Loading [MathJax]/jax/output/SVG/jax.js
Research article

A Berry-Essˊen bound of wavelet estimation for a nonparametric regression model under linear process errors based on LNQD sequence

  • Received: 05 June 2020 Accepted: 02 September 2020 Published: 09 September 2020
  • MSC : 60G05, 62G20

  • By using some inequalities for linearly negative quadrant dependent random variables, Berry-Essˊeen bound of wavelet estimation for a nonparametric regression model is investigated under linear process errors based on linearly negative quadrant dependent sequence. The rate of uniform asymptotic normality is presented and the rate of convergence is near O(n16) under mild conditions, which generalizes or extends the corresponding results of Li et al.(2008) under associated random samples in some sense.

    Citation: Xueping Hu, Jingya Wang. A Berry-Essˊen bound of wavelet estimation for a nonparametric regression model under linear process errors based on LNQD sequence[J]. AIMS Mathematics, 2020, 5(6): 6985-6995. doi: 10.3934/math.2020448

    Related Papers:

    [1] Rajish Kumar P, Sunil Jacob John . On redundancy, separation and connectedness in multiset topological spaces. AIMS Mathematics, 2020, 5(3): 2484-2499. doi: 10.3934/math.2020164
    [2] Seçil Çeken, Cem Yüksel . Generalizations of strongly hollow ideals and a corresponding topology. AIMS Mathematics, 2021, 6(12): 12986-13003. doi: 10.3934/math.2021751
    [3] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [4] Qian Liu, Jianrui Xie, Ximeng Liu, Jian Zou . Further results on permutation polynomials and complete permutation polynomials over finite fields. AIMS Mathematics, 2021, 6(12): 13503-13514. doi: 10.3934/math.2021783
    [5] Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107
    [6] Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508
    [7] Ali N. A. Koam, Ali Ahmad, Yasir Ahmad . Computation of reverse degree-based topological indices of hex-derived networks. AIMS Mathematics, 2021, 6(10): 11330-11345. doi: 10.3934/math.2021658
    [8] R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179
    [9] Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi . Cubic m-polar fuzzy topology with multi-criteria group decision-making. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721
    [10] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
  • By using some inequalities for linearly negative quadrant dependent random variables, Berry-Essˊeen bound of wavelet estimation for a nonparametric regression model is investigated under linear process errors based on linearly negative quadrant dependent sequence. The rate of uniform asymptotic normality is presented and the rate of convergence is near O(n16) under mild conditions, which generalizes or extends the corresponding results of Li et al.(2008) under associated random samples in some sense.


    In today's world mathematics is necessary in all fields. It is an essential instrument for comprehension around us. It covers all the facts of life. Mathematics is the branch of science that deals with the reasoning of figures, numbers and order. In our daily life, we use mathematics in our routine work in various forms. There are many branches of mathematics like algebra, geometry, arithmetic, trigonometry, analysis and many other theories. Graph theory is the study of mathematical objects known as graph, which consist of vertices connected by edges. It is the mathematical theory which deals with the properties and applications of graphs. When we apply graph theory on chemistry then it is called chemical graph theory. In mathematical models graph theory is used to get a deep understanding of the physical properties of these chemical compounds. Some physical properties such as boiling point, melting point, density are associated to geometrical structure of the compound. Now a days, several ways are used in mathematical chemistry to understand chemical structure which are existing behind the chemical concepts, to create and inquire novel mathematical representation. In complete history of chemistry certain scientist, usually contemplates connections between mathematics with chemistry and the possibility of using mathematics to analyze and predict new chemical concepts. Mufti defined sanskruti and harmonic indices of certain graph structure [25]. Babujee calculated topological indices and new graph structures in 2012 [5]. Farahani worked on a new version of zagreb index of circumcoronene series of benzenoid in 2013 [7]. Hayat defined some degree based topological indices of certain nanotubes [8]. Imran worked on topological indices of certain interconnection networks in 2014 [14]. In 2016, Siddiqui computed zagreb indices and zagreb polynomials of some nanostars dendrimers [27]. Saleem computed retractions and homomorphisms on some operations of graphs [28]. Iqbal calculated eccentricity based topological indices of some benzenoid structures [12]. Yang examined two-point resistances and random walks on stellated regular graphs [29]. Islam defined M-polynomial and entropy of paraline graph of Napthalene in 2019 [11]. Iqbal worked on topological indices of subdivided and line graph of subdivided friendship graph [13]. In 2020, Afzal examined M-polynomial and topological indices of zigzag edge coronoid fused by starphene [1]. Archdeacon defined the medial graph and voltage-current duality [2]. Munir computed M-polynomial and degree-based topological indices of polyhex nanotubes [22]. Iqbal calculated ve topological indices of tickysim spinnaker model [15]. Azhar examined a note on valency dependence invariants of L(G(K)) Graph [4]. Jamil defined the first general zagreb eccentricity index [18]. Iqbal defined ABC4 and GA5 index of subdivided and line graph of subdivided dutch windmill graph [16]. Maji worked on the first entire zagreb index of various corona products and their bounds [23]. Imran describe computation of topological indices of NEPS of graphs [17]. Hayat computed topological indices for networks derived by applying graph operations from honeycomb structures [9], based on this idea we have computed the topological indices for transformed structures. Next we have few definitions [3,9]:

    Definition 1:

    Let K be a simple connected graph its M-polynomial is defined as;

    M(K;x,y)=SabTmab(K)xayb, (i)

    where: S = Min{dβ|βV(K)}, T = Max{dβ|βV(K)}, and mab(K) is the number of edges γβE(K) such that {dγ, dβ} = {a,b}.

    Definition 2:

    When we place a new vertex in each face of a planar graph G, and attach that vertex with all the vertices of the respective face of G, we get the stellation of G and denote it as St(G).

    Definition 3:

    We introduce a node in each edge of the graph and join the nodes if their corresponding edges are adjacent and is denoted by Md(G).

    Definition 4:

    We introduce a node in each bounded faces of the graph and join the nodes by an edge if the faces share an edge in graph it is called bounded dual. It is represented as Bdu(G).

    T. Réti introduced First and Second Zagreb indices are [26],

    M1(K)=γβE(K)(dγ+dβ), (1.1)
    M2(K)=γβE(K)(dγdβ). (1.2)

    Second modified Zagreb index is defined as [10],

    mM2(k)=γβE(K)(1dγdβ). (1.3)

    Symmetric division and reciprocal general Randic index is [19],

    SDD(K)=γβE(K) {min(dγ,dβ)max(dγ,dβ)+max(dγ,dβ)min(dγ,dβ)}, (1.4)
    RRα(K)=γβE(K)1(dγdβ)α. (1.5)

    Whereas, the General Randic index defined as [24],

    Rα(K)=γβE(K)(dγdβ)α, (1.6)

    where α is an arbitrary real number.

    In 1998, the Atomic Bond Connectivity Index is defined as [6],

    ABC(K)=γβE(K)dγ+dβ2dγdβ. (1.7)

    Geometric-Arithmetic index is [30],

    GA(K)=γβE(K)2dγdβdγ+dβ. (1.8)

    In 2015, the General Version of Harmonic Index is defined [31],

    Hk(K)=γβE(K)(2dγ+dβ)k. (1.9)

    First and Second Gourava Indices were introduced by Kalli which is defined as, respectively [20],

    GO1(K)=γβE(K)[(dγ+dβ)+(dγdβ)], (1.10)
    GO2(K)=γβE(K)[(dγ+dβ)(dγdβ)]. (1.11)

    Kalli introduced the First and Second Hyper-Gourava Indices which is defined as, respectively [21],

    HGO1(K)=γβE(K)[(dγ+dβ)+(dγdβ)]2, (1.12)
    HGO2(K)=γβE(K)[(dγ+dβ)(dγdβ)]2. (1.13)

    At first, we obtain transformed pattern of molecular structures zigzag and triangular benzenoid named as T1 and T2. Next we define M-polynomial and topological indices of these networks by applying the stellation, medial and bounded dual. Further we define edge partition depending upon degree based vertices of T1 and T2 and then calculate the indices.

    Now we will construct the stellation, medial and bounded dual operations on simple and undirected zigzag benzenoid structure. We get a new transformed network (say) T1, shown in Figure 1 for n = 2. After this we will compute M-polynomial and degree based topological indices of our newly obtained network. Where, blue is stellation, red is medial, green is bounded dual operations applied on T1.

    Figure 1.  Transformed structure T1.

    Following Table 3 shows the types of edges and their count for network T1; n2. Now, we will calculate the M-polynomial and vertex degree based topological indices namely first Zagreb index, second Zagreb index, second modified index, symmetric division index, general Randic index, reciprocal general Randic index, atomic bond connectivity index, geometric arithmetic index, general version of harmonic index, first and second gourava indices, first and second hyper gourava indices.

    Let T1, be the transformed network then its M-polynomial is

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.

    Proof:

    Using definition of M-polynomial and information from Table 3, we have

    M(T1;x,y)=abmabxayb=34m34x3y4+37m37x3y7+38m38x3y8+44m44x4y4+45m45x4y5+46m46x4y6+56m56x5y6+57m57x5y7+58m58x5y8+78m78x7y8+88m88x8y8=|E3,4|x3y4+|E3,7|x3y7+|E3,8|x3y8+|E4,4|x4y4+|E4,5|x4y5+|E4,6|x4y6+|E5,6|x5y6+|E5,7|x5y7+|E5,8|x5y8+|E7,8|x7y8+|E8,8|x8y8=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.
    Figure 2.  M-polynomial of T1.

    Let T1, be the transformed network and

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8,

    be its M-polynomial. Then, the first Zagreb index M1(T1), the second Zagreb index M2(T1), the second modified Zagreb index mM2(T1), the general Randic index Rα(T1), where α ϵ N, reciprocal general Randic index RRα(T1), where α ϵ N, and the symmetric division degree index SDD(T1) obtained from M-polynomial are as follows:

    M1(T1)=464n48,M2(T1)=1176n264,mM2(T1)=1112(n+1)+1130(n1)+1330(2n1)+164(2n3)+223420,Rα(T1)=12α(8n+8)+21α(8)+24α(4n4)+16α(4n+4)+20α(8n4)+24α(8n4)+30α(4n2)+35α(4)+40α(8n8)+56α(2)+64α(2n3),RRα(T1)=812α(n+1)+821α+424α(n1)+442α(n+1)+420α(2n1)+424α(2n1)+230α(2n1)+435α+840α(n1)+256α+164α(2n3),SDD(T1)=743(n+1)+89930(n1)+31415(2n1)+2(2n3)+14527420.

    Proof: Let f(x,y) = M(T1;x,y) be the M-polynomial of the transformed network T1. Then

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.

    Now, the required partial derivatives and integrals are obtained as:

    By using the information given in Table 3 and formulas for Table 1;

    Dxf(x,y)=3(8n+8)x3y4+24x3y7+3(4n4)x3y8+4(4n+4)x4y4+4(8n4)x4y5+4(8n4)x4y6+5(4n2)x5y6+20x5y7+5(8n8)x5y8+14x7y8+8(2n3)x8y8,Dyf(x,y)=4(8n+8)x3y4+56x3y7+8(4n4)x3y8+4(4n+4)x4y4+5(8n4)x4y5+6(8n4)x4y6+6(4n2)x5y6+28x5y7+8(8n8)x5y8+16x7y8+8(2n3)x8y8,DxDyf(x,y)=12(8n+8)x3y4+168x3y7+24(4n4)x3y8+16(4n+4)x4y4+20(8n4)x4y5+24(8n4)x4y6+30(4n2)x5y6+140x5y7+40(8n8)x5y8+112x7y8+64(2n3)x8y8,SxSyf(x,y)=23(n+1)x3y4+821x3y7+16(n1)x3y8+14(n+1)x4y4+15(2n1)x4y5+16(2n1)x4y6+115(2n1)x5y6+435x5y7+15(n1)x5y8+128x7y8+164(2n3)x8y8,DαxDαyf(x,y)=12α(8n+8)x3y4+21α(8)x3y7+24α(4n4)x3y8+42α(4n+4)x4y4+20α(8n4)x4y5+24α(8n4)x4y6+30α(4n2)x5y6+35α(4)x5y7+40α(8n8)x5y8+56α(2)x7y8+46α(2n3)x8y8,SαxSαyf(x,y)=812α(n+1)x3y4+821αx3y7+424α(n1)x3y8+442α(n+1)x4y4+420α(2n1)x4y5+424α(2n1)x4y6+230α(2n1)x5y6+435αx5y7+840α(n1)x5y8+256αx7y8+164α(2n3)x8y8,SyDxf(x,y)=6(n+1)x3y4+247x3y7+32(n1)x3y8+4(n+1)x4y4+165(2n1)x4y5+83(2n1)x4y6+53(2n1)x5y6+207x5y7+5(n1)x5y8+74x7y8+(2n3)x8y8,SxDyf(x,y)=323(n+1)x3y4+563x3y7+323(n1)x3y8+4(n+1)x4y4+5(2n1)x4y5+6(2n1)x4y6+125(2n1)x5y6+285x5y7+645(n1)x5y8+167x7y8+(2n3)x8y8.
    Table 1.  Derivation of some degree-based topological indices from M-polynomial [3].
    Topological Index Derivation from M (K; x, y)
    First Zagreb (Dx+Dy)(M(K;x,y))|x=1=y (ii)
    Second Zagreb (DxDy)(M(K;x,y))|x=1=y (iii)
    Second Modified Zagreb (SxSy)(M(K;x,y))|x=1=y (iv)
    general Randic (DαxDαy)(M(K;x,y))|x=1=y (v)
    Reciprocal general Randic (SαxSαy)(M(K;x,y))|x=1=y (vi)
    Symmetric Division Index (SyDx)+(SxDy)(M(K;x,y))|x=1=y (vii)

     | Show Table
    DownLoad: CSV
    Table 2.  Planar and non-planar graph.
    Graph Planar/ NonPlanar
    St(G1,G2) Planar
    Md(G1,G2) Planar
    Bdu(G1,G2) NonPlanar
    T1 NonPlanar
    T2 NonPlanar

     | Show Table
    DownLoad: CSV

    Consequently,

    M1(T1)=(Dx+Dy)f(x,y)|x=1=y=464n48,M2(T1)=DxDyf(x,y)|x=1=y=1176n264,mM2(T1)=SxSyf(x,y)|x=1=y=1112(n+1)+1130(n1)+1330(2n1)+164(2n3)+223420,Rα(T1)=DαxDαyf(x,y)|x=1=y=12α(8n+8)+(21)α8+24α(4n4)+16α(4n+4)+20α(8n4)+24α(8n4)+30α(4n2)+(35)α4+40α(8n8)+(56)α2+64α(2n3),RRα(T1)=SαxSαyf(x,y)|x=1=y=812α(n+1)+821α+424α(n1)+442α(n+1)+420α(2n1)+424α(2n1)+230α(2n1)+435α+840α(n1)+256α+164α(2n3),SDD(T1)=(SyDx+SxDy)(x,y)|x=1=y=743(n+1)+89930(n1)+31415(2n1)+2(2n3)+14527420.

    For T1, the Atomic Bond Connectivity, Geometric Arithematic Index and General Harmonic Index are as follows, respectively.

    1)  ABC(T1)=2n6+(n+1)4153+(14n+11)1456+(n1)21105+(2n1)(275+43+65)+164221+18214,2)  GA(T1)=(n+1)(3237+4)+(n1)321013+(32n21)8655+(2n1)(1659+43011)+(2n3)+8215+2353+81415,3)  Hk(T1)=(8n+8)(27)k+(8n+4)(15)k+(4n4)(211)k+(4n+4)(14)k+(8n4)(29)k+(4n2)(211)k+4(16)k+(8n8)(213)k+2(215)k+(2n3)(18)k.

    Proof:

    1). According to Eq (1.7)

    ABC(T1)=γβE(K)dγ+dβ2dγdβ.

    By using the information given in Table 3.

    =(8n+8)(3+423×4)+8(3+723×7)+(4n4)(3+823×8)+(4n+4)(4+424×4)+(8n4)(4+524×5)+(8n4)(4+624×6)+(4n2)(5+625×6)+4(5+725×7)+(8n8)(5+825×8)+2(7+827×8)+(2n3)(8+828×8)=2n6+(n+1)4153+(14n+11)1456+(n1)21105+(2n1)(275+43+65)+164221+18214.
    Table 3.  Types and count of edges for T1.
    Types of edges Count of edges
    (3,4) 8n+8
    (3,7) 8
    (3,8) 4n4
    (4,4) 4n+4
    (4,5) 8n4
    (4,6) 8n4
    (5,6) 4n2
    (5,7) 4
    (5,8) 8n8
    (7,8) 2
    (8,8) 2n3

     | Show Table
    DownLoad: CSV

    2). According to Eq (1.8)

    GA(T1)=γβE(K)2dγdβdγ+dβ.

    By using the information given in Table 3.

    =(8n+8)(23×43+4)+8(23×73+7)+(4n4)(23×83+8)+(4n+4)(24×44+4)+(8n4)(24×54+5)+(8n4)(24×64+6)+(4n2)(25×65+6)+4(25×75+7)+(8n8)(25×85+8)+2(27×87+8)+(2n3)(28×88+8)=(n+1)(3237+4)+(n1)321013+(32n21)8655+(2n1)(1659+43011)+(2n3)+8215+2353+81415.

    3). According to Eq (1.9)

    Hk(T1)=γβE(K)(2dγ+dβ)k.

    By using the information given in Table 3.

    =(8n+8)(23+4)k+8(23+7)k+(4n4)(23+8)k+(4n+4)(24+4)k+(8n4)(24+5)k+(8n4)(24+6)k+(4n2)(25+6)k+4(25+7)k+(8n8)(25+8)k+2(27+8)k+(2n3)(28+8)k=(8n+8)(27)k+(8n+4)(15)k+(4n4)(211)k+(4n+4)(14)k+(8n4)(29)k+(4n2)(211)k+4(16)k+(8n8)(213)k+2(215)k+(2n3)(18)k.

    For T1, the First, Second Gourava Indices and the First, Second Hyper Gourava Indices are as follows, respectively.

    1)  GO1(T1)=1640n312,2)  GO2(T1)=13128n4404,3)  HGO1(T1)=68064n26124,4)  HGO2(T1)=5816720n3573928.

    Proof:

    1). According to Eq (1.10)

       GO1(T1)=γβE(K)[(dγ+dβ)+(dγdβ)].

    By using the information given in Table 3.

    =(8n+8)[(3+4)+(3×4)]+8[(3+7)+(3×7)]+(4n4)[(3+8)+(3×8)]+(4n+4)[(4+4)+(4×4)]+(8n4)[(4+5)+(4×5)]+(8n4)[(4+6)+(4×6)]+(4n2)[(5+6)+(5×6)]+4[(5+7)+(5×7)]+(8n8)[(5+8)+(5×8)]+2[(7+8)+(7×8)]+(2n3)[(8+8)+(8×8)]=1640n312.

    2). According to Eq (1.11)

       GO2(T1)=γβE(K)[(dγ+dβ)(dγdβ)].

    By using the information given in Table 3.

    =(8n+8)[(3+4)(3×4)]+8[(3+7)(3×7)]+(4n4)[(3+8)(3×8)]+(4n+4)[(4+4)(4×4)]+(8n4)[(4+5)(4×5)]+(8n4)[(4+6)(4×6)]+(4n2)[(5+6)(5×6)]+4[(5+7)(5×7)]+(8n8)[(5+8)(5×8)]+2[(7+8)(7×8)]+(2n3)[(8+8)(8×8)]=13128n4404.

    3). According to Eq (1.12)

       HGO1(T1)=γβE(K)[(dγ+dβ)+(dγdβ)]2.

    By using the information given in Table 3.

    =(8n+8)[(3+4)+(3×4)]2+8[(3+7)+(3×7)]2+(4n4)[(3+8)+(3×8)]2+(4n+4)[(4+4)+(4×4)]2+(8n4)[(4+5)+(4×5)]2+(8n4)[(4+6)+(4×6)]2+(4n2)[(5+6)+(5×6)]2+4[(5+7)+(5×7)]2+(8n8)[(5+8)+(5×8)]2+2[(7+8)+(7×8)]2+(2n3)[(8+8)+(8×8)]2=68064n26124.

    4). According to Eq (1.13)

       HGO2(T1)=γβE(K)[(dγ+dβ)(dγdβ)]2.

    By using the information given in Table 3.

    =(8n+8)[(3+4)(3×4)]2+8[(3+7)(3×7)]2+(4n4)[(3+8)(3×8)]2+(4n+4)[(4+4)(4×4)]2+(8n4)[(4+5)(4×5)]2+(8n4)[(4+6)(4×6)]2+(4n2)[(5+6)(5×6)]2+4[(5+7)(5×7)]2+(8n8)[(5+8)(5×8)]2+2[(7+8)(7×8)]2+(2n3)[(8+8)(8×8)]2=5816720n3573928.

    Now we will construct the stellation, medial and bounded dual operations on simple and undirected triangular benzenoid structure. We get a new transformed network (say) T2, shown in Figure 3 for n = 5. After this we will compute M-polynomial and degree based topological indices of our newly obtained network. Where, blue is stellation, red is medial, green is bounded dual operations applied on T2.

    Figure 3.  Transformed structure T2.

    Following Table 4 shows the types of edges and their count for network T2; n5. Now, we will calculate the different M-polynomial and vertex degree based topological indices namely first Zagreb index, second Zagreb index, second modified index, symmetric division index, general Randic index, reciprocal general Randic index, atomic bond connectivity index, geometric arithmetic index, general version of harmonic index, first and second gourava indices, first and second hyper gourava indices.

    Table 4.  Types and count of edges for T2.
    Types of edges Count of edges
    (3,4) 6n+6
    (3,8) 9
    (3,10) 3n6
    (4,4) 3n+3
    (4,5) 6n6
    (4,6) 6n6
    (5,6) 3n3
    (5,8) 6
    (5,10) 6n12
    (6,6) 6(n1)2
    (6,8) 3
    (6,10) 9n18
    (6,12) 6[(n(n1))+(n(n2))+...
    +(n4)+(n3)]
    (8,10) 6
    (10,10) 3n6
    (10,12) 6n18
    (12,12) 3[(n4)+(n5)+...
    +(n(n1))]

     | Show Table
    DownLoad: CSV

    Let T2, be the transformed network then its M-polynomial is

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Proof: Using definition of M-polynomial and information from Table 4, we have

    M(T2;x,y)=abmabxayb=34m34x3y4+38m38x3y8+310m3 10x3y10+44m44x4y4+45m45x4y5+46m46x4y6+56m56x5y6+58m58x5y8+510m5 10x5y10+66m66x6y6+68m68x6y8+610m6 10x6y10+612m6 12x6y12+810m8 10x8y10+1010m10 10x10y10+1012m10 12x10y12+1212m12 12x12y12=|E3,4|x3y4+|E3,8|x3y8+|E3,10|x3y10+|E4,4|x4y4+|E4,5|x4y5+|E4,6|x4y6+|E5,6|x5y6+|E5,8|x5y8+|E5,10|x5y10+|E6,6|x6y6+|E6,8|x6y8+|E6,10|x6y10+|E6,12|x6y12+|E8,10|x8y10+|E10,10|x10y10+|E10,12|x10y12+|E12,12|x12y12=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.
    Figure 4.  M-polynomial of T2 for n = 6.
    Figure 5.  M-polynomial of T2.

    Let T2, be the transformed network and

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12,

    be its M-polynomial. Then, the first Zagreb index M1(T2), the second Zagreb index M2(T2), the second modified Zagreb mM2(T2), the general Randic index Rα(T2), where α ϵ N, reciprocal general Randic index RRα(T2), where α ϵ N, and the symmetric division degree index SDD(T2) obtained from M-polynomial are as follows:

    M1(T2)=678n816+72(n1)2+108[(n(n1))+(n(n2))+...+(n4)+(n3)]+72[(n4)+(n5)+...+(n(n1))],M2(T2)=2424n3774+216(n1)2+432[(n(n1))+(n(n2))+...+(n4)+(n3)]+432[(n4)+(n5)+...+(n(n1))],mM2(T2)=1116(n+1)+25(n2)+1320(n1)+120(n3)+5380+16(n1)2+112[(n(n1))+(n(n2))+...+(n4)+(n3)]+148[(n4)+(n5)+...+(n(n1))],Rα(T2)=12α(6n+6)+24α(9)+30α(3n6)+42α(3n+3)+20α(6n6)+24α(6n6)+30α(3n3)+40α(6)+50α(6n12)+6(n1)2(36)α+48α(3)+60α(9n18)+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+80α(6)+100α(3n6)+120α(6n18)+144α[(n4)+(n5)+...+(n(n1))]3,RRα(T2)=612α(n+1)+924α+330α(n2)+342α(n+1)+620α(n1)+624α(n1)+330α(n1)+640α+650α(n2)+636α(n1)2+348α+960α(n2)+680α+3100α(n2)+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+6120α(n3)+1144α[(n4)+(n5)+...+(n(n1))]3,SDD(T2)=372(n+1)+1575(n1)+52310(n2)+615(n3)+237140+12(n1)2+15[(n(n1))+(n(n2))+...+(n4)+(n3)]+6[(n4)+(n5)+...+(n(n1))].

    Proof: Let f(x,y) = M(T2;x,y) be the M-polynomial of the transformed network T2. Then

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Now, the required partial derivatives and integrals are obtained.

    By using the information given in Table 4 and formulas for Table 1:

    Dxf(x,y)=3(6n+6)x3y4+27x3y8+3(3n6)x3y10+4(3n+3)x4y4+4(6n6)x4y5+4(6n6)x4y6+5(3n3)x5y6+30x5y8+5(6n12)x5y10+36(n1)2x6y6+18x6y8+6(9n18)x6y10+36[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+48x8y10+10(3n6)x10y10+10(6n18)x10y12+36[(n4)+(n5)+...+(n(n1))]x12y12,Dyf(x,y)=4(6n+6)x3y4+72x3y8+10(3n6)x3y10+4(3n+3)x4y4+5(6n6)x4y5+6(6n6)x4y6+6(3n3)x5y6+48x5y8+10(6n12)x5y10+36(n1)2x6y6+24x6y8+10(9n18)x6y10+72[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+60x8y10+10(3n6)x10y10+12(6n18)x10y12+36[(n4)+(n5)+...+(n(n1))]x12y12,DxDyf(x,y)=12(6n+6)x3y4+216x3y8+30(3n6)x3y10+16(3n+3)x4y4+20(6n6)x4y5+24(6n6)x4y6+30(3n3)x5y6+240x5y8+50(6n12)x5y10+216(n1)2x6y6+144x6y8+60(9n18)x6y10+432[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+480x8y10+100(3n6)x10y10+120(6n18)x10y12+432[(n4)+(n5)+...+(n(n1))]x12y12,SxSyf(x,y)=12(n+1)x3y4+38x3y8+110(n2)x3y10+316(n+1)x4y4+310(n1)x4y5+14(n1)x4y6+110(n1)x5y6+320x5y8+325(n2)x5y10+16(n1)2x6y6+116x6y8+320(n2)x6y10+112[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+340x8y10+3100(n2)x10y10+120(n3)x10y12+148[(n4)+(n5)+...+(n(n1))]x12y12,DαxDαyf(x,y)=12α(6n+6)x3y4+24α(9)x3y8+30α(3n6)x3y10+42α(3n+3)x4y4+20α(6n6)x4y5+24α(6n6)x4y6+30α(3n3)x5y6+40α(6)x5y8+50α(6n12)x5y10+(36)α(n1)26x6y6+48α(3)x6y8+60α(9n18)x6y10+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6x6y12+80α(6)x8y10+100α(3n6)x10y10+120α(6n18)x10y12+144α[(n4)+(n5)+...+(n(n1))]3x12y12,SαxSαyf(x,y)=612α(n+1)x3y4+924αx3y8+330α(n2)x3y10+342α(n+1)x4y4+620α(n1)x4y5+624α(n1)x4y6+330α(n1(n1)x5y6+640αx5y8+650α(n2)x5y10+636α(n1)2x6y6+348αx6y8+960α(n2)x6y10+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6x6y12+680αx8y10+3100α(n2)x10y10+6120α(n3)x10y12+1144α[(n4)+(n5)+...+(n(n1))]3x12y12,SyDxf(x,y)=92(n+1)x3y4+278x3y8+910(n2)x3y10+3(n+1)x4y4+245(n1)x4y5+4(n1)x4y6+52(n1)x5y6+154x5y8+3(n2)x5y10+6(n1)2x6y6+94x6y8+275(n2)x6y10+3[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+245x8y10+3(n2)x10y10+5(n3)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12,SxDyf(x,y)=8(n+1)x3y4+24x3y8+10(n2)x3y10+3(n+1)x4y4+152(n1)x4y5+9(n1)x4y6+185(n1)x5y6+485x5y8+12(n2)x5y10+6(n1)2x6y6+4x6y8+15(n2)x6y10+12[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+152x8y10+3(n2)x10y10+365(n3)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Consequently,

