Research article Special Issues

The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method

  • Received: 14 December 2021 Revised: 01 March 2022 Accepted: 07 March 2022 Published: 31 March 2022
  • MSC : 35C07, 35C08, 35G50, 35Q60, 35R11, 65H10

  • In this article, we used direct algebraic method (DAM) and sine-Gordon expansion method (SGEM), to find the analytical solutions of conformable time-fractional modified nonlinear Schrödinger equation (CTFMNLSE) and finally, we present numerical results in tables and charts.

    Citation: Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Nabil Mlaiki, Thabet Abdeljawad. The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method[J]. AIMS Mathematics, 2022, 7(6): 10807-10827. doi: 10.3934/math.2022604

    Related Papers:

  • In this article, we used direct algebraic method (DAM) and sine-Gordon expansion method (SGEM), to find the analytical solutions of conformable time-fractional modified nonlinear Schrödinger equation (CTFMNLSE) and finally, we present numerical results in tables and charts.



    加载中


    [1] D. Vivek, K. Kanagarajan, E. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0
    [2] R. Kumar, S. kumar, S. kaur, S. Jain, Time fractional generalized Korteweg-de Vries equation: Explicit series solutions and exact solutions, J. Fract. Calc. Nonlinear Syst., 2 (2021), 62–77.
    [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [4] M. Bouloudene, M. A. Alqudah, F. Jarad, Y. Adjabi, T. Abdeljawad, Nonlinear singular $p$-Laplacian boundary value problems in the frame of conformable derivative, DCDS-S, 14 (2021), 3497–3528. https://doi.org/10.3934/dcdss.2020442 doi: 10.3934/dcdss.2020442
    [5] S. I. Butt, M. Nadeem, S. Qaisar, A. O. Akdemir, T. Abdeljawad, Hermite-Jensen-Mercer type inequalities for conformable integrals and related results, Adv. Differ. Equ., 2020 (2021), 501. https://doi.org/10.1186/s13662-020-02968-4 doi: 10.1186/s13662-020-02968-4
    [6] A. Younas, T. Abdeljawad, R. Batool, A. Zehra, M. A. Alqudah, Linear conformable differential system and its controllability, Adv. Differ. Equ., 2020 (2020), 449. https://doi.org/10.1186/s13662-020-02899-0 doi: 10.1186/s13662-020-02899-0
    [7] M. Eslami, H. Rezazadeh, M. Rezazadeh, S. S. Mosavi, Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation, Opt. Quant. Electron., 49 (2017), 279. https://doi.org/10.1007/s11082-017-1112-6 doi: 10.1007/s11082-017-1112-6
    [8] S. Arshed, A. Biswas, A. K. Alzahrani, M. R. Belic, Solitons in nonlinear directional couplers with optical metamaterials by first integral method, Optik, 218 (2020), 165208. https://doi.org/10.1016/j.ijleo.2020.165208 doi: 10.1016/j.ijleo.2020.165208
    [9] S. Duran, Solitary wave solutions of the coupled konno-oono equation by using the functional variable method and the two variables $(G^{\prime}/G, 1/G)$-expansion method, Adıyaman Univ. J. Sci., 10 (2020), 585–594. https://doi.org/10.37094/adyujsci.827964 doi: 10.37094/adyujsci.827964
    [10] J. Y. Hu, X. B. Feng, Y. F. Yang, Optical envelope patterns perturbation with full nonlinearity for Gerdjikov-Ivanov equation by trial equation method, Optik, 240 (2021), 166877. https://doi.org/10.1016/j.ijleo.2021.166877 doi: 10.1016/j.ijleo.2021.166877
    [11] M. Odabasi, E. Misirli, On the solutions of the nonlinear fractional differential equations via the modified trial equation method, Math. Method. Appl. Sci., 41 (2018), 904–911. https://doi.org/10.1002/mma.3533 doi: 10.1002/mma.3533
    [12] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172 (2018), 545–553. https://doi.org/10.1016/j.ijleo.2018.06.111 doi: 10.1016/j.ijleo.2018.06.111
    [13] M. T. Darvishi, M. Najafi, A. M. Wazwaz, Some optical soliton solutions of space-time conformable fractional Schrödinger-type models, Phys. Scr., 96 (2021), 065213. https://doi.org/10.1088/1402-4896/abf269 doi: 10.1088/1402-4896/abf269
    [14] U. Younas, M. Younis, A. R. Seadawy, S. T. R. Rizvi, S. Althobaiti, S. Sayed, Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative, Res. Phys., 20 (2021), 103766. https://doi.org/10.1016/j.rinp.2020.103766 doi: 10.1016/j.rinp.2020.103766
    [15] S. R. Aderyani, R. Saadati, J. Vahidi, T. Allahviranloo, The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the Trial equation method and modified Trial equation method, Adv. Math. Phys., 2022 (2022), 4318192. https://doi.org/10.1155/2022/4318192 doi: 10.1155/2022/4318192
    [16] S. R. Aderyani, R. Saadati, J. Vahidi, J. F. Gómez-Aguilar, The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by first integral method and functional variable method, Opt. Quant. Electron., 54 (2022), 218. https://doi.org/10.1007/s11082-022-03605-y doi: 10.1007/s11082-022-03605-y
    [17] Y. Tian, J. Liu, Direct algebraic method for solving fractional Fokas equation, Therm. Sci., 25 (2021), 2235–2244. https://doi.org/10.2298/TSCI200306111T doi: 10.2298/TSCI200306111T
    [18] S. Duran, Exact solutions for time-fractional Ramani and Jimbo-Miwa equations by direct algebraic method, Adv. Sci. Eng. Med., 12 (2020), 982–988. https://doi.org/10.1166/asem.2020.2663 doi: 10.1166/asem.2020.2663
    [19] S. Ham, Y. J. Hwang, S. Kwak, J. Kim, Unconditionally stable second-order accurate scheme for a parabolic sine-Gordon equation, AIP Adv., 12 (2022), 025203. https://doi.org/10.1063/5.0081229 doi: 10.1063/5.0081229
    [20] A. T. Deresse, Double Sumudu transform iterative method for one-dimensional nonlinear coupled Sine-Gordon equation, Adv. Math. Phys., 2022 (2022), 6977692. https://doi.org/10.1155/2022/6977692 doi: 10.1155/2022/6977692
    [21] Y. Yıldırım, E. Topkara, A. Biswas, H. Triki, M. Ekici, P. Guggilla, et al., Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by sine-Gordon equation approach, J. Opt., 50 (2021), 322–329. https://doi.org/10.1007/s12596-021-00685-z doi: 10.1007/s12596-021-00685-z
    [22] K. K. Ali, M. S. Osman, M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method, Alex. Eng. J., 59 (2020), 1191–1196. https://doi.org/10.1016/j.aej.2020.01.037 doi: 10.1016/j.aej.2020.01.037
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1947) PDF downloads(119) Cited by(9)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog