Citation: M. R. Nourizadeh, N. Mikaeilvand, T. Allahviranloo. Existence and uniqueness solutions of fuzzy integration-differential mathematical problem by using the concept of generalized differentiability[J]. AIMS Mathematics, 2019, 4(5): 1430-1449. doi: 10.3934/math.2019.5.1430
[1] | B. Ahmad and S. Sivasundaram, Dynamics and stability of impulsive hybrid setvalued integration and differential equations with delay, Nonlinear Analysis: Theory, Methods & Applications, 65 (2006), 2082-2093. |
[2] | A. Ahmadian, M. Suleiman, S. Salahshour, et al. A Jacobi operational matrix for solving a fuzzy linear differential equation, Adv. Differ. Equ-NY, 2013 (2013), 104. |
[3] | R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for differential equations with uncertainty, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 2859-2862. |
[4] | R. P. Agarwal, D. O'Regan and V. Lakshmikantham, Viability theory and fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 536-580. |
[5] | T. Allahviranloo, S. Abbasbandy, O. Sedaghatfar, et al. A New Method for Solving Fuzzy Integration and differential Equation Under Generalized Differentiability, Neural Computing and Applications, 21 (2012), 191-196. doi: 10.1007/s00521-011-0759-3 |
[6] | T. Allahviranloo, S. Hajighasemi, M. Khezerloo, et al. Existence and Uniqueness of Solutions of Fuzzy Volterra Integration and differential Equations, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (2010), 491-500. |
[7] | T. Allahviranloo, A. Amirteimoori, M. Khezerloo, et al. A New Method for Solving Fuzzy Volterra Integration and differential Equations, Australian Journal of Basic and Applied Sciences, 5 (2011), 154-164. |
[8] | T. Allahviranloo, S. Salahshour and S. Abbasbandy, Solving fuzzy differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372-1381. doi: 10.1016/j.cnsns.2011.07.005 |
[9] | T. Allahviranloo, S. Abbasbandy, O. Sedaghatfar, et al. A New Method for Solving Fuzzy Integration and differential Equation Under Generalized Differentiability, Neural Computing and Applications, 21 (2012), 191-196. doi: 10.1007/s00521-011-0759-3 |
[10] | T. Allahviranloo, M. Ghanbari, E. Haghi, et al. A note on "Fuzzy linear systems", Fuzzy Set. Syst., 177 (2011), 87-92. doi: 10.1016/j.fss.2011.02.010 |
[11] | T. Allahviranloo, S. Abbasbandy, N. Ahmady, et al. Improved predictor corrector method for solving fuzzy initial value problems, Inform. Sciences, 179 (2009), 945-955. doi: 10.1016/j.ins.2008.11.030 |
[12] | T. Allahviranloo, N. A. Kiani and N. Motamedi, Solving fuzzy differential equations by differential transformation method, Inform. Sciences, 179 (2009), 956-966. doi: 10.1016/j.ins.2008.11.016 |
[13] | T. Allahviranloo, S. Abbasbandy, S. Salahshour, et al. A new method for solving fuzzy linear differential equations, Computing, 92 (2011), 181-197. doi: 10.1007/s00607-010-0136-6 |
[14] | T. Allahviranloo and S. Salahshour, A new approach for solving first order fuzzy differential equation, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 81 (2010), 522-531. |
[15] | T. Allahviranloo and S. Salahshour, Euler method for solving hybrid fuzzy differential equation, Soft Comput., 15 (2011), 1247-1253. doi: 10.1007/s00500-010-0659-y |
[16] | L. C. Barros, R. C. Bassanezi and P. A. Tonelli, Fuzzy modeling in population dynamics, Ecological Modeling, 128 (2000), 27-33. doi: 10.1016/S0304-3800(99)00223-9 |
[17] | B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581-599. doi: 10.1016/j.fss.2004.08.001 |
[18] | B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sciences, 177 (2007), 1648-1662. doi: 10.1016/j.ins.2006.08.021 |
[19] | B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119-141. doi: 10.1016/j.fss.2012.10.003 |
[20] | B. Bede, A note on "two-point boundary value problems associated with non-linear fuzzy differential equations", Fuzzy Set. Syst., 157 (2006), 986-989. doi: 10.1016/j.fss.2005.09.006 |
[21] | J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 43-54. doi: 10.1016/S0165-0114(98)00141-9 |
[22] | S. S. L. Chang and L. Zadeh, On fuzzy mapping and control, IEEE T. Syst. Man Cy., 2 (1972), 30-34. |
[23] | Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos Soliton. Fract., 38 (2008),112-119. doi: 10.1016/j.chaos.2006.10.043 |
[24] | Y. Chalco-Cano, A. Rufian-Lizana, H. Román-Flores, et al. Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Set. Syst., 219 (2013), 49-67. doi: 10.1016/j.fss.2012.12.004 |
[25] | M. Chen and C. Han, Some topological properties of solutions to fuzzy differential systems, Inform. Sciences, 197 (2012), 207-214. doi: 10.1016/j.ins.2012.02.013 |
[26] | D. Dubois and H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy Set. Syst., 8 (1982), 225-233. doi: 10.1016/S0165-0114(82)80001-8 |
[27] | L. J. Jowers, J. J. Buckley and K. D. Reilly, Simulating continuous fuzzy systems, Inform. Sciences, 177 (2007), 436-448. doi: 10.1016/j.ins.2006.03.005 |
[28] | O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7 |
[29] | A. Khastan, J. J. Nieto and R. Rodríguez-López, Variation of constant formula for first order fuzzy differential equations, Fuzzy Set. Syst., 177 (2011), 20-33. doi: 10.1016/j.fss.2011.02.020 |
[30] | A. Khastan, J. J. Nieto, R. Rodríguez-López, Fuzzy delay differential equations under generalized differentiability, Inform. Sciences, 275 (2014), 145-167 doi: 10.1016/j.ins.2014.02.027 |
[31] | S. Khezerloo, T. Allahviranloo, S. H. Ghasemi, et al. Expansion Method for Solving Fuzzy Fredholm-Volterra Integral Equations, International Conference on Information Processing and Management of Uncertainty in KnowledgeBased Systems, 81 (2010), 501-511. |
[32] | V. B. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1992. |
[33] | V. Lakshmikantham and R. N. Mohapatra, Theory of fuzzy differential equations and inclusions, Taylor Francis, London, 2003. |
[34] | V. Lakshmikantham and S. Leela, Fuzzy differential systems and the new concept of stability, Nonlinear Dynamics and Systems Theory, 1 (2001), 111-119. |
[35] | V. Lupulescu, On a class of fuzzy functional differential equations, Fuzzy Set. Syst., 160 (2009), 1547-1562. doi: 10.1016/j.fss.2008.07.005 |
[36] | V. Lupulescu, Initial value problem for fuzzy differential equations under dissipative conditions, Inform. Sciences, 178 (2008), 4523-4533. doi: 10.1016/j.ins.2008.08.005 |
[37] | J. K. Hale, Theory of functional differential equations, Springer, New York, 1997. |
[38] | M. T. Malinowski, Interval differential equations with a second type Hukuhara derivative, Applied Mathematics Letters, 24 (2011), 2118-2123. doi: 10.1016/j.aml.2011.06.011 |
[39] | M. T. Malinowski, Random fuzzy differential equations under generalized Lipschitz condition, Nonlinear Analysis: Real World Applications, 13 (2012), 860-881. doi: 10.1016/j.nonrwa.2011.08.022 |
[40] | M. T. Malinowski, Existence theorems for solutions to random fuzzy differential equations, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010), 1515-1532. |
[41] | M. T. Malinowski, On random fuzzy differential equations, Fuzzy Set. Syst., 160 (2009), 3152-3165. doi: 10.1016/j.fss.2009.02.003 |
[42] | M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, et al. Fuzzy differential equations and the extension principle, Inform. Sciences, 177 (2007), 3627-3635. doi: 10.1016/j.ins.2007.02.039 |
[43] | J. J. Nieto, A. Khastan and K. Ivaz, Numerical solution of fuzzy differential equations under generalized differentiability, Nonlinear Analysis: Hybrid Systems, 3 (2009), 700-707. doi: 10.1016/j.nahs.2009.06.013 |
[44] | J. J. Nieto, The Cauchy problem for continuous fuzzy differential equations, Fuzzy Set. Syst., 102 (1999), 259-262. doi: 10.1016/S0165-0114(97)00094-8 |
[45] | J. J. Nieto and R. Rodríguez-López, Bounded solutions for fuzzy differential and integral equations, Chaos Soliton. Fract., 27 (2006), 1376-1386. doi: 10.1016/j.chaos.2005.05.012 |
[46] | J. Y. Park and J. U. Jeong, On existence and uniqueness of solutions of fuzzy integration and differential equations, Indian J. Pure Appl. Math., 34 (2003), 1503-1512. |
[47] | P. Prakash, J. J. Nieto, J. H. Kim, et al. Existence of solutions of fuzzy neutral differential equations in Banach spaces, Dynamical Systems and Applications, 14 (2005), 407-418. |
[48] | M. L. Puri and D. Ralescu, Differential for fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552-558. doi: 10.1016/0022-247X(83)90169-5 |
[49] | S. Salahshour and T. Allahviranloo, Applications of fuzzy Laplace transforms, Soft Computing, 17 (2013), 145-158. doi: 10.1007/s00500-012-0907-4 |
[50] | S. Salahshour and T. Allahviranloo, Application of fuzzy differential transform method for solving fuzzy Volterra integral equations, Appl. Math. Model., 37 (2013), 1016-1027. doi: 10.1016/j.apm.2012.03.031 |
[51] | S. Salahshour and M. Khan, Exact solutions of nonlinear interval Volterra integral equations, International Journal of Industrial Mathematics, 4 (2012), 375-388. |
[52] | S. Salahshour, M. Khezerloo, S. Hajighasemi, et al. Solving Fuzzy Integral Equations of the Second Kind by Fuzzy Laplace Transform Method, International Journal of Industrial Mathematics, 4 (2012), 21-29. |
[53] | L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1311-1328. |
[54] | S. Song and C. Wu, Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 55-67. doi: 10.1016/S0165-0114(97)00399-0 |
[55] | M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equations with the Fuzzy Caputo Fractional Derivative using the Jacobi polynomials operational matrix, International Journal of Computer Science and Network Security, 18 (2018), 241-252. |
[56] | X. P. Xue and Y. Q. Fu, On the structure of solutions for fuzzy initial value problem, Fuzzy Set. Syst., 157 (2006), 212-229. doi: 10.1016/j.fss.2005.06.009 |
[57] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X |