    M1(T2)=(Dx+Dy)f(x,y)|x=1=y=678n816+72(n1)2+108[(n(n1))+(n(n2))+...+(n4)+(n3)]+72[(n4)+(n5)+...+(n(n1))],M2(T2)=DxDyf(x,y)|x=1=y=2424n3774+216(n1)2+432[(n(n1))+(n(n2))+...+(n4)+(n3)]+432[(n4)+(n5)+...+(n(n1))],mM2(T2)=SxSyf(x,y)|x=1=y=1116(n+1)+25(n2)+1320(n1)+120(n3)+710+16(n1)2+112[(n(n1))+(n(n2))+...+(n4)+(n3)]+148[(n4)+(n5)+...+(n(n1))],Rα(T2)=DαxDαyf(x,y)|x=1=y=12α(6n+6)+24α(9)+30α(3n6)+42α(3n+3)+20α(6n6)+24α(6n6)+30α(3n3)+40α(6)+50α(6n12)+6(n1)2(36)α+48α(3)+60α(9n18)+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+80α(6)+100α(3n6)+120α(6n18)+144α[(n4)+(n5)+...+(n(n1))]3,RRα(T2)=SαxSαyf(x,y)|x=1=y=612α(n+1)+924α+330α(n2)+342α(n+1)+620α(n1)+624α(n1)+330α(n1)+640α+650α(n2)+636α(n1)2+348α+960α(n2)+680α+3100α(n2)+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+6120α(n3)+1144α[(n4)+(n5)+...+(n(n1))]3,SDD(T2)=(SyDx+SxDy)(x,y)|x=1=y=372(n+1)+1575(n1)+52310(n2)+615(n3)+237140+12(n1)2+15[(n(n1))+(n(n2))+...+(n4)+(n3)]+6[(n4)+(n5)+...+(n(n1))].

    For T2, the Atomic Bond Connectivity, Geometric Arithmetic Index and General Harmonic Index are as follows, respectively.

    1)    ABC(T2)=(7n)64+(n+1)15+(n1)(375+23+3310)(n2)(33010+3265+321010+9210)+311010+32+65+(n1)210+[(n(n1))+(n(n2))+...+(n4)+(n3)]22+[(n4)+(n5)+...+(n(n1))]224,2)    GA(T2)=(24n+36)37+(132n+48)655+(50n113)630143+3(n+1)+(8n)53+(n2)(42+9154+3)+241013+6(n1)2+[(n(n1))+(n(n2))+...+(n4)+(n3)]42+3[(n4)+(n5)+...+(n(n1))],3)   Hk(T2)=(6n+6)(27)k+9(211)k+(3n6)(213)k+(3n+3)(14)k+(6n6)(29)k+(6n6)(15)k+(3n3)(211)k+6(213)k+(6n12)(215)k+6(n1)2)(16)k+3(17)k+(9n18)(18)k+6[(n(n1))+(n(n2))+...+(n4)+(n3)](19)k+6(19)k+(3n6)(110)k+(6n18)(111)k+3[(n4)+(n5)+...+(n(n1))](112)k.

    Proof: Using Eqs 1.7–1.9 and Table 4, we get the results 1–3.

    For T2, the First, Second Gourava Indices and the First, Second Hyper Gourava Indices are as follows, respectively.

    1)   GO1(T2)=3102n4590+288(n1)2+540[(n(n1))+(n(n2))+...+(n4)+(n3)]+504[(n4)+(n5)+...+(n(n1))],2)   GO2(T2)=40548n74610+2592(n1)2+7776[(n(n1))+(n(n2))+...+(n4)+(n3)]+10368[(n4)+(n5)+...+(n(n1))],3)   HGO1(T2)=267984n531210+13824(n1)2+48600[(n(n1))+(n(n2))+...+(n4)+(n3)]+84672[(n4)+(n5)+...+(n(n1))],4)   HGO2(T2)=66901488n158433396+1119744(n1)2+10077696[(n(n1))+(n(n2))+...+(n4)+(n3)]+35831808[(n4)+(n5)+...+(n(n1))].

    Proof: Using Eqs 1.10–1.13 and Table 4 we get the above results 1–4.

    In this paper, we defined M-polynomial of the transformed zigzag benzenoid and transformed triangular benzenoid structures by applying stellation, medial and bounded dual operations to get networks named as T1 and T2. With the help of M-polynomial, we computed certain degree-based topological indices such as first Zagreb index, second Zagreb index, second modified Zagreb index, general Randic index, reciprocal general Randic index, symmetric division degree index. We also computed atomic bound connectivity index, geometric arithmetic index, general harmonic index, first and second gourava indices, first and second hyper gourava indices. M-polynomial is used to calculate the certain degree based topological indices as a latest developed instrument in the chemical graph theory. In future, we can compute other indices on these structures and some additional transformed structures can be studied for a variety of topological indices to have an insight about their properties.

    This work was supported by the Key teaching research project of quality engineering in Colleges and universities in Anhui Province. Anhui Vocational college of Electronics and Information Technology Guangzhou Zhuoya Education Investment Co., Ltd. Practical Education Base (subject No: 2020sjjd093). The authors are very thankful for this research funding. We are also very grateful to the reviewers for their valuable suggestions.

    The authors declare no conflict of interest.



    [1] A. A. Georgiev, Local properties of function fitting estmates with application to system identification, Math. stat. Appl., 2 (1983), 141-151.
    [2] A. A. Georgiev, Consistent nonparametric multiple regression: The fixed design case, J. Multivariate Anal., 25 (1988), 100-110. doi: 10.1016/0047-259X(88)90155-8
    [3] G. G. Roussas, L. T. Tran, D. A. Ioannides, Fixed design regression for time series: Asymptotic normality, J. Multivariate Anal., 40 (1992), 262-291. doi: 10.1016/0047-259X(92)90026-C
    [4] S. Yang, Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples, Stat. Probabil. Lett., 62 (2003), 101-110. doi: 10.1016/S0167-7152(02)00427-3
    [5] L. Tran, G. Roussas, S. Yakowitz, et al. Fixed-design regression for linear time series, Ann. Stat., 24 (1996), 975-991.
    [6] H. Y. Liang, Y. Y. Li, A Berry-Esseen type bound of regression estimator based on linear process errors, J. Korean Math. Soc., 45 (2008), 1753-1767. doi: 10.4134/JKMS.2008.45.6.1753
    [7] A. Antoniadis, G. Gregoire, I. W. Mckeague, Wavelet methods for curve estimation, J. Am. Stat. Assoc., 89 (1994), 1340-1352. doi: 10.1080/01621459.1994.10476873
    [8] H. Y. Liang, Y. Y. Qi, Asymptotic normality of wavelet estimator of regression function under NA assumption, B. Korean Math. Soc., 44 (2007), 247-257. doi: 10.4134/BKMS.2007.44.2.247
    [9] L. G. Xue, Uniform convergence rates of the wavelet estimator of regression function under mixing error, Acta Math. Sci., 22 (2002), 528-535.
    [10] Y. Sun, G. X. Chai, Nonparametric wavelet estimation of a fiexed designed regression function, Acta Math. Sci., 24 (2004), 597-606. doi: 10.1016/S0252-9602(17)30242-4
    [11] Y. Li, S. Yang, Y. Zhou, Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples, Stat. Probabil. Lett., 78 (2008), 2947-2956. doi: 10.1016/j.spl.2008.05.004
    [12] Y. Li, C. Wei, G. Xing, Berry-Esseen bounds for wavelet estimator in a regression model with linear process errors, Stat. Probabil. Lett., 81 (2011), 103-110. doi: 10.1016/j.spl.2010.09.024
    [13] X. Zhou, J. Lin, C. M. Yin, Asymptotic properties of wavelet-based estimator in nonparametric regression model with weakly dependent process, J. Inequal. Appl., 2013 (2013), 1-18. doi: 10.1186/1029-242X-2013-1
    [14] K. Joag-Dev, F. Proschan, Negative association of random variables with applications, Ann. Stat., 11 (1983), 286-295. doi: 10.1214/aos/1176346079
    [15] E. L. Lehmann, Some concepts of dependence, Ann. Math. Stat., 37 (1996), 1137-1153.
    [16] C. M. Newman, Asymptotic independent and limit theorems for positively and negatively dependent random variables, Inequalities in statistics and probability, 5 (1984), 127-140.
    [17] X. Wang, S. Hu, W. Yang, et al. Exponential inequalities and complete convergence for a LNQD sequence, J. Korean Stat. Soc., 39 (2010), 555-564. doi: 10.1016/j.jkss.2010.01.002
    [18] Y. Li, J. Guo, N. Li, Some inequalities for a LNQD sequence with applications, J. Inequal. Appl., 2012 (2012), 1-9. doi: 10.1186/1029-242X-2012-1
    [19] L. Ding, P. Chen, Y. Li, Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence, J. Inequal. Appl., 2018 (2018), 1-12. doi: 10.1186/s13660-017-1594-6
    [20] V. V. Petrov, Limit Theorem of Probability Theory: Sequences of Independent Random Variables, Oxford Science Publications, Clarendon Press, Oxford, 1995.
    [21] L. Zhang, A functional central limit theorem for asymptotically negatively dependent random fields, Acta. Math. Hung., 86 (2000), 237-259. doi: 10.1023/A:1006720512467
  • This article has been cited by:

    1. Deeba Afzal, Farkhanda Afzal, Sabir Hussain, Faryal Chaudhry, Dhana Kumari Thapa, Gohar Ali, Investigation on Boron Alpha Nanotube by Studying Their M-Polynomial and Topological Indices, 2022, 2022, 2314-4785, 1, 10.1155/2022/6136168
    2. Jia-Bao Liu, Hifza Iqbal, Khurram Shahzad, Topological Properties of Concealed Non-Kekulean Benzenoid Hydrocarbon, 2023, 43, 1040-6638, 1776, 10.1080/10406638.2022.2039230
    3. Kamel Jebreen, Hifza Iqbal, Muhammad Haroon Aftab, Iram Yaqoob, Mohammed Issa Sowaity, Amjad Barham, Study of eccentricity based topological indices for benzenoid structure, 2023, 45, 10269185, 221, 10.1016/j.sajce.2023.05.010
    4. Claudio Rocco, Jose A. Moronta, A Novel Perspective for Hosoya and M Polynomials for Analyzing Electric Power Network Topology, 2024, 1556-5068, 10.2139/ssrn.4806323
    5. Hifza Iqbal, Muhammad Haroon Aftab, Ali Akgul, Zeeshan Saleem Mufti, Iram Yaqoob, Mustafa Bayram, Muhammad Bilal Riaz, Further study of eccentricity based indices for benzenoid hourglass network, 2023, 9, 24058440, e16956, 10.1016/j.heliyon.2023.e16956
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3217) PDF downloads(82) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog