Research article

A Berry-Ess$\acute{e}$n bound of wavelet estimation for a nonparametric regression model under linear process errors based on LNQD sequence

  • Received: 05 June 2020 Accepted: 02 September 2020 Published: 09 September 2020
  • MSC : 60G05, 62G20

  • By using some inequalities for linearly negative quadrant dependent random variables, Berry-Ess$\acute{e}$en bound of wavelet estimation for a nonparametric regression model is investigated under linear process errors based on linearly negative quadrant dependent sequence. The rate of uniform asymptotic normality is presented and the rate of convergence is near $O(n^{-\frac{1}{6}})$ under mild conditions, which generalizes or extends the corresponding results of Li et al.(2008) under associated random samples in some sense.

    Citation: Xueping Hu, Jingya Wang. A Berry-Ess$\acute{e}$n bound of wavelet estimation for a nonparametric regression model under linear process errors based on LNQD sequence[J]. AIMS Mathematics, 2020, 5(6): 6985-6995. doi: 10.3934/math.2020448

    Related Papers:

  • By using some inequalities for linearly negative quadrant dependent random variables, Berry-Ess$\acute{e}$en bound of wavelet estimation for a nonparametric regression model is investigated under linear process errors based on linearly negative quadrant dependent sequence. The rate of uniform asymptotic normality is presented and the rate of convergence is near $O(n^{-\frac{1}{6}})$ under mild conditions, which generalizes or extends the corresponding results of Li et al.(2008) under associated random samples in some sense.


    加载中


    [1] A. A. Georgiev, Local properties of function fitting estmates with application to system identification, Math. stat. Appl., 2 (1983), 141-151.
    [2] A. A. Georgiev, Consistent nonparametric multiple regression: The fixed design case, J. Multivariate Anal., 25 (1988), 100-110. doi: 10.1016/0047-259X(88)90155-8
    [3] G. G. Roussas, L. T. Tran, D. A. Ioannides, Fixed design regression for time series: Asymptotic normality, J. Multivariate Anal., 40 (1992), 262-291. doi: 10.1016/0047-259X(92)90026-C
    [4] S. Yang, Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples, Stat. Probabil. Lett., 62 (2003), 101-110. doi: 10.1016/S0167-7152(02)00427-3
    [5] L. Tran, G. Roussas, S. Yakowitz, et al. Fixed-design regression for linear time series, Ann. Stat., 24 (1996), 975-991.
    [6] H. Y. Liang, Y. Y. Li, A Berry-Esseen type bound of regression estimator based on linear process errors, J. Korean Math. Soc., 45 (2008), 1753-1767. doi: 10.4134/JKMS.2008.45.6.1753
    [7] A. Antoniadis, G. Gregoire, I. W. Mckeague, Wavelet methods for curve estimation, J. Am. Stat. Assoc., 89 (1994), 1340-1352. doi: 10.1080/01621459.1994.10476873
    [8] H. Y. Liang, Y. Y. Qi, Asymptotic normality of wavelet estimator of regression function under NA assumption, B. Korean Math. Soc., 44 (2007), 247-257. doi: 10.4134/BKMS.2007.44.2.247
    [9] L. G. Xue, Uniform convergence rates of the wavelet estimator of regression function under mixing error, Acta Math. Sci., 22 (2002), 528-535.
    [10] Y. Sun, G. X. Chai, Nonparametric wavelet estimation of a fiexed designed regression function, Acta Math. Sci., 24 (2004), 597-606. doi: 10.1016/S0252-9602(17)30242-4
    [11] Y. Li, S. Yang, Y. Zhou, Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples, Stat. Probabil. Lett., 78 (2008), 2947-2956. doi: 10.1016/j.spl.2008.05.004
    [12] Y. Li, C. Wei, G. Xing, Berry-Esseen bounds for wavelet estimator in a regression model with linear process errors, Stat. Probabil. Lett., 81 (2011), 103-110. doi: 10.1016/j.spl.2010.09.024
    [13] X. Zhou, J. Lin, C. M. Yin, Asymptotic properties of wavelet-based estimator in nonparametric regression model with weakly dependent process, J. Inequal. Appl., 2013 (2013), 1-18. doi: 10.1186/1029-242X-2013-1
    [14] K. Joag-Dev, F. Proschan, Negative association of random variables with applications, Ann. Stat., 11 (1983), 286-295. doi: 10.1214/aos/1176346079
    [15] E. L. Lehmann, Some concepts of dependence, Ann. Math. Stat., 37 (1996), 1137-1153.
    [16] C. M. Newman, Asymptotic independent and limit theorems for positively and negatively dependent random variables, Inequalities in statistics and probability, 5 (1984), 127-140.
    [17] X. Wang, S. Hu, W. Yang, et al. Exponential inequalities and complete convergence for a LNQD sequence, J. Korean Stat. Soc., 39 (2010), 555-564. doi: 10.1016/j.jkss.2010.01.002
    [18] Y. Li, J. Guo, N. Li, Some inequalities for a LNQD sequence with applications, J. Inequal. Appl., 2012 (2012), 1-9. doi: 10.1186/1029-242X-2012-1
    [19] L. Ding, P. Chen, Y. Li, Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence, J. Inequal. Appl., 2018 (2018), 1-12. doi: 10.1186/s13660-017-1594-6
    [20] V. V. Petrov, Limit Theorem of Probability Theory: Sequences of Independent Random Variables, Oxford Science Publications, Clarendon Press, Oxford, 1995.
    [21] L. Zhang, A functional central limit theorem for asymptotically negatively dependent random fields, Acta. Math. Hung., 86 (2000), 237-259. doi: 10.1023/A:1006720512467
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2966) PDF downloads(82) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog