022, 21, 1575-5460, 10.1007/s12346-022-00642-6 | |
23. | Mustafa Inc, Talat Korpinar, Zeliha Korpinar, Spherical traveling wave hypothesis for geometric optical phase with speherical magnetic ferromagnetic system, 2023, 55, 0306-8919, 10.1007/s11082-022-04374-4 | |
24. | Lanre Akinyemi, Mehmet Şenol, Udoh Akpan, Hadi Rezazadeh, An efficient computational technique for class of generalized Boussinesq shallow-water wave equations, 2022, 24680133, 10.1016/j.joes.2022.04.023 | |
25. | Dipankar Kumar, Gour Chandra Paul, Aly R. Seadawy, M.T. Darvishi, A variety of novel closed‐form soliton solutions to the family of Boussinesq‐like equations with different types, 2022, 7, 24680133, 543, 10.1016/j.joes.2021.10.007 | |
26. | Nauman Raza, Amna Batool, Mustafa Inc, New hyperbolic and rational form solutions of (2+1)-dimensional generalized Korteweg-de Vries model, 2022, 24680133, 10.1016/j.joes.2022.04.021 | |
27. | Sayed Allamah Iqbal, Md. Golam Hafez, Yu-Ming Chu, Choonkil Park, DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE, 2022, 12, 2156-907X, 770, 10.11948/20210324 | |
28. | Shoukry El-Ganaini, Sachin Kumar, Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new improved modified generalized sub-ODE proposed method, 2023, 208, 03784754, 28, 10.1016/j.matcom.2023.01.013 | |
29. | Asıf Yokuş, Hatice Taskesen, Mohanad Alaloush, Betül Deniz Demirdaǧ, On the peakon solutions of some stochastic nonlinear evolution equations, 2021, 53, 0306-8919, 10.1007/s11082-021-03240-z | |
30. | Emad H. M. Zahran, Maha S. M. Shehata, S. M. Mirhosseini-Alizamini, Md Nur Alam, Lanre Akinyemi, Exact propagation of the isolated waves model described by the three coupled nonlinear Maccari’s system with complex structure, 2021, 35, 0217-9792, 2150193, 10.1142/S0217979221501939 | |
31. | S. Kumbinarasaiah, K. R. Raghunatha, Mohammadreza Rezazadeh, Mustafa Inc, A solution of coupled nonlinear differential equations arising in a rotating micropolar nanofluid flow system by Hermite wavelet technique, 2022, 38, 0177-0667, 3351, 10.1007/s00366-021-01462-z | |
32. | Eric Tala-Tebue, Alper Korkmaz, Hadi Rezazadeh, Nauman Raza, New auxiliary equation approach to derive solutions of fractional resonant Schrödinger equation, 2021, 11, 1664-2368, 10.1007/s13324-021-00519-y | |
33. | Nur Hasan Mahmud Shahen, Md Habibul Bashar, Tasnim Tahseen, Sakhawat Hossain, Zine El Abiddine Fellah, Solitary and Rogue Wave Solutions to the Conformable Time Fractional Modified Kawahara Equation in Mathematical Physics, 2021, 2021, 1687-9139, 1, 10.1155/2021/6668092 | |
34. | Melike Kaplan, Arzu Akbulut, Barbara Martinucci, A Mathematical Analysis of a Model Involving an Integrable Equation for Wave Packet Envelope, 2022, 2022, 2314-4785, 1, 10.1155/2022/3486780 | |
35. | Shahid Ali, Ahmad Javid, EXPLICIT SOLUTIONS FOR THE CONFORMABLE REGULARIZED LONG WAVE BURGER'S EQUATION, 2023, 13, 2156-907X, 344, 10.11948/20220135 | |
36. | Ziyad A. Alhussain, Nauman Raza, A. M. Nagy, New Optical Solitons with Variational Principle and Collective Variable Strategy for Cold Bosons in Zig-Zag Optical Lattices, 2022, 2022, 2314-4785, 1, 10.1155/2022/3229701 | |
37. | Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud, $ M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains, 2021, 6, 2473-6988, 9207, 10.3934/math.2021535 | |
38. | Hira Tariq, Maasoomah Sadaf, Ghazala Akram, Hadi Rezazadeh, Jamel Baili, Yu-Pei Lv, Hijaz Ahmad, Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, 2021, 30, 22113797, 104839, 10.1016/j.rinp.2021.104839 | |
39. | Lanre Akinyemi, Mehmet Şenol, Udoh Akpan, Kayode Oluwasegun, The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations, 2021, 53, 0306-8919, 10.1007/s11082-021-03030-7 | |
40. | J.E. Macías-Díaz, On the nonlinear wave transmission in a nonlinear continuous hyperbolic regime with Caputo-type temporal fractional derivative, 2021, 29, 22113797, 104808, 10.1016/j.rinp.2021.104808 | |
41. | Adivi Sri Venkata Ravi Kanth, Kirubanandam Aruna, Kondooru Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation , 2022, 0749-159X, 10.1002/num.22983 | |
42. | Mustafa Inc, Talat Körpınar, Zeliha Körpınar, Dumitru Baleanu, Rıdvan Cem Demirkol, New approach for propagated light with optical solitons by optical fiber in pseudohyperbolic space ℍ02, 2021, 0170-4214, 10.1002/mma.7738 | |
43. | Yan Cao, Hayder A. Dhahad, Hasanen M. Hussen, Sagr Alamri, Ali A. Rajhi, Ali E. Anqi, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed, Classes of new analytical soliton solutions to some nonlinear evolution equations, 2021, 31, 22113797, 104947, 10.1016/j.rinp.2021.104947 | |
44. | Behzad Ghanbari, Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics, 2021, 29, 22113797, 104689, 10.1016/j.rinp.2021.104689 | |
45. | F. Samsami Khodadad, S. M. Mirhosseini-Alizamini, B. Günay, Lanre Akinyemi, Hadi Rezazadeh, Mustafa Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, 2021, 53, 0306-8919, 10.1007/s11082-021-03338-4 | |
46. | Syed Tahir Raza Rizvi, Kashif Ali, Ahmet Bekir, Badar Nawaz, M. Younis, Investigation on the Single and Multiple Dromions for Nonlinear Telegraph Equation in Electrical Transmission Line, 2022, 21, 1575-5460, 10.1007/s12346-021-00547-w | |
47. | Abdulla - Al - Mamun, Samsun Nahar Ananna, Tianqing An, Md. Asaduzzaman, Md. Munnu Miah, Solitary wave structures of a family of 3D fractional WBBM equation via the tanh–coth approach, 2022, 5, 26668181, 100237, 10.1016/j.padiff.2021.100237 | |
48. | Arzu Akbulut, Mir Sajjad Hashemi, Hadi Rezazadeh, New conservation laws and exact solutions of coupled Burgers' equation, 2021, 1745-5030, 1, 10.1080/17455030.2021.1979691 | |
49. | Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475 | |
50. | Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Hijaz Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03267-2 | |
51. | Sachin Kumar, Monika Niwas, New optical soliton solutions and a variety of dynamical wave profiles to the perturbed Chen–Lee–Liu equation in optical fibers, 2023, 55, 0306-8919, 10.1007/s11082-023-04647-6 | |
52. | Manju Kashyap, S. Pratap Singh, Surbhi Gupta, Purnima Lala Mehta, Novel Solution for Time-fractional Klein-Gordon Equation with Different Applications, 2023, 8, 2455-7749, 537, 10.33889/IJMEMS.2023.8.3.030 | |
53. | Y. Long Qiang, Neil G.R. Broderick, C. Martijn de Sterke, Analytic method for finding stationary solutions to generalized nonlinear Schrödinger equations, 2024, 462, 01672789, 134148, 10.1016/j.physd.2024.134148 | |
54. | Kayode Oluwasegun, Samuel Ajibola, Udoh Akpan, Lanre Akinyemi, Mehmet Şenol, Investigation of oceanic wave solutions to a modified (2+1)-dimensional coupled nonlinear Schrödinger system, 2024, 0217-9849, 10.1142/S0217984925500368 | |
55. | Xiaodong Yang, Yuchen Yang, Zhen Luo, Yuanbo Bi, A Survey of Schematic of Vacuum Quantum Structure: General Equation for EBSF (III), 2023, 07, 2424-9424, 10.1142/S2424942423500093 | |
56. | Renfei Luo, Khalida Faisal, Hadi Rezazadeh, Hijaz Ahmad, Soliton solutions of optical pulse envelope $$E(Z,\tau)$$ with $$\nu$$-time derivative, 2024, 56, 1572-817X, 10.1007/s11082-023-06146-0 | |
57. | K. R. Raghunatha, S. Kumbinarasaiah, Mustafa Inc, Ali Akgül, A Study of Nanofluid Flow with Free Bio-Convection in 3D Nearby Stagnation Point by Hermite Wavelet Technique, 2024, 13, 2169-432X, 231, 10.1166/jon.2024.2146 | |
58. | Zhoujin Cui, Tao Lu, Bo Chen, Ammar Alsinai, Traveling Wave Solutions of the Conformable Fractional Klein–Gordon Equation With Power Law Nonlinearity, 2024, 2024, 2314-4629, 10.1155/2024/8367957 | |
59. | Kennedy C. Onyelowe, Farid Fazel Mojtahedi, Ali Golaghaei Darzi, Denise-Penelope N. Kontoni, Solving large deformation problems in geotechnical and geo-environmental engineering with the smoothed particle hydrodynamics: a state-of-the-art review of constitutive solutions, 2023, 82, 1866-6280, 10.1007/s12665-023-11079-8 | |
60. | K. R. Raghunatha, Y. Vinod, Effects of heat transfer on MHD suction–injection model of viscous fluid flow through differential transformation and Bernoulli wavelet techniques, 2023, 52, 2688-4534, 4914, 10.1002/htj.22911 | |
61. | Alphonse Houwe, Souleymanou Abbagari, Lanre Akinyemi, Youssoufa Saliou, Mibaile Justin, Serge Yamigno Doka, Modulation instability, bifurcation analysis and solitonic waves in nonlinear optical media with odd-order dispersion, 2023, 488, 03759601, 129134, 10.1016/j.physleta.2023.129134 | |
62. | Emmanuel Yomba, Poonam Ramchandra Nair, New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity, 2024, 12, 2227-7390, 3073, 10.3390/math12193073 | |
63. | Emmanuel Yomba, Modulational instability and chirped modulated wave, chirped optical solitons for a generalized (3+1)-dimensional cubic-quintic medium with self-frequency shift and self-steepening nonlinear terms, 2024, 311, 00304026, 171939, 10.1016/j.ijleo.2024.171939 | |
64. | Lanre Akinyemi, Francis Erebholo, Valerio Palamara, Kayode Oluwasegun, A Study of Nonlinear Riccati Equation and Its Applications to Multi-dimensional Nonlinear Evolution Equations, 2024, 23, 1575-5460, 10.1007/s12346-024-01137-2 | |
65. | Abdul S. Awan, Sultan Hussain, Differential–anti-differential equations and their solutions, 2023, 1016-2526, 313, 10.52280/pujm.2023.55(7-8)04 | |
66. | Md. Mamunur Roshid, Mahtab Uddin, Mohamed Abdalla, Md. Ahsan Ullah, Bifurcation analysis, phase portrait, and exploring exact traveling wave propagation of M-fractional (3 + 1) dimensional nonlinear equation in the fluid medium, 2025, 57, 1572-817X, 10.1007/s11082-025-08093-4 |