Research article

New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity

  • Received: 16 June 2020 Accepted: 03 September 2020 Published: 09 September 2020
  • MSC : 35A09, 35E05

  • We present new exact solutions in the form of solitary waves for the conformable Klein-Gordon equation with quintic nonlinearity. We use functional variable method which converts a conformable PDE to a second-order ordinary differential equation through a traveling wave transformation. We obtain periodic wave and solitary wave solutions including particularly kink-profile and bell-profile type solutions. The present method is a direct and concise technique which has the potential to be applicable to many other conformable PDEs arising in physics and engineering.

    Citation: Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu. New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity[J]. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447

    Related Papers:

  • We present new exact solutions in the form of solitary waves for the conformable Klein-Gordon equation with quintic nonlinearity. We use functional variable method which converts a conformable PDE to a second-order ordinary differential equation through a traveling wave transformation. We obtain periodic wave and solitary wave solutions including particularly kink-profile and bell-profile type solutions. The present method is a direct and concise technique which has the potential to be applicable to many other conformable PDEs arising in physics and engineering.


    加载中


    [1] M. M. Khater, D. Kumar, Implementation of three reliable methods for finding the exact solutions of (2+1) dimensional generalized fractional evolution equations, Opt. Quant. Electron., 50 (2018), 1-16. doi: 10.1007/s11082-017-1266-2
    [2] M. M. Khater, A. R. Seadawy, D. Lu, New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G'/G)-expansion method, Pramana, 90 (2018), 1-20. doi: 10.1007/s12043-017-1492-y
    [3] M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations, Appl. Math. Comput., 285 (2016), 141-148.
    [4] M. M. A. Khater, D. Lu, R. A. M. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Advances, 9 (2019), 025003.
    [5] H. Qin, R. A. M. Attia, M. Khater, et al. Ample soliton waves for the crystal lattice formation of the conformable time-fractional (N+ 1) Sinh-Gordon equation by the modified Khater method and the Painleve property, J. Intell. Fuzzy Syst., 38 (2020), 2745-2752. doi: 10.3233/JIFS-179560
    [6] F. S. Khodadad, F. Nazari, M. Eslami, et al. Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Opt. Quant. Electron., 49 (2017), 1-12. doi: 10.1007/s11082-016-0848-8
    [7] H. Tariq, G. Akram, New traveling wave exact and approximate solutions for the nonlinear CahnAllen equation: Evolution of a nonconserved quantity, Nonlinear Dynam., 88 (2017), 581-594. doi: 10.1007/s11071-016-3262-7
    [8] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, et al. New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172 (2018), 545-553. doi: 10.1016/j.ijleo.2018.06.111
    [9] M. Inc, Z. Korpinar, F. Tchier, On optical solitons of the fractional (3+ 1)-dimensional NLSE with conformable derivatives, Front. Phys., 8 (2020), 87.
    [10] Z. Korpinar, F. Tchier, M. Inc, et al. New soliton solutions of the fractional Regularized Long Wave Burger equation by means of conformable derivative, Results Phys., 14 (2019), 1-7.
    [11] Z. Korpinar, F. Tchier, M. Inc, et al. New solutions of the fractional Boussinesq-like equations by means of conformable derivatives, Results Phys., 13 (2019), 1-8.
    [12] A. Korkmaz, O. E. Hepson, K. Hosseini, et al. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci., 32 (2020), 567-574. doi: 10.1016/j.jksus.2018.08.013
    [13] A. Zafar, H. Rezazadeh, K. K. Ali, On finite series solutions of conformable time-fractional CahnAllen equation, Nonlinear Engineering, 9 (2020), 194-200. doi: 10.1515/nleng-2020-0008
    [14] K. K. Ali, C. Cattani, J. F. Gómez-Aguilar, et al. Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model, Chaos, Soliton. Fract., 139 (2020), 1-9.
    [15] K. K. Ali, M. S. Osman, M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method, Alex. Eng. J., 59 (2020), 1191-1196. doi: 10.1016/j.aej.2020.01.037
    [16] M. S. Osman, K. K. Ali, Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations, Optik, 209 (2020), 1-12.
    [17] K. K. Ali, A. R. Hadhoud, New solitary wave solutions of a highly dispersive physical model, Results Phys., 17 (2020), 1-5.
    [18] J. J. Yang, S. F. Tian, W. Q. Peng, et al. The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions, Math. Method. Appl. Sci., 43 (2020), 2458-2472. doi: 10.1002/mma.6055
    [19] T. Y. Xu, S. F. Tian, W. Q. Peng, Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations, Math. Method. Appl. Sci., 43 (2020), 865-880. doi: 10.1002/mma.5964
    [20] W. Q. Peng, S. F. Tian, X. B. Wang, et al. Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146 (2019), 1-9.
    [21] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 1-8.
    [22] L. D. Zhang, S. F. Tian, W. Q. Peng, et al. The dynamics of lump, lumpoff and rogue wave solutions of (2+ 1)-dimensional Hirota-Satsuma-Ito equations, E. Asian J. Appl. Math., 10 (2020), 243-255.
    [23] W. Q. Peng, S. F. Tian, T. T. Zhang, Initial Value Problem for the Pair Transition Coupled Nonlinear Schrödinger Equations via the Riemann-Hilbert Method, Complex Anal. Oper. Th., 14 (2020), 1- 15.
    [24] X. Wu, S. F. Tian, J. J. Yang, Inverse scattering transform and multi-solition solutions for the sextic nonlinear Schrödinger equation, arXiv:2005.00829, 2020.
    [25] L. Li, F. Yu, C. Duan, A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential, Appl. Math. Lett., 110 (2020), 1-8.
    [26] F. Yu, Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross-Pitaevskii equation with PT-symmetric external potentials, Appl. Math. Lett., 92 (2019), 108-114. doi: 10.1016/j.aml.2019.01.010
    [27] F. Yu, R. Fan, Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations, Appl. Math. Lett., 103 (2020), 1-8.
    [28] H. Rezazadeh, J. Manafian, F. S. Khodadad, et al. Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan(1/2ϕ(ξ))-expansion method, Opt. Quant. Electron., 50 (2018), 1-15. doi: 10.1007/s11082-017-1266-2
    [29] A. Zerarka, S. Ouamane, S., A. Attaf, On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. Comput., 217 (2010), 2897-2904.
    [30] H. Aminikhaha, A. R. Sheikhanib, H. Rezazadeha, Exact solutions of some nonlinear systems of partial differential equations by using the functional variable method, Mathematica, 56 (2014), 103-116.
    [31] M. Eslami, M. Mirzazadeh,Functional variable method to study nonlinear evolution equations, Open Engineering, 3 (2013), 451-458.
    [32] H. Aminikhah, A. H. R. Sheikhani, H. Rezazadeh, Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method, Bol. Soc. Paran. Mat., 34 (2016), 213-229. doi: 10.5269/bspm.v34i1.26193
    [33] A. Nazarzadeh, M. Eslami, M. Mirzazadeh, Exact solutions of some nonlinear partial differential equations using functional variable method, Pramana, 81 (2013), 225-236. doi: 10.1007/s12043-013-0565-9
    [34] H. Aminikhah, B. P. Ziabary, H. Rezazadeh, Exact traveling wave solutions of partial differential equations with power law nonlinearity, Nonlinear Engineering, 4 (2015), 181-188.
    [35] A. M. Wazwaz, Compactons, solitons and periodic solutions for some forms of nonlinear Klein- Gordon equations, Chaos, Soliton. Fract., 28 (2006), 1005-1013. doi: 10.1016/j.chaos.2005.08.145
    [36] M. Song, Z. Liu, E. Zerrad, et al. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity, Front. Math. China, 8 (2013), 191-201. doi: 10.1007/s11464-012-0252-z
    [37] A. Biswas, A. H. Kara, A. H. Bokhari, et al. Solitons and conservation laws of Klein-Gordon equation with power law and log law nonlinearities, Nonlinear Dynam., 73 (2013), 2191-2196. doi: 10.1007/s11071-013-0933-5
    [38] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [39] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475-485. doi: 10.1007/s10092-015-0158-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4777) PDF downloads(193) Cited by(64)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog