The Klein-Gordon-Maxwell system has received great attention in the community of mathematical physics. Under a special superlinear condition on the nonlinear term, the existence of solution for the critical Klein-Gordon-Maxwell system with a steep potential well has been solved. In this paper, under two general superlinear conditions, we obtain the existence of ground state solution for the critical Klein-Gordon-Maxwell system with a steep potential well. The general superlinear conditions bring challenge in proving the boundedness of Cerami sequence, which is a key step in the proof of the existence. To solve this, we construct a Pohožaev identity and adopt some analytical techniques. Our results extend the previous results in the literature.
Citation: Canlin Gan, Weiwei Wang. Existence result for the critical Klein-Gordon-Maxwell system involving steep potential well[J]. AIMS Mathematics, 2023, 8(11): 26665-26681. doi: 10.3934/math.20231364
The Klein-Gordon-Maxwell system has received great attention in the community of mathematical physics. Under a special superlinear condition on the nonlinear term, the existence of solution for the critical Klein-Gordon-Maxwell system with a steep potential well has been solved. In this paper, under two general superlinear conditions, we obtain the existence of ground state solution for the critical Klein-Gordon-Maxwell system with a steep potential well. The general superlinear conditions bring challenge in proving the boundedness of Cerami sequence, which is a key step in the proof of the existence. To solve this, we construct a Pohožaev identity and adopt some analytical techniques. Our results extend the previous results in the literature.
[1] | V. Benci, D. Fortunato, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal. Theor., 47 (2001), 6065–6072. http://dx.doi.org/10.1016/S0362-546X(01)00688-5 doi: 10.1016/S0362-546X(01)00688-5 |
[2] | V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420. http://dx.doi.org/10.1142/S0129055X02001168 doi: 10.1142/S0129055X02001168 |
[3] | T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307–322. http://dx.doi.org/10.1515/ans-2004-0305 doi: 10.1515/ans-2004-0305 |
[4] | A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Method. Nonl. An., 35 (2010), 33–42. |
[5] | D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal. Theor., 58 (2004), 733–747. http://dx.doi.org/10.1016/j.na.2003.05.001 doi: 10.1016/j.na.2003.05.001 |
[6] | P. C. Carrião, P. L. Cunha, O. H. Miyagaki, Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials, Nonlinear Anal. Theor., 75 (2012), 4068–4078. http://dx.doi.org/10.1016/j.na.2012.02.023 doi: 10.1016/j.na.2012.02.023 |
[7] | X. H. Tang, L. X. Wen, S. T. Chen, On critical Klein-Gordon-Maxwell systems with super-linear nonlinearities, Nonlinear Anal. Theor., 196 (2020), 111771. http://dx.doi.org/10.1016/j.na.2020.111771 doi: 10.1016/j.na.2020.111771 |
[8] | X. Q. Liu, S. J. Chen, C. L. Tang, Ground state solutions for Klein-Gordon-Maxwell system with steep potential well, Appl. Math. Lett., 90 (2019), 175–180. http://dx.doi.org/10.1016/j.aml.2018.11.002 doi: 10.1016/j.aml.2018.11.002 |
[9] | T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549–569. http://dx.doi.org/10.1142/S0219199701000494 doi: 10.1142/S0219199701000494 |
[10] | Q. F. Zhang, C. L. Gan, T. Xiao, Z. Jia, An improved result for Klein-Gordon-Maxwell systems with steep potential well, Math. Method. Appl. Sci., 44 (2021), 11856–11862. http://dx.doi.org/10.1002/mma.6514 doi: 10.1002/mma.6514 |
[11] | J. Zhang, Solutions to the critical Klein-Gordon-Maxwell system with external potential, J. Math. Anal. Appl., 455 (2017), 1152–1177. http://dx.doi.org/10.1016/j.jmaa.2017.06.028 doi: 10.1016/j.jmaa.2017.06.028 |
[12] | S. T. Chen, X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn.-A, 38 (2018), 2333–2348. http://dx.doi.org/10.3934/dcds.2018096 doi: 10.3934/dcds.2018096 |
[13] | S. T. Chen, X. H. Tang, Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity, Comput. Math. Appl., 75 (2018), 3358–3366. http://dx.doi.org/10.1016/j.camwa.2018.02.004 doi: 10.1016/j.camwa.2018.02.004 |
[14] | C. L. Gan, T. Xiao, Q. F. Zhang, Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential, Adv. Differ. Equ., 2020 (2020), 167. http://dx.doi.org/10.1186/s13662-020-02634-9 doi: 10.1186/s13662-020-02634-9 |
[15] | E. L. de Moura, O. H. Miyagaki, R. Ruviaro, Positive ground state solutions for quasicritical Klein-Gordon-Maxwell type systems with potential vanishing at infinity, Electron. J. Differ. Eq., 154 (2017), 1–11. |
[16] | D. Qin, X. H. Tang, J. Zhang, Ground states for planar Hamiltonian elliptic systems with critical exponential growth, J. Differ. Equations, 308 (2022), 130–159. http://dx.doi.org/10.1016/j.jde.2021.10.063 doi: 10.1016/j.jde.2021.10.063 |
[17] | J. Zhang, W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. Geom. Anal., 32 (2022), 114. http://dx.doi.org/10.1007/s12220-022-00870-x doi: 10.1007/s12220-022-00870-x |
[18] | Q. Q. Li, J. J. Nie, W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 33 (2023), 126. http://dx.doi.org/10.1007/s12220-022-01171-z doi: 10.1007/s12220-022-01171-z |
[19] | H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pur. Appl. Math., 36 (1983), 437–477. http://dx.doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405 |
[20] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1 |