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1. Introduction 

The theory of calculus, which deals with the investigation and applications of derivatives and 

integrals of arbitrary order has a long history. The theory of calculus developed mainly as a pure 

theoretical field of mathematics, in the last decades it has been used in various fields as rheology, 

viscoelasticity, electrochemistry, diffusion processes, etc [33,34]. Calculus have undergone expanded 

study in recent years as a considerable interest both in mathematics and in applications. One of the 

recently influential works on the subject of calculus is the monograph of Podlubny [50] and the other 

is the monograph of Kilbas et al. [34]. The differential equations have great application potential in 

modeling a variety of real world physical problems, which deserves further investigations. Among 

these we might include the modeling of earthquakes, the fluid dynamic traffic model with derivatives, 
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the measurement of viscoelastic material properties, etc. Consequently, several research papers were 

done to investigate the theory and solutions of differential equations (see [18,21,36,38] and 

references therein). 

The concept of solution for differential equations with uncertainty was introduced by Agarwal, 

Lakshmikantham and Nieto [1]. They considered Riemann-Liouville differentiability concept based 

on the Hukuhara differentiability to solve fuzzy differential equations. Arshad and Lupulescu in [12] 

proved some results on the existence and uniqueness of solution to fuzzy differential equation under 

Hukuhara Riemann-Liouville differentiability. Some existence results for nonlinear fuzzy differential 

equations of order involving the Riemann-Liouville derivative have been proposed in [30,31]. The 

solutions of fuzzy differential equations are investigated by using the fuzzy Laplace transforms in [52]. 

Recently, the concepts of derivatives for a fuzzy function are either based on the notion of Hukuhara 

derivative [25] or on the notion of strongly generalized derivative. The concept of Hukuhara derivative 

is old and well known, but the concept of strongly generalized derivative was recently introduced by 

Bede and Gal [13]. Using this new concept of derivative, the classes of fuzzy  differential equations 

have been extend and studied in some papers such as: Ahmad et al. [4], Allahviranloo et al. [9–11,49], 

Bede et al. [14–17], Gasilov [20], Khastan et al. [27–29], Malinowski [42–44] and Nieto [46]. 

Furthermore, by using this new concept of derivative, Allahviranloo et al. in [7,8] have studied the 

concepts about generalized Hukuhara Riemann-Liouville and Caputo differentiability of fuzzy valued 

functions. Later, authors have proved the existence and uniqueness of solution for fuzzy differential 

equation by using different methods. Alikhani et al. in [6] have proved the existence and uniqueness 

results for nonlinear fuzzy integral and integration and differential equations by using the method of 

upper and lower solutions. Mazandarani et al. [45] studied the solution to fuzzy initial value 

problem under Caputo-type fuzzy derivatives by a modified Euler method. Besides, authors studied 

some results on the existence and uniqueness of solution to fuzzy differential equation under Caputo 

type-2 fuzzy derivative and the definition of Laplace  transform of type-2 fuzzy number-valued 

functions [46–48]. Salahshour et al. [48,51] proposed some new results toward existence and 

uniqueness of solution of fuzzy differential equation. According to the concept of Caputo-type fuzzy 

derivative in the sense of the generalized fuzzy differentiability, Fard et al. [19] extended and 

established some definitions on fuzzy calculus of variation and provide some necessary conditions to 

obtain the fuzzy Euler-Lagrange equation for both constrained and unconstrained fuzzy variational 

problems. Ahmad et al. [5] proposed a new interpretation of fuzzy differential equations and present 

their solutions analytically and numerically. The proposed idea is a generalization of the 

interpretation given in [3,4], where the authors used Zadeh’s extension principle to interpret fuzzy 

differential equations. 

In real world systems, delays can be recognized everywhere and there has been widespread 

interest in the study of delay differential equations for many years. Therefore, delay differential 

equations (or, as they are called, functional differential equations) play an important role in an 

increasing number of system models in biology, engineering, physics and other sciences. There exists 

an extensive amount of literature dealing with delay differential equations and their applications; the 

reader is referred to the monographs [22,35], and the references therein. The study of fuzzy delay 

differential equations is expanding  as a new branch of fuzzy mathematics. Both theory and 

applications have been actively discussed over the last few years. In the literature, the study of fuzzy 

delay differential equations has several interpretations. The first one is based on the notion of 

Hukuhara derivative. Under this interpretation, Lupulescu established the local and global existence 
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and uniqueness results for fuzzy delay differential equations. The second interpretation was 

suggested by Khastan et al. [29] and Hoa et al. [24]. 

In this setting, Khastan et al. proved the existence of two fuzzy solutions for fuzzy delay 

differential equations using the concept of generalized differentiability. Hoa et al. established the 

global existence and uniqueness results for fuzzy delay differential equations using the concept of 

generalized differentiability. Moreover, authors have extended and generalized some comparison 

theorems and stability theorem for fuzzy delays differential equations with definition a new 

Lyapunov-like function. Besides that, some very important extensions of the fuzzy delay differential 

equations In [2,21,28,36,54], the authors considered the fuzzy differential equation with initial value 

𝑥′ 𝑡 = 𝑓 𝑡. 𝑥 𝑡  .     𝑥 𝑡0 =  𝑥0 𝜖 𝐸𝑑       (1.1) 

where f : [0, ∞) × E
d
 → E

d
 and the symbol ′ denotes the first type Hukuhara derivative (classic 

Hukuhara derivative). O. Kaleva also discussed the properties of differentiable fuzzy mappings in [28] 

and showed that if f is continuous and f (t, x) satisfies the Lipschitz condition with respect to x, then 

there exists a unique local solution for the fuzzy initial value problem (1.1). V. Lupulescu proved 

several theorems stating the existence, uniqueness and boundedness of solutions to fuzzy 

differential equations with the concept of inner product on the fuzzy space under classic Hukuhara 

derivative in [36]. 

In [35], V. Lupulescu considered the fuzzy functional differential equation 

 
𝑥′ 𝑡 = 𝑓 𝑡. 𝑥𝑡 .    𝑡 ≥  𝑡0

𝑥 𝑡 = 𝜑 𝑡 − 𝑡0 ∈  𝐸𝑑  . 𝑡0  ≥ 𝑡 ≥ 𝑡0 − 𝜎
            (1.2) 

Where f : [0, ∞) × Cσ → E
d
 and the symbol ′ denotes the first type Hukuhara derivative (classic 

Hukuhara derivative). Author studied the local and global existence and uniqueness results for (1.2) 

by using the method of successive approximations and contraction principle. 

In this paper, we consider fuzzy functional integration and differential equations under form 

 
D𝐻

𝑔
 𝑥 𝑡 = 𝑓 𝑡. 𝑥𝑡 +  𝑔  𝑡. 𝑆. 𝑋𝑆 𝑑𝑠.

𝑡

𝑡0
𝑡 ≥  𝑡0

  𝑥 𝑡 = 𝜑 𝑡 − 𝑡0 =  𝜑0 ∈  𝐶𝜎  . 𝑡0  ≥ 𝑡 ≥ 𝑡0 − 𝜎
           (1.3) 

We establish the local and global existence and uniqueness results for (1.3) by using the method 

of successive  approximations and contraction principle. This direction of research is motivated 

by the results of B. Bede and S. G. Gal [17], Chalco-Cano and Roman-Flores [23], Marek T. 

Malinowski [38–41], Bashir Ahmad, S. Sivasundaram [1], T. Allahviranloo et al. [5–7]. 

The paper is organized as follows. In Section 2, we collect the fundamental notions and facts 

about fuzzy set space, fuzzy differentiation and integration. In Section 3, we discuss the FFIDEs with 

a two kinds of fuzzy derivative. Some examples of this class having two different solutions were 

presented in Section 4. 

2. Preliminaries and notation 

In this section, we give some notations and properties related to fuzzy set space, and summarize 

the major  results for integration and differentiation of fuzzy set-valued mappings. We recall  some 

notations and concepts presented in detail in recent series works of Professor V. Lakshmikantham, et 

al. (see [33,34]). 
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Let Kc(R
d
) denote the collection of all nonempty compact and convex subsets of R

d
 and scalar 

multiplication in Kc(R
d
) as usual, i.e. for A, B ∈ Kc(R

d
) and λ ∈ R. 

A + B = {a + b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}. 

The Hausdorff distance 𝑑𝐻 in Kc (R
d
) is defined as follows 

              d𝐻  (𝐴. 𝐵)  

= max  
𝑠𝑢𝑝
𝑎 ∈ 𝐴

 
𝑖𝑛𝑓

𝑏 ∈ 𝐵
  ∥ 𝑎 − 𝑏 ∥  𝑅𝑛  .

𝑠𝑢𝑝
𝑎 ∈ 𝐴

 
𝑖𝑛𝑓

𝑏 ∈ 𝐵
∥ 𝑎 − 𝑏 ∥  𝑅𝑛  

where A, B ∈ (Kc,R
d
),  .  𝑅𝑛  denotes the Euclidean norm in R

d
. It is known that (Kc,R

d
), 𝑑𝐻 is a 

complete metric space. Denote E
d
 = {ω : R

d
 → [0, 1] such that ω(z) satisfies (i)-(iv) stated below} 

i. ω is normal, that is, there exists z0 ∈ R
d
 such that ω(z0) = 1; 

ii. ω is fuzzy convex, that is, for 0 ≤ λ ≤ 1 

ω(λz1 + (1 - λ)z2) ≥ min{ω(z1), ω(z2)}, 

for any z1, z2 ∈ R
d
; 

iii. ω is upper semi continuous; 

iv. [ω]
0
 = cl{z ∈ R

d
 : ω(z) > 0} is compact, where cl denotes the closure in (R

d
,  .  ). 

Although elements of E
d
 are often called the fuzzy numbers [57], we shall just call them the fuzzy 

sets. 

For α ∈ (0, 1], denote [ω]
α
 = {z ∈ R

d
 | ω(z) ≥ α}. We will call this set an α-cut ( α- level set) of the 

fuzzy set ω. For ω ∈ E
d 
one has that [ω]

α
 ∈ Kc(Rd) for every α ∈ [0, 1]. For two fuzzys ω1, ω2 ∈ E

d
, 

we denote ω1 ≤ ω2 if and only if [ω1]
α
 ⊂ [ω2]

α
. 

If g : R
d
 × R

d
 → R

d
 is a function then, according to Zadeh’s extension principle[47,57], one can 

extend g to E
d 

× E
d 

→ E
d 

by the formula g(ω1, ω2)(z) =sup  z=g(z1,z2) min {ω1(z1), ω2(z2)} . It is 

well known that 

if g is continuous then [g (ω1, ω2)]
α
 = g([ω1]

α
, [ω2]

α
) for all ω1, ω2 ∈ E

d
, α ∈ [0, 1]. Especially, for 

addition and scalar multiplication in fuzzy set space Ed, we have [ω1 + ω2]
α
 = [ω1]

α
 + [ω2]

α
, [λω1]

α
 

=λ[ω1]
α
. The notation [ω]

α
 = [ω(α), ω(α)]. We refer to ω and ω as the lower and upper branches of 

ω, respectively.  

For ω ∈E
d
, we define the length of ω as len (ω) = ω(α) - ω(α) In the case d = 1, we have len(ω) = 

ω(α) - ω(α). Let us denote  𝐷0 [ω1, ω2] = sup {dH  ([ω1]
α
, [ω2]

α
) : 0 ≤ α ≤ 1} the distance between 

ω1 and ω2 in E
d
, where  dH ([ω1]

α
, [ω2]

α
) is Hausdorff distance between two set[ω1]

α
, [ω2]

α
 of 

(Kc,R
d
). Then (E

d
, dH) is a completespace. Some properties of metric D are as follows.  

𝐷0 [ω1 + ω3, ω2 + ω3] = 𝐷0 [ω1, ω2], 𝐷0 [λω1, λω2] = |λ| 𝐷0 [ω1, ω2], 𝐷0 [ω1, ω2] ≤ 𝐷0 [ω1, 

ω3] + 𝐷0 [ω3, ω2], for all ω1, ω2, ω3 ∈ E
d
 and λ ∈ R. Let ω1, ω2 ∈ E

d
. If there exists ω3 ∈ E

d
 such 

that ω1 = ω2 + ω3 then ω3 is called the difference of ω1, ω2 and it is denoted  ω1 Ө ω2. Let us 

remark that ω1 Ө ω2 ≠ ω1 + (-1) ω2. 

Remark 2.1. If for fuzzy numbers ω1, ω2, ω3 ∈ E
d
 there exist Hukuhara difference ω1 Ө ω2, ω1 Ө 

ω3 then 𝐷0 [ω1 Ө ω2, 0] = 𝐷0 [ω1, ω2] and 𝐷0 [ω1 ω2, ω1 Ө ω3] = 𝐷0 [ω2, ω3]. 

The strongly generalized differentiability was introduced in [17] and studied in [18,23,26, 

32,37,42,55,56]. 
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Definition 2.1. (See [17,48,49]) Let x : (a, b) → E
d
 and t ∈(a, b). We say that x is strongly 

generalized differentiable at t, if there exists DH 
g
 x(t) ∈ E

d
, such that either 

(i) for all h > 0 sufficiently small, the differences x (t + h) ⊖ x(t), x(t) ⊖x(t - h) exist and the limits 

(in the metric 𝐷0) 

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 +  ⊖ 𝑥(𝑡)


=  

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 +  ⊖ 𝑥(𝑡)


=  D𝐻

𝑔
 𝑥 𝑡  

or 

(ii) for all h > 0 sufficiently small, the difference x (t) ⊖ x(t + h), x(t - h) ⊖ x(t) exist and the limits 

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 ⊖ 𝑥(𝑡 + )

−
=  

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 −  ⊖ 𝑥(𝑡)

−
=  D𝐻

𝑔
 𝑥 𝑡  

or 

(iii) for all h > 0 sufficiently small, the difference  x (t + h) ⊖ x(t), ∃x(t - h) ⊖ x(t) exist and the 

limits 

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 +  ⊖ 𝑥(𝑡)


=  

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 −  ⊖ 𝑥(𝑡)

−
=  D𝐻

𝑔
 𝑥 𝑡  

(iv) for all h > 0 sufficiently small, the difference x (t) ⊖ x(t + h), ∃x(t) ⊖ x(t - h) exist and the 

limits 

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 ⊖ 𝑥(𝑡 + )

−
=  

𝑙𝑖𝑚
 ↘ 0+   

𝑥 𝑡 ⊖ 𝑥(𝑡 − )


=  D𝐻

𝑔
 𝑥 𝑡 . 

In this definition, case (i) ((i)-differentiability for short) corresponds to the classic derivative, so this 

differentiability concept is a generalization of the Hukuhara derivative. In Ref. [17], B. Bede and S.G. 

Gal consider four cases for derivative. In this paper we consider only the two first of Definition. 

In the other cases, the derivative is trivial because it is reduced to a crisp element 

Lemma 2.1. (B, Bede and S. G. Gal [17]) If x(t) =(z1(t), z2(t), z3(t)) is triangular number valued 

function, then 

(i) if x is (i)-differentiable (i.e. Hukuhara differentiable) then DH g x(t) = (z  ́1(t), z 2́(t), z 3́(t)); 

(ii) if x is (ii)-differentiable then DH g x(t) = (z  ́3(t),z  ́2(t), z 1́(t)). 

Lemma 2.2. (see [23]) Let x ∈ E
1
 and put [x(t)]α =[x(t, α), x(t, α)] for each α ∈ [0, 1]. 

(i) If x is (i)-differentiable then x(t, α), x(t, α) are differentiable functions and we have 

[D𝐻
𝑔

 𝑥 𝑡 ]𝛼 =  𝑥′ 𝑡. 𝛼 .  𝑥
′
  𝑡. 𝛼  ∙            (2.1) 

(ii) If x is (ii)-differentiable then x(t, α), x(t, α) are differentiable functions and we have: 

(iii)        [D𝐻
𝑔

 𝑥 𝑡 ]𝛼 =   𝑥
′
 𝑡. 𝛼 .  𝑥 ′ 𝑡. 𝛼  ∙             (2.2) 

Definition 2.2. [49,53] We say that a point t ∈ (a, b), is a switching for the differentiability of x, if in 

any neighborhood V of t there exist points t1 < t < t2 such that 

(type I) at t1 (2.1) holds while (2.2) does not hold and at t2 (2.2) holds and (2.1) not hold, or 

(type II) at t1 (2.2) holds while (2.1) does not hold and at t2 (2.1) holds and (2.2) not hold. 
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Lemma 2.3. Let a(t),b(t) and c(t) be real valued nonnegative continuous functions defined on R+, d 

≥ 0 is a constant for which the inequality 

a  t ≤ 𝑑 +    𝑏  𝑆 𝑎  𝑆 + 𝑏 𝑆   𝑐 𝑟 𝑎  𝑟 𝑑𝑟
𝑡

0

  𝑑𝑠
𝑡

0

 

hold for all t ∈ R+. Then 

a  t ≤ 𝑑 +  1 +  𝑏  𝑠 𝑒𝑥𝑝
𝑡

0

   (𝑏 𝑟 + 𝑐  𝑟 )𝑑𝑟
𝑠

0

 𝑑𝑠 ∙  

3. Main results 

For σ > 0 let Cσ = C([-σ, 0], Ed) denote the space of continuous mappings from [-σ, 0] to Ed. Define 

a metric Dσ in Cσ by 

𝐷𝜎   𝑥. 𝑦 =  
𝑠𝑢𝑝

𝑡 ∈ [−𝜏. 0) 𝐷0  𝑥 𝑡 . 𝑦 𝑡  ∙ 

Let p > 0. Denote I = [t0, t0 + p], J = [t0 - σ, t0] ∪ I = [t0 - σ, t0 + p]. For any t ∈ I denote by the 

element of Cσ defined by xt(s) = x (t + s) for s ∈ [-σ, 0]. 

Let us consider the fuzzy functional integration and differential equations (FFIDEs) with generalized 

Hukuhara derivative under form 

 
D𝐻

𝑔
 𝑥 𝑡 = 𝑓  𝑡. 𝑥𝑡 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠. 𝑡 ≥  𝑡0

𝑡

𝑡0

𝑥 𝑡 = 𝜑 𝑡 − 𝑡0 =  𝜑0  ∈   𝐶𝜎 . 𝑡0  ≥ 𝑡 ≥ 𝑡0 − 𝜎
            (3.1) 

Where f : I × Cσ → E
d
, g : I × I × Cσ → E

d
, x ∈Cσ and the symbol DH 

g
 denotes the generalized 

Hukuhara derivative from Definition (2.1). By a solution to equation (3.1) we mean a fuzzy mapping 

x ∈C (J, E
d
), that satisfies: 

X (t) = 𝜑 (t - t0) for t ∈ [t0 -σ, t0], x is differentiable on [t0, t0 + p] and 

𝐷𝐻
𝑔

 𝑥 𝑡  =𝑓  𝑡. 𝑥𝑡 +  𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠. 𝑓𝑜𝑟 𝑡 ∈  𝐼
𝑡

𝑡0
 

Lemma 3.1. Assume that f ∈ C (I × Cσ, E
d
), g ∈C (I × I × Cσ , E

d
) and x ∈ C(J, E

d
). Then the fuzzy 

mapping 

𝑡 → 𝑓  𝑡. 𝑥𝑡 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠   
𝑡

𝑡0

 

Belongs to C(I, E
d
). 

Remark 3.1. Under assumptions of the lemma above we have the mapping 

𝑡 → 𝑓  𝑡. 𝑥𝑡 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠 
𝑡

𝑡0

 

Is integrable over the interval I. 

Remark 3.2. If f : I × Cσ → E
d
, g : I × I × Cσ →E

d
 are jointly continuous functions and x ∈ C(J, 

Ed),then the mapping 

𝑡 → 𝑓  𝑡. 𝑥𝑡 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠  
𝑡

𝑡0
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Is bounded on each compact interval I. Also, the function 

𝑡 → 𝑓  𝑡. 𝑥𝑡 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠  
𝑡

𝑡0

 

is bounded on I. 

Lemma 3.2. A fuzzy mapping x : J → E
d
 is called to be a local solution to the problem (3.1) on J if 

and only 

if x is a continuous fuzzy mapping and it satisfies to one of the following fuzzy integral equations 

 
𝑥 𝑡 = 𝜑 𝑡. 𝑡0  𝑓𝑜𝑟 𝑡 ∈ [𝑡0 − 𝜎. 𝑡0]

𝑥 𝑡 = 𝜑 0    𝑓 𝑠. 𝑥𝑠 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠
𝑡

𝑡0
 

𝑡

𝑡0
𝑑𝑠    𝑡 ∈ 𝐼.

          (3.2) 

if x is (i)-differentiable or (iii)-differentiable. 

 

𝑥 𝑡 = 𝜑 𝑡 − 𝑡0  𝑓𝑜𝑟 𝑡 ∈ [𝑡0 − 𝜎. 𝑡0]

𝑥 𝑡 = 𝜑 0  ⊖ (−1)

×   𝑓 𝑠. 𝑥𝑠 +  𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠
𝑡

𝑡0
 

𝑡

𝑡0
𝑑𝑠    𝑡 ∈ 𝐼.       

      (3.3) 

if x is (ii)-differentiable or (iv)-differentiable. Let us remark that in (3.3) it is hidden the following 

statement: there exists Hukuhara difference  

(−1)   𝑓 𝑠. 𝑥𝑠 +   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠
𝑡

𝑡0

 
𝑡

𝑡0

𝑑𝑠 

Definition 3.1. Let x : J → E
d
 be a fuzzy function such that (i)-differentiable. If x and its derivative 

satisfy problem (3.1), we say that x is a (i)-solution of problem (3.1). 

Definition 3.2. Let x : J → E
d
 be a fuzzy function such that (ii)-differentiable. If x and its derivative 

satisfy problem (3.1), we say that x is a (ii)-solution of problem (3.1). 

Definition 3.3. A solution x : J → E
d
 is unique if it holds D [x(t), y(t)] = 0, for any y : J → E

d
 which 

is a solution of (3.1). 

Theorem 3.1. Let 𝜑 (t - t0) ∈ Cσ and suppose that f ∈C (I × Cσ, E
d
),g ∈ C (I × I × Cσ, E

d
) satisfy 

the condition: there exists a constant L > 0 such that for every ξ, ψ ∈ Cσ it holds 

max   𝐷0  𝑓 𝑡. 𝜉 . 𝑓 𝑡. 𝜓  . 𝐷0  𝑔 𝑡. 𝑠. 𝜉 . 𝑔 𝑡. 𝑠. 𝜓    ≤𝐿𝜎 [𝜉. 𝜓] 

Moreover, there exists a M > 0 such that max}D0[f(t,ξ(,0],D0[g(t,s,ξ),0}<=M 

Assume that the sequence {xn}
∞
 n=0, x

n
 : J → E

d
 given by 

𝑥0  𝑡 =   
𝜑 𝑡 − 𝑡0 . 𝑡 ∈ [𝑡0 − 𝜎. 𝑡0]

𝜑 0 . 𝑡 ∈ 𝐼.
  

and for n = 1, 2, ... 

𝑥𝑛+1 (𝑡)= 

 
𝜑 𝑡 − 𝑡0 . 𝑡 ∈ [𝑡0 − 𝜎. 𝑡0]

𝜑 0  ⊖ (−1)   𝑓 𝑠. 𝑥𝑠
𝑛 +   𝑔 𝑠. 𝜏. 𝑥𝜏

𝑛 𝑑𝜏
𝑡

𝑡0
 

𝑡

𝑡0
𝑑𝑠    𝑡 ∈ 𝐼.

             (3.4) 

is well defined, i.e. the foregoing Hukuhara difference do exist. Then the FFIDE (3.1) has a unique 

for each case ((i)-differentiable or (ii)-differentiable). 
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Proof. From assumptions of this Theorem we have 

D0[x
1
(t), x0(t)] = 𝐷0  𝑥1  𝑡 . 𝑥0  𝑡   

= 𝐷0  [𝜑 0 ⊖ (−1) 

×   𝑓 𝑠. 𝑥𝑠
0 +   𝑔 𝑠. 𝜏. 𝑥𝜏

0 𝑑𝜏
𝑠

𝑡0

 
𝑡

𝑡0

𝑑𝑠. 𝜑 0 ] 

≤   𝐷0 𝑓 𝑠. 𝑥𝑠
0 . 0  +  𝐷0 𝑔 𝑠. 𝜏. 𝑥𝜏

0 . 0  𝑑𝜏
𝑠

𝑡0

 
𝑡

𝑡0

𝑑𝑠 

≤ 𝑀  𝑡 − 𝑡0 + 𝑀 
 𝑡 − 𝑡0 

2

2!
 . 

for t ∈ I. Further for every n ≥ 2 and t ∈ I we get D0 [x
n+1

(t), x
n
(t)] 

= 𝐷0 [⊖  −1   𝑓 𝑠. 𝑥𝑠
𝑛 +   𝑔 𝑠. 𝜏. 𝑥𝜏

0 𝑑𝜏
𝑠

𝑡0

 
𝑡

𝑡0

𝑑𝑠. 

⊖  −1   𝑓 𝑠. 𝑥𝑠
𝑛−1 +   𝑔 𝑠. 𝜏. 𝑥𝜏

𝑛−1 𝑑𝜏
𝑠

𝑡0
 

𝑡

𝑡0
𝑑𝑠] 

≤ 𝐿  𝐷𝜎 [𝑥𝑠
𝑛 . 𝑥𝑠

𝑛−1] +   𝐷𝜎 [𝑥𝜏
𝑛 . 𝑥𝜏

𝑛−1]𝑑𝜏
𝑠

𝑡0

 
𝑡

𝑡0

𝑑𝑠. 

≤ 𝐿  
𝑠𝑢𝑝

𝜃 ∈  −𝜎. 0 
 

𝑡

𝑡0

 𝐷0 [𝑥𝑛   𝑠 + 𝜃 . 𝑥𝑛−1  𝑠 + 𝜃 ] 

+     
𝑠𝑢𝑝

𝜃 ∈  −𝜎. 0 

𝑠

𝑡0

 𝐷0 [𝑥𝑛   𝜏 + 𝜃 .  𝑥𝑛−1  𝜏 + 𝜃 ]𝑑𝜏 𝑑𝑠 

= 𝐿  
𝑠𝑢𝑝

𝑟 ∈  𝑠 − 𝜎. 𝑠 
 

𝑡

𝑡0

 𝐷0 [𝑥𝑛   𝑟 . 𝑥𝑛−1  𝑟 ] 

+     
𝑠𝑢𝑝

𝜈 ∈  𝜏 − 𝜎. 𝜏 

𝑠

𝑡0

 𝐷0 [𝑥𝑛   𝜈 .  𝑥𝑛−1  𝜈 ]𝑑𝜈 𝑑𝑟 

In particular, from (3.4), we get 

𝐷0  𝑥2  𝑡 . 𝑥1  𝑡   

≤ 𝐿𝑀  
 𝑡 − 𝑡0 

2

2!
+ 2 

 𝑡 − 𝑡0 
3

3!
+ 

 𝑡 − 𝑡0 
4

4!
  

Therefore, by mathematical induction, for every n ∈ N and t ∈ I 

𝐷0  𝑥𝑛+1  𝑡 . 𝑥𝑛   𝑡   

≤ 𝐿𝑀𝑛   
 𝑡−𝑡0 

𝑛+1

(𝑛+1)!
+𝑛𝜆1  

 𝑡−𝑡0 
𝑛+2

(𝑛+2)!
+ ⋯ +𝑛𝜆𝑛  

 𝑡−𝑡0 
2𝑛+1

 2𝑛+1 !
+ 

 𝑡−𝑡0 
2𝑛+2

 2𝑛+2 !
    (3.5) 
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In the inequality (3.5), λ1, . . . , λn are balancing constants. We observe that for every n ∈ {0, 1, 

2, . . .}, the function x
n
 (·) : J → E

d
 are continuous. Indeed, since 𝜑 ∈ Cσ, x

0
(t) is continuous on 

 t ∈ [-σ, t0 + p]. We see that 

𝐷0  𝑥1  𝑡 +  . 𝑥1  𝑡   

 

=  𝐷0  

 
 
 
 
 
 
 

𝜑 0  ⊖  −1 

×  

 𝑓 𝑠. 𝑥𝑠
0 +   (𝑔 𝑠. 𝜏. 𝑥𝜏

0 𝑑𝜏
𝑠

𝑡0

 𝑑𝑠.

𝜑 0  ⊖  −1 

×  (𝑓(𝑠.
𝑡

𝑡0

𝑥𝑠
0) +  (𝑔 𝑠. 𝜏. 𝑥𝜏

0 𝑑𝜏
𝑠

𝑡0

)𝑑𝑠

𝑡+

𝑡0

 
 
 
 
 
 
 

 

Thus, by mathematical induction, for every n ≥ 2, we deduce that 

D0 [x
n
 (t + h), x

 n
(t)] → 0 

as h → 0
+
. A similar inequality is obtained for D0 [x

n
(t - h), x

n
(t)] → 0 as h → 0

+
. In the sequel we 

shall show that for the {x
n
(t)} the Cauchy convergence condition is satisfied uniformly in t, and as a 

consequence{x
n
(·)} is uniformly convergent. For n > m > 0, from (3.5) we obtain 

𝑠𝑢𝑝
𝑡 ∈ 𝐼

 𝐷0  𝑥𝑛   𝑡 . 𝑥𝑚   𝑡   

=
𝑠𝑢𝑝
𝑡 ∈ 𝐽 𝐷0  𝑥𝑛   𝑡 . 𝑥𝑚   𝑡   

≤   
𝑠𝑢𝑝
𝑡 ∈ 𝐽

𝑛−1

𝑘=𝑚

 𝐷0  𝑥𝐾+1  𝑡 . 𝑥𝐾   𝑡   

≤ 𝑀   
 𝑡 − 𝑡0 

𝑘+1

(𝑘 + 1)!
+𝑛𝜆1  

 𝑡 − 𝑡0 
𝑘+2

(𝑘 + 2)!
+ ⋯ +𝑘𝜆𝑘  

 𝑡 − 𝑡0 
2𝑘+1

 2𝑘 + 1 !
+  

 𝑡 − 𝑡0 
2𝑘+2

 2𝑘 + 2 !
 

𝑛−1

𝑘=𝑚

 

The convergence of this series implies that for any ε > 0 we find n0 ∈ N large enough such that for n, 

m > n0 

𝐷0  𝑥𝑛   𝑡 . 𝑥𝑚   𝑡   <  𝜀             (3.6) 

Since (E
d
, 𝐷0) is a complete metric space and (3.6)  holds, the sequence {x

n
(·)} is uniformly 

convergent to a mapping x ∈ C(J, E
d
). We shall that x is a solution to (3.1). Since x

n
(t) = 𝜑 (t - t0) for 

every n = 0, 1, 2, ... and every t ∈ [t0 - σ, t0], we easily have x(t) = 𝜑 (t -t0). For s ∈ I and n ∈ N 

𝐷0    (𝑓(𝑠.
𝑡

𝑡0

𝑥𝑠
𝑛)𝑑𝑠.  (𝑓 𝑠. 𝑥𝑠 𝑑𝑠

𝑡

𝑡0

)  

≤ 𝐿 
𝑠𝑢𝑝

𝜃 ∈ [𝑠 − 𝜎. 𝑠]

𝑡

𝑡0

 𝐷0  𝑥𝑛   𝜃 . 𝑥  𝜃  𝑑𝜃 → 0 

And 

𝐷0 [ (  𝑔 𝑠. 𝜏. 𝑥𝜏
𝑛 . 𝑑𝜏)𝑑𝑠

𝑠

𝑡0

 
𝑡

𝑡0

.  (  𝑔 𝑠. 𝜏. 𝑥𝜏 . 𝑑𝜏)𝑑𝑠
𝑠

𝑡0

 
𝑡

𝑡0

] 
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≤ 𝐿    ( 
𝑠𝑢𝑝

𝜃 ∈  𝜏 − 𝜎. 𝜏 

𝑡

𝑡0

𝑡

𝑡0

  𝐷0  𝑥𝑛   𝜐 . 𝑥  𝜐  𝑑𝜐)𝑑𝑠 → 0 

As n → ∞ for any t ∈ I. Consequently, we have 

𝐷0[𝜑 0 . 𝑥 𝑡 +  −1  (𝑓 𝑠. 𝑥𝑠 + 

𝑡

𝑡0

   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠 𝑑𝑠

𝑡

𝑡0

] 

≤ 𝐷0  𝑥𝑛   𝑡 . 𝑥  𝑡   

+  (𝐷0 [𝑓 𝑠. 𝑥𝑠
𝑛−1 +  𝑓 𝑠. 𝑥𝑠 ]

𝑡

𝑡0

 

+  (𝐷0 [𝑔 𝑠. 𝜏. 𝑥𝜏
𝑛−1 . 𝑔 𝑠. 𝜏. 𝑥𝜏 𝑑𝜏]

𝑡

𝑡0

)𝑑𝑠 

We infer that 

𝐷0  𝜑 0 . 𝑥 𝑡 +  −1  (𝑓 𝑠. 𝑥𝑠 + 

𝑡

𝑡0

   𝑔 𝑡. 𝑠. 𝑥𝑠 𝑑𝑠 𝑑𝑠

𝑡

𝑡0

 = 0 

for every t ∈ I. Therefore x is the solution of (3.3), due to Lemma (3.2) we have that x is a 

(ii)-solution of (3.1). For the uniqueness of the solution x let us assume that x, y ∈ C (J, E
d
) are two 

solutions of (3.3). By definition of the solution we have x(t) = y(t) if t ∈ [t0 - σ, t0].Note that for t ∈ I 

𝐷0  𝑥  𝑡 . 𝑦  𝑡   

≤ 𝐿  (
𝑠𝑢𝑝

𝜃 ∈  𝑠 − 𝜎. 𝑠  𝐷0[𝑥 𝜃 . 𝑦 𝜃 ]

𝑡

𝑡0

 

+   
𝑠𝑢𝑝

𝜈 ∈  𝜏 − 𝜎. 𝜏  𝐷0 𝑥 𝜈 . 𝑦 𝜈  𝑑𝜏 𝑑𝑠

𝑡

𝑡0

 

If we let a(s) = sup r∈[s-σ,s] D0 [x(r), y(r)] , s ∈ [t0, t] ⊂[t0, t0 + p], then we have 

𝑎 𝑡 ≤ 𝐿   𝑎 𝑠 +  𝑎 𝜏 𝑑𝜏

𝑠

𝑡0

 𝑑𝑠

𝑡

𝑡0

 

and by Lemma 2.3 we obtain that a(t) = 0 on I. This prove the uniqueness of the solution for (3.1). 

Remark 3.3. The existence and uniqueness theorem for the problem (3.1) can be obtained using the 

contraction principle. 

Now, we shall prove existence and uniqueness results for (3.1) by using the contraction principle, 

which studied in [34]. In the following, for a given k > 0, we consider the set Sk of all continuous 

fuzzy functions 

x ∈ C ([t0 - σ, ∞), E
d
) such that x(t) = 𝜑 (t - t0) =x0 on [t0 - σ, t0] and 

sup t≥t0-σ {D0[x(t, ω), 0] exp( ˆ -kt) < ∞. 

On Sk we can define the following metric 
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𝐷𝑘 𝑥. 𝑦 =  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0 − 𝜎 {𝐷0 𝑥 𝑡 . 𝑦 𝑡  exp(−𝑘𝑡)}        (3.7) 

Where k > 0 is chosen suitably later. We easily prove  that the space [Sk, Dk] of continuous fuzzy 

functions 

x : [t0, ∞) → E
d
 is a complete metric space with distance (3.7). 

Theorem 3.2. Assume that  

(i) f ∈ C([t0, ∞) × Cσ, E
d
), g ∈ C([t0, ∞) ×[t0, ∞) × Cσ, E

d
) and there exists a constant L > 0 such 

that 

(ii) 𝑚𝑎𝑥 {𝐷0 𝑓 𝑡. 𝜉 . 𝑓 𝑡. 𝜓  . {𝐷0 𝑔 𝑡. 𝑠. 𝜉 . 𝑔 𝑡. 𝑠. 𝜓   ≤ 𝐿𝐷𝜎 [𝜉. 𝜓] 

for all ξ, ψ ∈ Cσ and t, s ≥ t0;  

(iii) there exists constants M > 0 and b > 0 such that 

𝑚𝑎𝑥 {𝐷0[𝑓 𝑡. 0  . 0 ]. 𝐷0 𝑔 𝑡. 𝑠. 0  . 0 ]}  ≤ 𝑀 exp(𝑏𝑡) 

for all t ≥ t0, where b < k. Then the FFIDE (3.1) has a unique solution for each case on [t0, ∞). 

Proof. Since the way of the proof is similar for all four cases, we only consider case (ii)-differential 

for x. In this case, we consider the complete metric space (Sk, Dk), and define an operator 

T : Sk → Sk 

x → Tx 

given by 

 𝕋𝑥  𝑡 =  

 
 
 

 
 

 𝜑 𝑡 − 𝑡0   𝑖𝑓 𝑡 ∈  𝑡0 − 𝜎. 𝑡0 

𝜑 0 ⊖ (−1)

×  (𝑓 𝑠. 𝑥𝑠 + 

𝑡

𝑡0

  𝑔 𝑠. 𝜏. 𝑥𝑠 𝑑𝜏 𝑑𝑠 

𝑡

𝑡0

         

We can choose a big enough value for k such that  T is a contraction, so the Banach fixed point 

theorem provides the existence of a unique fixed point for T, that is, a unique solution for (3.1). 

Step 1: We shall prove that T(Sk) ⊂ Sk with assumption k > b. Indeed, let x ∈ Sk. For each t ≥ t0, we 

get 

𝐷𝑘  [  𝕋𝑥  𝑡 . 0 ] 

=  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {𝐷0[𝜑 0 ⊖  −1   (𝑓 𝑠. 𝑥𝑠 

𝑡

𝑡0

 

              +  𝑔 𝑠. 𝜏. 𝑥𝜏 𝑑𝜏)𝑑𝑠.

𝑠

𝑡0

0 ] 𝑒𝑠𝑝 (−𝑘𝑡)} 

≤  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {(𝐷0[𝜑 0 . 0 +   {𝐷0[𝑓 𝑠. 𝑥𝑠 . 𝑓 𝑠. 0  ]

𝑡

𝑡0

 

+𝐷0[𝑓 𝑠. 0  . 0 ]}𝑑𝑠 

+  ( {𝐷0[𝑔 𝑠. 𝜏. 𝑥𝜏 . 𝑔 𝑠. 𝜏. 0  ]

𝑠

𝑡0

𝑡

𝑡0

 



1441 
 

AIMS Mathematics  Volume 4, Issue 5, 1430–1449.. 

+𝐷0[𝑔 𝑠. 𝜏. 0  . 0 ]} 𝑑𝜏)𝑑𝑠)exp (−𝑘𝑡)} 

≤  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {(𝐷0[𝜑 0 . 0 + 𝐿  {𝐷𝜎  𝑥𝑠 . 0  𝑑𝑠

𝑡

𝑡0

 

+
𝑀

𝑏
exp 𝑏𝑡 + 𝐿    𝐷𝜎  𝑥𝜏 . 0  𝑑𝜏

𝑠

𝑡0

 𝑑𝑠

𝑡

𝑡0

 

+
𝑀

𝑏2
exp 𝑏𝑡 ) exp(−𝑘𝑡)}  

Since x ∈ Sk, there exists ρ such that sup t≥t0-σ {D0 [x(t), 0] exp (-kt)} < ρ < ∞. Therefore, for all t ≥ t0, 

we obtain 𝐷𝑘  [  𝕋𝑥  𝑡 . 0] 

≤  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {(𝐷0[𝜑 0 . 0 +  1 +

1

𝑘
 
𝑝𝐿

𝑘
exp(𝑘𝑡) 

+  1 +
1

𝑏
 
𝑀

𝑏
exp(𝑏𝑡)) exp(−𝑘𝑡)} 

≤ 𝐷0[𝜑 0 . 0 ] +  1 +
1

𝑏
 

1

𝑏
(𝑀 + 𝑝𝐿) 

≤ 𝐾 +  1 +
1

𝑏
 

1

𝑏
 𝑀 + 𝑝𝐿 <  ∞ 

We infer that Tx ⊂ Sk. 

Step 2: The following steps, we shall prove that T is  a contraction by metric Dk. The first, we 

consider Let x, y ∈ Sk. Then for -σ ≤ s ≤ 0, D0 [ (Tx) (t0 +s), (Ty)(t0 + s)] = 0. For each t ≥ t0, we have 

𝐷𝑘  [ 𝕋𝑥  𝑡 .  𝕋𝑦  𝑡 ] 

≤  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {𝐷0[ 𝕋𝑥  𝑡 .  𝕋𝑦  𝑡 ] exp(−𝑘𝑡) 

≤  
𝑠𝑢𝑝
𝑡𝑡0

 {𝐷0[𝜑 0 ⊖ (−1)  (𝑓 𝑠. 𝑥𝑠 

𝑡

𝑡0

 

+  𝑔 𝑠. 𝜏. 𝑥𝜏 𝑑𝜏)𝑑𝑠.

𝑠

𝑡0

 

𝜑 0 ⊖ (−1)  (𝑓 𝑠. 𝑦𝑠 + 

𝑡

𝑡0

 𝑔 𝑠. 𝜏. 𝑦𝜏 𝑑𝜏)𝑑𝑠]

𝑠

𝑡0

 

× exp(−𝑘𝑡)} 

≤  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 {(𝐿  (𝐷𝜎  𝑥𝑠 . 𝑦𝑠 + 

𝑡

𝑡0

 𝐷𝜎 [𝑥𝜏 . 𝑦𝜏]𝑑𝜏)𝑑𝑠)

𝑠

𝑡0

 

× exp(−𝑘𝑡)} 

=  
𝑠𝑢𝑝
𝑡𝑡0

 {(𝐿  
𝑠𝑢𝑝

𝜃𝜖[−𝜎. 0] 𝐷0 𝑥 𝑠 + 𝜃 . 𝑦 𝑠 + 𝜃  𝑑𝑠

𝑡

𝑡0
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+𝐿    
𝑠𝑢𝑝

𝜃𝜖[−𝜎. 0]  𝐷0[𝑥 𝜏 + 𝜃 . 𝑦 𝜏 + 𝜃 

𝑠

𝑡0

])𝑑𝑠)

𝑡

𝑡0

 

× exp(−𝑘𝑡)} 

=  
𝑠𝑢𝑝
𝑡𝑡0

 {(𝐿  
𝑠𝑢𝑝

𝑟𝜖[𝑠 − 𝜎. 𝑠] 𝐷0 𝑥(𝑟). 𝑦(𝑟) 𝑑𝑟

𝑡

𝑡0

 

+𝐿   ( 
𝑠𝑢𝑝

𝜐𝜖[𝜏 − 𝜎. 𝜏]  𝐷0[𝑥(𝜐). 𝑦(𝜐)

𝑠

𝑡0

]𝑑𝜐)𝑑𝑠)

𝑡

𝑡0

 

× exp(−𝑘𝑡)} 

≤ 𝐿𝐷𝑘   𝑥. 𝑦  
𝑠𝑢𝑝

𝑡 ≥ 𝑡0
 ( (𝑒𝑥𝑝 (𝑘 𝑟 − 𝑡 )

𝑡

𝑡0

 

+  exp(𝑘 (𝜐 − 𝑡))

𝑠

𝑡0

𝑑𝜐)𝑑𝑟) 

≤  
 1 + 𝑘 𝐿𝐷𝑘  [𝑥. 𝑦]

𝑘2
 

Choosing k > b and (1 + k) L/k2 < 1, we have the operator T on Sk is a contraction by using Banach 

fixed point theorem provides the existence of a unique fixed point for T and the unique fixed of T is 

in the space Sk, that is a unique solution for (3.1) in case (ii)-differentiable and for each case. 

4. Illustrations 

In this section, we shall present some examples being  simple illustrations of the theory of 

FFIDE. We will consider the FFIDE (3.1) with (i) and (ii) derivative,  respectively. Let us start the 

illustrations with considering the following fuzzy functional integration and differential equation: 

 
D𝐻

𝑔
 𝑥 𝑡 = 𝑓 𝑡. 𝑥𝑡 +  𝑘 𝑡. 𝑠 𝑥𝑠𝑑𝑠.  𝑡 ≥ 𝑡0 

𝑡

𝑡0

𝑥 𝑡 =  𝜑 𝑡 − 𝑡0 ∈  𝑡 . 𝑡 ∈  −𝜎. 𝑡0 .
                     (4.1) 

Where f : I × E
1
 → E

1
, k(t, s) : I × I → R. Let [x(t)]

α
 = [x(t, α), x(t, α)]. By using Zadeh’s extension 

principle, we obtain [f (t, xt) ]
α
 = [f (t, α, xt(α), xt(α)), f (t, α, xt(α), xt(α))], for α ∈ [0, 1]. By using 

Lemma 2.2, we have the following two cases. If x(t) is (i)-differentiable, then [DH 
g
 x(t)]

α
 =[x (́t, α), 

x (́t, α)] and (4.1) is translated into the following delay integration and differential system: 

 
 
 

 
 𝑥′ 𝑡. 𝛼 =  𝑓  𝑡. 𝛼. 𝑥𝑡 𝛼 . 𝑥𝑡 𝛼  +   𝑘(𝑡. 𝑠)𝑥𝑠(𝛼)

𝑡

𝑡0
 𝑑𝑠.

𝑡 ≥ 𝑡0

𝑥  𝑡. 𝛼 =  𝜑 𝑡 − 𝑡0. 𝛼 . −𝜎 ≤ 𝑡 ≤ 𝑡0

𝑥  𝑡. 𝛼 =  𝜑 𝑡 − 𝑡0. 𝛼 . −𝜎 ≤ 𝑡 ≤ 𝑡0

                           (4.2) 

If x(t) is (ii)-differentiable, then [DH 
g
 x(t)]

α
 = [x (́t, α), x (́t, α)] and (4.1) is translated into the 

following delay integration and differential system: 
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 𝑥′ 𝑡. 𝛼 =  𝑓  𝑡. 𝛼. 𝑥𝑡 𝛼 . 𝑥𝑡 𝛼  +   𝑘(𝑡. 𝑠)𝑥𝑠(𝛼)

𝑡

𝑡0
 𝑑𝑠.

𝑡 ≥ 𝑡0

𝑥′   𝑡. 𝛼 =  𝑓  𝑡. 𝛼. 𝑥𝑡 𝛼 . 𝑥𝑡 𝛼  +   𝑘(𝑡. 𝑠)𝑥𝑠(𝛼)
𝑡

𝑡0
 𝑑𝑠.

𝑡 ≥ 𝑡0

𝑥  𝑡. 𝛼 =  𝜑 𝑡 − 𝑡0. 𝛼 . −𝜎 ≤ 𝑡 ≤ 𝑡0

𝑥  𝑡. 𝛼 =  𝜑 𝑡 − 𝑡0. 𝛼 . −𝜎 ≤ 𝑡 ≤ 𝑡0

                               (4.3) 

𝑘 𝑡. 𝑠 𝑥𝑠 𝛼 =   
𝑘 𝑡. 𝑠  𝑥𝑠 𝛼  .  𝑘 𝑡. 𝑠 ≥ 0 .

𝑘 𝑡. 𝑠  𝑥𝑠 𝛼 . 𝑘 𝑡. 𝑠 . < 0
  

𝑘 𝑡. 𝑠 𝑥𝑠 𝛼 =   
𝑘 𝑡. 𝑠  𝑥𝑠 𝛼  .  𝑘 𝑡. 𝑠 ≥ 0 .

𝑘 𝑡. 𝑠  𝑥𝑠 𝛼 . 𝑘 𝑡. 𝑠 . < 0
  

Example 4.1. Let us consider the linear fuzzy functional integration and differential equation under 

two kinds Hukuhara derivative 

 

D𝐻
𝑔

 𝑥 𝑡  = (𝑡 −  
1

2
) +  𝜆  𝑒 𝑠−𝑡 𝑡

0
𝑥  𝑠 −  

1

2
 𝑑𝑠

𝑥 𝑡 =  𝜑 𝑡 . 𝑡 ∈   −
1

2
 .0 .

                       (4.4) 

Where k (t, s) = λ e
(s-t)

, 𝜑 (t) = (1 - t, 2 - t, 3 -t), λ ∈ R\{0}. In this example we shall solve (4.4) on 

[0,1/2]. 

Case 1: (λ > 0 or k (t, s) > 0) From (4.2), we get 

 
 
 
 

 
 
 𝑥 ′ 𝑡. 𝛼 =  𝑥  𝑡. −

1

2
. 𝛼 + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.

𝑡 ≥ 0

𝑥
′
  𝑡. 𝛼 =  𝑥  𝑡. −

1

2
. 𝛼 + 𝜆  𝑒(𝑠−𝑡)𝑡

0
 𝑥  𝑠 −  

1

2
. 𝛼 𝑑𝑠.

𝑡 ≥ 0

𝑥  𝑡. 𝛼 =  1 + 𝛼 − 𝑡 . −
1

2
 ≤ 𝑡 ≤ 0

𝑥  𝑡. 𝛼 =  3 − 𝛼 − 𝑡 .
−1

2
 ≤ 𝑡 ≤ 0

                            (4.5) 

Where α ∈ [0, 1]. By solving delay integration and differential systems (4.5), we obtain (i)-solution 

[𝑥 𝑡 ]𝛼 = [1 + 𝛼 +  1 + 𝛼 𝑡 −  
𝑡2

2
− 𝜆 𝑒(−𝑡) (2 + 𝛼) 

+𝜆 2 + 𝛼 − 𝑡 . 3 − 𝛼 +  3 − 𝛼 𝑡 −  
𝑡2

2
 

−𝜆 𝑒(−𝑡)  4 − 𝛼 +  𝜆 (4 − 𝛼 − 𝑡)]. 
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Figure 1. Graphs of x(t) for t ∈ [−
1

2
,

1

2
], λ = 0.1. 

t ∈ [0, 1/2]. The (i)-solution of (4.4) on [-1/2, 1/2] are illustrated in Figure 1. From (4.3), we obtain 

 
 
 
 

 
 
 𝑥′ 𝑡. 𝛼 =  𝑥  𝑡. −

1

2
. 𝛼 + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.

𝑡 ≥ 0

𝑥  𝑡. 𝛼 =  1 +  𝛼 − 𝑡.
−1

2
≤ 𝑡 ≤ 0

𝑡 ≥ 0

𝑥  𝑡. 𝛼 =  1 + 𝛼 − 𝑡 .
−1

2
 ≤ 𝑡 ≤ 0

𝑥  𝑡. 𝛼 =  3 − 𝛼 − 𝑡 .
−1

2
 ≤ 𝑡 ≤ 0

                          (4.6) 

By solving delay integration and differential systems (4.6), we obtain (ii)-solution 

[𝑥 𝑡 ]𝛼 = [1 + 𝛼 +  3 − 𝛼 𝑡 −  
𝑡2

2
−  𝜆 𝑒(−𝑡) (4 − 𝛼) 

+𝜆 4 − 𝛼 − 𝑡 . 3 − 𝛼 +  1 + 𝛼 𝑡 −  
𝑡2

2
 

−𝜆 𝑒(−𝑡)  2 + 𝛼 +  𝜆 (2 + 𝛼 − 𝑡)]. 
t ∈ [0, 1/2]. The (ii)-solution of (4.4) on [-1/2, 1/2] are illustrated in Figure 2. 

 

Figure 2. Graphs of x(t) for t ∈ [−
1

2
,

1

2
], λ = 0.1. 
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Case 2: ( λ < 0 or k (t, s) < 0 ) From (4.2), we get 

 
 
 
 

 
 
 𝑥 ′ 𝑡. 𝛼 =  𝑥  𝑡. −

1

2
. 𝛼 + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.

𝑡 ≥ 0

𝑥
′
  𝑡. 𝛼 = 𝑥 (𝑡 −

1

2
. 𝛼) + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.  

𝑡 ≥ 0

𝑥  𝑡. 𝛼 =  1 + 𝛼 − 𝑡        .
−1

2
 ≤ 𝑡 ≤ 0

𝑥  𝑡. 𝛼 =  3 − 𝛼 − 𝑡            .
−1

2
 ≤ 𝑡 ≤ 0

                            (4.7) 

By solving delay integration and differential systems (4.7), we obtain (i)-solution 

[𝑥 𝑡 ]𝛼 = [1 + 𝛼 +  1 + 𝛼 𝑡 −  
𝑡2

2
−  𝜆 𝑒(−𝑡) (4 − 𝛼) 

+𝜆 4 − 𝛼 − 𝑡 . 3 − 𝛼 +  3 − 𝛼 𝑡 −  
𝑡2

2
 

−𝜆 𝑒(−𝑡)  2 + 𝛼 +  𝜆 (2 + 𝛼 − 𝑡)]. 

t ∈ [0, 1/2]. The (i)-solution of (4.4) on [-1/2, 1/2] are illustrated in Figure 3. 

 

Figure 3. Graphs of x(t) for t ∈ [−
1

2
,

1

2
], λ = 0.1. 

From (4.3), we obtain 

 
 
 
 

 
 
 𝑥′ 𝑡. 𝛼 =  𝑥  𝑡. −

1

2
. 𝛼 + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.

𝑡 ≥ 0

𝑥′   𝑡. 𝛼 = 𝑥 (𝑡 −
1

2
. 𝛼) + 𝜆  𝑒(𝑠−𝑡)𝑡

0
𝑥   𝑠 −  

1

2
. 𝛼 𝑑𝑠.  

𝑡 ≥ 0

𝑥  𝑡. 𝛼 =  1 + 𝛼 − 𝑡 .
−1

2
 ≤ 𝑡 ≤ 0

𝑥  𝑡. 𝛼 =  3 − 𝛼 − 𝑡 .
−1

2
 ≤ 𝑡 ≤ 0

                            (4.8) 

By solving delay integration and differential systems (4.7), we obtain (ii)-solution 
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[𝑥 𝑡 ]𝛼 = [1 + 𝛼 +  3 − 𝛼 𝑡 −  
𝑡2

2
−  𝜆 𝑒(−𝑡) (2 + 𝛼) 

+𝜆 2 + 𝛼 − 𝑡 . 3 − 𝛼 +  1 + 𝛼 𝑡 −  
𝑡2

2
 

−𝜆 𝑒(−𝑡)  4 − 𝛼 +  𝜆 (4 − 𝛼 − 𝑡)]. 

t ∈ [0, 1/2]. The (ii)-solution of (4.4) on [-1/2, 1/2] are illustrated in Figure 4. From Example 4.1, we 

notice that, the solutions under classic Hukuhara derivative ((i)-differentiable) have increasing length 

of its values. Indeed, we can see the Figures 1 and 3. 

 

Figure 4. Graphs of x(t) for t ∈ [−
1

2
,

1

2
], λ = 0.1. 

However, if we consider the second type Hukuhara derivative ((ii)- differentiable) the length of 

solutions change. Under the second type Hukuhara differentiable solutions have non-increasing 

length of its values (see Figures 2 and 4). 

5. Conclusions 

In this paper, we have obtained a global existence and uniqueness result for a solution to fuzzy 

functional integration and differential equations. Also, we have proved a local existence and 

uniqueness results using the method of successive approximation. Results here might be used in 

further research on fuzzy functional integration and differential equations. Other possible directions 

of research could be an approach for fuzzy differential equations using other concepts of calculus for 

fuzzy functions and derivative for fuzzy functions (see [3,8]). 
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