Research article Special Issues

Averaging methods for piecewise-smooth ordinary differential equations

  • Received: 11 July 2019 Accepted: 30 August 2019 Published: 23 September 2019
  • MSC : 34A36, 34C29

  • The averaging method is developed for periodic piecewise-smooth systems. We discuss the behavior of solutions intersecting the discontinuity boundary and the problems it introduces. We illustrate these difficulties on specific examples. In the case of transversal and sliding solutions, we introduce conditions that allow us to prove averaging theorems for piecewise-smooth periodic differential equations.

    Citation: Michal Fečkan, Július Pačuta, Michal Pospíśil, Pavol Vidlička. Averaging methods for piecewise-smooth ordinary differential equations[J]. AIMS Mathematics, 2019, 4(5): 1466-1487. doi: 10.3934/math.2019.5.1466

    Related Papers:

  • The averaging method is developed for periodic piecewise-smooth systems. We discuss the behavior of solutions intersecting the discontinuity boundary and the problems it introduces. We illustrate these difficulties on specific examples. In the case of transversal and sliding solutions, we introduce conditions that allow us to prove averaging theorems for piecewise-smooth periodic differential equations.


    加载中


    [1] F. M. Arscott, A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Netherlands: Springer, 2013.
    [2] M. Bernardo, C. Budd, A. R. Champneys, et al. Piecewise-Smooth Dynamical Systems: Theory and Applications, London: Springer Science & Business Media, 2008.
    [3] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
    [4] M. Fečkan, A Galerkin-averaging method for weakly nonlinear equations, Nonlinear Anal., 41 (2000), 345-369. doi: 10.1016/S0362-546X(98)00281-8
    [5] S. Ma, Y. Kang, Periodic averaging method for impulsive stochastic differential equations with Lévy noise, Appl. Math. Lett., 93 (2019), 91-97. doi: 10.1016/j.aml.2019.01.040
    [6] J. G. Mesquita, A. Slavík, Periodic averaging theorems for various types of equations, J. Math. Anal. Appl., 387 (2012), 862-877. doi: 10.1016/j.jmaa.2011.09.038
    [7] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, et al. Differential Equations with Impulse Effects, Multivalued Right-Hand Sides with Discontinuities, Berlin: Walter de Gruyter GmbH & Co. KG, 2011.
    [8] J. A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, 2 Eds, New York: Springer, 2007.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3536) PDF downloads(436) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog