Citation: Yanxia Hu, Qian Liu. On traveling wave solutions of a class of KdV-Burgers-Kuramoto type equations[J]. AIMS Mathematics, 2019, 4(5): 1450-1465. doi: 10.3934/math.2019.5.1450
[1] | M. R. Miura, Backlund Transfortion, New York: Springer-Verlag, 1978. |
[2] | W. Peng, S. Tian, T. Zhang, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation, Europhysics Letters, 123 (2018), 50005. |
[3] | X. Wang, T. Zhang, M. Dong, Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation, Appl. Math. Lett., 86 (2018), 298304. |
[4] | L. Feng, T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett., 78 (2018), 133-140. |
[5] | D. Guo, S. Tian, T. Zhang, Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, Comput. Math.Appl., 77 (2019), 770-778. doi: 10.1016/j.camwa.2018.10.017 |
[6] | L. Feng, S. Tian, T. Zhang, Solitary wave, breather wave and rogue wave solutions of an inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism, Rocky MT J. Math., 49 (2019), 29-45. |
[7] | W. Peng, S. Tian, T. Zhang, Breather waves and rational solutions in the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Comput. Math. Appl., 77 (2019), 715-723. doi: 10.1016/j.camwa.2018.10.008 |
[8] | M. Dong, S. F. Tian, X. W. Yan, et al, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 75 (2018), 957-964. doi: 10.1016/j.camwa.2017.10.037 |
[9] | X. Yan, S. Tian, M. Dong, et al. Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 76 (2018), 179-186. |
[10] | S. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via theFokas method, J. Differ. Equations, 262 (2017), 506-558. doi: 10.1016/j.jde.2016.09.033 |
[11] | W. Ma, T. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scripta, 82 (2010), 065003. |
[12] | J. He, X. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020 |
[13] | A. M. Wazwaz, Two reliable methods for solving variants of the KdV equation with compact and noncompact structures, Chaos, Solitons and Fractals, 28 (2006), 454-462. doi: 10.1016/j.chaos.2005.06.004 |
[14] | T. Xia, B. Li, H. Zhang, New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation, Applied Mathematics E-Notes, 1 (2001), 139-142. |
[15] | Z. Feng, The first integral method to study the Burgers-Korteweg-de Vries equation, Journal of Physics A, 35 (2002), 343-349. doi: 10.1088/0305-4470/35/2/312 |
[16] | Z. Feng, X. Wang, The first integral method to the two-dimensional Burgers-KdV equation, Phys. Lett. A, 308 (2002), 173-178. |
[17] | W. Ma, J. H. Lee, A transfortiom rational function method and exact solutions to (3+1)-dimensional Jimbo-Miwa equation, Chaos, Solitons and Fractals, 42 (2009), 1356-1363. doi: 10.1016/j.chaos.2009.03.043 |
[18] | P. J. Olver, Applications of Lie groups to differential equations, New York: Springer-Verlag, 1999. |
[19] | W. G. Bluman, C. S. Anco, Symmetry and integration methods for differential equations, New York: Springer-Verlag, 2002. |
[20] | X. Wang, S. Tian and T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, proceedings of the american mathematical society, 146 (2018), 3353-3365. doi: 10.1090/proc/13765 |
[21] | S. Tian, T. Zhang, Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition, proceedings of the american mathematical society, 146 (2018), 1713-1729. |
[22] | J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Beijing: Science Press, 2013. |
[23] | X. Wang, S. Tian, C. Qin, et al, A Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, Europhysics Letters, 114 (2016), 20003. |
[24] | Z. Feng, Traveling waves to a reaction-diffusion equation, Discret. Contin. Dyn. S., Supp., 12 (2007), 382-390. |
[25] | H. Liu, J. Li, L. Liu, Lie symmetry analysia, optimal systems and exact solutions to the fifth-order KdV types of equations, J. Math. Anal. Appl., 368 (2010), 551-558. doi: 10.1016/j.jmaa.2010.03.026 |
[26] | H. Liu, J. Li, Q. Zhang, Lie symmetry analysis and exact explicit solutions for general Burgers' equation, J. Comput. Appl. Math., 228 (2009), 1-9. doi: 10.1016/j.cam.2008.06.009 |
[27] | M. L. Gandarias, C. M. Khalique, Symmetries, solutions and conservation laws of a class of nonlinear dispersive wave equations, Commun. Nonlinear Sci., 32 (2016), 114-121. doi: 10.1016/j.cnsns.2015.07.010 |
[28] | Y. Hu, C. Xue, One-parameter Lie groups and inverse integrating factors of n-th order autonomous systems, J. Math. Anal. Appl., 388 (2012), 617-626. doi: 10.1016/j.jmaa.2011.11.026 |
[29] | Y. Hu, K. Guan, Techniques for searching first integrals by Lie group and application to gyroscope system, Sci. China Math., 48 (2005), 1135-1143. doi: 10.1360/04ys0141 |
[30] | Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermel equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356 |
[31] | J. Topper, T. Kawahara, Approximate equation for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn, 44 (1978), 663-666. doi: 10.1143/JPSJ.44.663 |
[32] | V. Y. Shkadov, Solitary waves in a layer of viscous liquid, Fluid Dynamics, 12 (1977), 52-55. doi: 10.1007/BF01074624 |
[33] | B. I. Cohen, J. A. Krommers, W. M. Tang, et al. Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971-992. doi: 10.1088/0029-5515/16/6/009 |
[34] | S. D. Liu, S. K. Liu, Z. Huang, et al. On a class of nonlinear Schrödinger equation III, Progress in Natural Science, 9 (1999), 912-918. |
[35] | Z. Fu, S. D. Liu, S. K. Liu, New exact solutions to the Kdv-Burgers-Kuramoto equation, Chaos, Solitons and Fractals, 23 (2005), 609-616. doi: 10.1016/j.chaos.2004.05.012 |
[36] | Abdul-Majid Wazwaz, Partial differential equations and solitary waves theory, Beijing: Higher Education Press, 2009. |
[37] | X. Chen, Z. Fu, S. Liu, Periodic solutions to KdV-Burgers-Kuramoto equations, Commun. Theor. Phys., 45 (2006), 815-818. doi: 10.1088/0253-6102/45/5/011 |
[38] | Y. Fu, Z. Liu, Persistence of travelling fronts of Kdv-Burgers-Kuramoto equation, Applied Mathematics and Computation, Chaos, Solitons and Fractals, 216 (2010), 2199-2206. |
[39] | J. Nickel, Travelling wave solutions of the Kuramoto-Sivashinsky equation, Chaos, Solitons and Fractals, 33 (2007), 1376-1382. doi: 10.1016/j.chaos.2006.01.087 |
[40] | Y. Hu, Lie symmetry analysis and exact solutions to a class of new KdV-Burgers-Kuramoto type equation, Chinese Control and Decision Conference, (2016), 6705-6709. |