
http://www.aimspress.com/journal/Math

AIMS Mathematics, 4(5): 1466–1487.
DOI:10.3934/math.2019.5.1466
Received: 11 July 2019
Accepted: 30 August 2019
Published: 23 September 2019

Research article

Averaging methods for piecewise-smooth ordinary differential equations
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1. Introduction

Averaging method has many applications and it is well-developed for ordinary and partial
differential equations [4,8], for impulsive and differential inclusions [7], and for more general types of
differential equations as well [5, 6]. Non-smooth dynamical systems also possess many
applications [2]. The goal of this paper is to extend the tool set available for analyzing periodic
piecewise-smooth differential equations by generalizing the averaging method. Several intrinsic
problems surfaced while trying to generalize the results to the piecewise-smooth setting. We focus on
the cases of transversal and sliding solutions of the piecewise-smooth systems. In these cases, we
discuss the problems and try to shed some light on their nature and causes by considering concrete
examples. Several conditions are introduced which allow us to prove results analogous to the
averaging theorem for smooth systems.

Section 2 is a brief introduction to the theory of averaging for smooth systems and contains an
averaging theorem whose statement serves as a prototype for statements of our generalizations for
piecewise-smooth systems. Section 3 introduces piecewise-smooth systems and our main definitions.
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Section 4 provides examples that motivated us for these definitions. Section 5 presents some auxiliary
results concerning the discontinuity boundary and its intersection with a solution that are used in the
next sections. Sections 6 and 7 deal with the proofs of our main results. The final Section 8 summarizes
our results with a possible outline for further study.

Throughout the paper, we shall denote u·v the inner product of vectors u, v ∈ Rn and |u| the Euclidean
norm of u ∈ Rn. Furthermore, the distance of sets A, B ⊂ Rn is defined as dist(A, B) = inf{|a − b| | a ∈
A, b ∈ B}.

2. Averaging for smooth systems

Let Ω ⊂ Rn be a domain and a ∈ Ω. We consider the initial value problem

ẋ = ε f (x, t, ε), x(0) = a (2.1)

defined for x ∈ Ω, ε ∈ [0, 1] and t ∈ R where f (x, t, ε) is a continuously differentiable periodic function
in the time variable t with the period T .

Definition 2.1. Let f be the right-hand side of initial value problem (2.1). Denote

f̄ (z) =
1
T

∫ T

0
f (z, s, 0) ds.

The averaged system associated with (2.1) is the system

ż = ε f̄ (z), (2.2)

and the guiding system associated with (2.1) is the system

ẇ = f̄ (w). (2.3)

Initial value problem (2.1) gives naturally a rise to the initial value problem for the averaged system
(2.2) with z(0) = a, and for the guiding system (2.3) with w(0) = a. The guiding system is only a
rescaled averaged system.

The following theorem from [8, Theorem 2.8.1] is the key result we need and it will be used
throughout the whole paper.

Theorem 2.2. Consider initial value problem (2.1). Suppose that f is Lipschitz continuous and w :
[0, L] → Ω is solution of the associated guiding system. Then there exist positive constants ε0, C such
that for all ε ∈ (0, ε0] there exists a unique solution xε : [0, L

ε
]→ Ω such that

|xε(t) − w(εt)| ≤ Cε

for 0 ≤ t ≤ L
ε
.

To simplify some of the statements in the rest of the paper, we collect some of the common
assumptions on the right-hand side f in the following definition.
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Definition 2.3. We say, that a function f : Ω × R × [0, 1] → Rn is T -PCDLB if it is T -periodic in the
second argument, continuously differentiable, Lipschitz continuous and bounded.

The following lemma is an extension of the averaging theorem for smooth systems which will be
useful in the next sections.

Lemma 2.4. Let f be a T-PCDLB function, w : [L1, L2] → Ω be a solution of the guiding system
ẇ = f̄ (w) with w(L1) = a and A ≥ 0 be a constant. Let ε ∈ (0, 1]. Consider the local solution of initial
value problem ẋ = ε f (x, t, ε), x( L1

ε
+ A) = bε for bε ∈ Ω such that |a − bε | ≤ Dε for some constant

D > 0.
Then there exist ε0,C > 0 and a unique solution xε : [ L1

ε
+A, L2

ε
]→ Ω of ẋ = ε f (x, t, ε), x( L1

ε
+A) = bε

for all ε ∈ (0, ε0] such that for all t ∈ [ L1
ε

+ A, L2
ε

] it holds

|xε(t) − w(εt)| ≤ Cε. (2.4)

Proof. Let us at first assume the existence of xε for sufficiently small ε > 0 and prove estimate (2.4).
Let Aε be such that Aε ≥ A, |Aε − A| ≤ T , L1

ε
+ Aε = kεT for some kε ∈ Z. The existence of such Aε for

all ε is obvious. Let ε0 > 0 be so small that L1
ε

+ Aε ≤
L2
ε

for all ε ∈ (0, ε0]. Let M be a bound of | f |.
First, we prove inequality (2.4) for t ∈ [ L1

ε
+ A, L1

ε
+ Aε]. Using the assumption |a− bε | ≤ Dε and the

Lipschitz continuity of solutions xε and w, we obtain

|xε(t) − w(εt)| ≤
∣∣∣∣∣xε(t) − xε

(L1

ε
+ A

)∣∣∣∣∣ +

∣∣∣∣∣xε (L1

ε
+ A

)
− w

(
ε

L1

ε

)∣∣∣∣∣ +

∣∣∣∣∣w (
ε

L1

ε

)
− w(εt)

∣∣∣∣∣
≤ εM|Aε − A| + Dε + εMAε

≤ ε(D + MT + M(A + T )).

Next, we prove inequality (2.4) for t ∈ [ L1
ε

+ Aε ,
L2
ε

]. Since the solution w is defined on interval
[L1, L2], we will use the averaging theorem for smooth systems for function w̃(τ) = w(τ + L1). Hence
there exists some C > 0 such that for all ε > 0 sufficiently small, there is a solution yε : [0, L2−L1

ε
]→ Ω

of the initial value problem ẏ = ε f (y, t, ε), y(0) = a, and for all t ∈ [0, L2−L1
ε

] it holds

|yε(t) − w̃(εt)| ≤ Cε. (2.5)

Using yε we can define a function uε : [ L1
ε

+ Aε ,
L2
ε

+ Aε]→ Ω by uε(t) = yε(t − ( L1
ε

+ Aε)). The function
uε satisfies the equation

u̇ε(t) = ẏε
(
t −

(L1

ε
+ Aε

))
= ε f

(
uε(t), t −

(L1

ε
+ Aε

)
, ε

)
= ε f (uε(t), t, ε),

since L1
ε

+ Aε = kεT and f is T -periodic in the second argument.
Now, let t ∈ [ L1

ε
+ Aε ,

L2
ε

]. Using (2.5) we estimate

|uε(t) − w(εt)| =
∣∣∣∣∣yε (t − Aε −

L1

ε

)
− w(εt)

∣∣∣∣∣
≤

∣∣∣∣∣yε (t − Aε −
L1

ε

)
− w(ε(t − Aε))

∣∣∣∣∣ + |w(ε(t − Aε)) − w(εt)|

≤ ε(C + M(A + T )).

(2.6)
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The functions uε , xε satisfy the same equation (2.1) (however, with possibly different initial values),
hence it holds

|uε(t) − xε(t)| ≤
∣∣∣∣∣uε (L1

ε
+ Aε

)
− xε

(L1

ε
+ Aε

)∣∣∣∣∣ + ε

∫ t

L1
ε +Aε
| f (uε(s), s, ε) − f (xε(s), s, ε)| ds.

Using the Lipschitz continuity of f and the Gronwall lemma, we obtain

|uε(t) − xε(t)| ≤ C
∣∣∣∣∣uε (L1

ε
+ Aε

)
− xε

(L1

ε
+ Aε

)∣∣∣∣∣
for some constant C > 0. The estimates (2.4), (2.6) for t = L1

ε
+ Aε imply∣∣∣∣∣uε (L1

ε
+ Aε

)
− xε

(L1

ε
+ Aε

)∣∣∣∣∣ ≤ Cε.

Thus the proof of the estimate (2.4) for t ∈ [ L1
ε

+ Aε ,
L2
ε

] is finished.
Now we prove the existence and uniqueness. The uniqueness and the local existence of xε are

consequences of the Lipschitz continuity. The only issue for global existence of xε would be if xε
approaches the boundary ∂Ω.

Denote d = dist(∂Ω,w([L1, L2])). Let ε0 > 0 be such small that Cε0 ≤
d
2 . Then we have

|xε(t) − w(εt)| ≤ Cε ≤
d
2

for any ε ∈ (0, ε0] and t ∈ [ L1
ε

+ A, L2
ε

]. Consequently,

d ≤ dist(∂Ω,w([L1 + Aε, L2]))

≤ dist
(
∂Ω, xε

([L1

ε
+ A,

L2

ε

]))
+ dist

(
xε

([L1

ε
+ A,

L2

ε

])
,w([L1 + Aε, L2])

)
≤ dist

(
∂Ω, xε

([L1

ε
+ A,

L2

ε

]))
+

d
2
,

which means that dist(∂Ω, xε(t)) ≥ d
2 for all t ∈ [ L1

ε
+ A, L2

ε
]. Hence, xε exists globally on interval

[ L1
ε

+ A, L2
ε

]. �

3. Definition of a piecewise-smooth system

We start with a definition of a discontinuity boundary.

Definition 3.1. We say that a function G : Ω → R is a boundary function if G is continuously
differentiable and ∇G(x) , 0 for every x ∈ Ω such that G(x) = 0.

For a boundary function G, let us define

Ω0 = {x ∈ Ω | G(x) = 0},
Ω+ = {x ∈ Ω | G(x) > 0},
Ω− = {x ∈ Ω | G(x) < 0}.

The set Ω0 is a C1-manifold and is called a discontinuity boundary or a discontinuity surface. The
notation introduced above will be used throughout our paper.
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Definition 3.2. Let Ω ⊂ Rn be an open set, let f −, f + : Ω × R × [0, 1] → Rn and G : Ω → R

be functions. We say that the tuple (Ω,G, f −, f +) is a piecewise-smooth system if f − and f + are
continuously differentiable and G is a boundary function. We say that the tuple (Ω,G, f −, f +) is a
well-behaved piecewise-smooth system if f − and f + are T -PCDLB and G is a boundary function.

A shorthand ẋ = f ±(x, t, ε) will be often used instead of the tuple (Ω,G, f −, f +) while talking about
a piecewise-smooth system, implicitly including a set Ω and a boundary function G.

Definition 3.3. An absolutely continuous function x : [a, b]→ Ω is called a solution of the piecewise-
smooth system (Ω,G, f −, f +) if for almost all t ∈ [a, b],

ẋ(t) ∈


{ f −(x(t), t, ε)}, if x(t) ∈ Ω−,

{ f +(x(t), t, ε)}, if x(t) ∈ Ω+,

conv({ f −(x(t), t, ε), f +(x(t), t, ε)}), if x(t) ∈ Ω0.

Furthermore, we say that a solution of the piecewise-smooth system is a solution of an initial value
problem ẋ = ε f ±(x, t, ε), x(a) = xa ∈ Ω if x(a) = xa.

The formalism that we just introduced is called the Filippov regularization of a piecewise-smooth
system (see [1, 2]).

Next we define two properties for which we will prove the averaging theorem.

Definition 3.4. We say that a well-behaved piecewise-smooth system (Ω,G, f −, f +) is uniformly
transversal at the point x0 ∈ Ω0 if there exists a positive constant m such that

f ±(x0, t, ε) · ∇G(x0) ≥ m

for all t ∈ R and ε ∈ [0, 1].

The uniform transversality at x0 also implies that f̄ ±(x0) · ∇G(x0) ≥ m.

Definition 3.5. We say that a well-behaved piecewise-smooth system (Ω,G, f −, f +) is uniformly
sliding, if there exists a positive constant m such that

f −(x, t, ε) · ∇G(x) ≥ m and f +(x, t, ε) · ∇G(x) ≤ −m

for all x ∈ Ω0, t ∈ R and ε ∈ [0, 1].

The condition of uniform sliding itself is not sufficient to prove an averaging theorem. We need to
reformulate the guiding system in a following way. Suppose that the condition of uniform sliding is
true for every x ∈ Ω0. This implies, that any solution sliding at t0 has to stay on Ω0 up to some t1 > t0.
Hence the derivative of the solution is tangent to the manifold Ω0 or, equivalently, it is orthogonal
to ∇G(x). A short calculation shows that for a given (x, t, ε) such that the piecewise smooth system
is sliding at (x, t, ε), there is a unique element of conv({ f −(x, t, ε), f +(x, t, ε)}), which is orthogonal to
∇G(x). We define function g : Ω0 × R × [0, 1]→ Rn,

g = α f − + (1 − α) f + (3.1)
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where

α =
f + · ∇G

f + · ∇G − f − · ∇G
. (3.2)

The function g can be used to define an induced differential equation on some neighborhood of (x, t, ε)
in the set Ω0 × R × [0, 1]. The smoothness of g depends on the smoothness of f −, f + and ∇G; see [1]
for details. We can apply averaging to this function to get

ḡ(x) =
1
T

∫ T

0
g(x, s, 0) ds (3.3)

which serves as a right-hand side of the guiding system u̇ = ḡ(u) for the equation induced on the
discontinuity surface.

Definition 3.6. Let (Ω,G, f −, f +) be a well-behaved piecewise-smooth system that is uniformly
sliding. Let ḡ be defined as in (3.3). The sliding adjusted guiding system associated with the initial
value problem ẋ = ε f ±(x, t, ε), x(0) = a ∈ Ω− is given by

ẇ =

 f̄ −(w), x ∈ Ω−,

ḡ(w), x ∈ Ω0.

An absolutely continuous function w : [0, L]→ Ω is a solution of the sliding adjusted guiding system,
if it satisfies the above equality almost everywhere.

Suppose that we are given an initial value problem for a piecewise-smooth system (Ω,G, ε f −, ε f +),

ẋ = ε f ±(x, t, ε), x(0) = a (3.4)

such that both f − and f + are T -periodic. Our goal is to generalize the averaging theorem, Theorem
2.2, to this setting. Akin to Definition 2.1, we can define

f̄ ±(w) =
1
T

∫ T

0
f ±(w, s, 0) ds

and also define a guiding system associated with (3.4) as

ẇ = f̄ ±(w),w(0) = a. (3.5)

Given a solution w : [0,T ] → Ω of the guiding system (3.5), it is clear that if (Im w) ∩ Ω0 = ∅, we
can use the result for smooth systems by restricting ourselves to a neighborhood of Im w that entirely
lies inside Ω− or inside Ω+.

That is the reason why we will be concerned only with solutions of the guiding system (3.5), which
intersect Ω0. Furthermore, we will assume that w(0) = a ∈ Ω−. It is easy to see that if a ∈ Ω+, it
suffices to exchange G for −G and all the results hold. We are not going to explicitly consider a ∈ Ω0,
but such an initial condition is a special case that can usually be easily inferred from presented results.
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4. Some useful examples

Let us start with an example, which shows that we cannot simply adapt the averaging theorem
by adding the word ‘piecewise’ to the statement. More specifically, we construct a well-behaved
piecewise-smooth system and a transversal solution of the associated initial value problem and we
show that the result of the averaging theorem does not hold.

Example 4.1. Let us define g as a periodic function with period 18, which is defined on the interval
[0, 18] by the following formula (see Figure 1):

g(t) =


−1, t ∈ [0, 2],
20(t − 2) − 1, t ∈ [2, 3],
−20(t − 3) + 19, t ∈ [3, 4],
−1, t ∈ [4, 18].

0 5 10 15
t

0

5

10

15

20

g(
t)

Figure 1. Graph of function g.

We can calculate that ∫ 18

0
g(t) dt = −18 + 20 · 2 ·

1
2

= 2.

We will use the standard mollifier as defined in [3, p.629],

µ(t) =


(∫ 1

−1
e

1
y2−1 dy

)−1
e

1
t2−1 , t ∈ (−1, 1),

0, t < (−1, 1).

For each δ > 0, we set

µδ(t) =
1
δ
µ
( t
δ

)
AIMS Mathematics Volume 4, Issue 5, 1466–1487.
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and we define

gδ(t) = (µδ ∗ g)(t) =

∫ δ

−δ

µδ(y)g(t − y) dy.

By [3, p.630, Theorem 6(i)], gδ ∈ C∞(R). Let 0 < δ < 2 be fixed such that

sup
t∈R
|g(t) − gδ(t)| = sup

t∈[0,18]
|g(t) − gδ(t)| <

1
2

and
∫ 18

0
gδ(t) dt > 0, which can be done due to [3, p.630, Theorem 6(iii)]. We can immediately see that

gδ(t)

≤ −1
2 , t ∈

⋃
k∈Z ([0 + 18k, 2 + 18k] ∪ [4 + 18k, 20 + 18k]) ,

≥ 1
2 , t ∈

⋃
k∈Z[2.1 + 18k, 3.9 + 18k].

(4.1)

We will show that gδ has exactly two zeros in [0, 18]. The derivative of gδ is

(gδ)′(t) = (µδ ∗ h)(t) =

∫ δ

−δ

µδ(y)h(t − y) dy

where h is the periodic continuation of

h(t) =


0, t ∈ [0, 2],
20, t ∈ [2, 3],
−20, t ∈ [3, 4],
0, t ∈ [4, 18].

This implies that (gδ)′(t) > 0 for t ∈ (2 − δ, 3) and (gδ)′(t) < 0 for t ∈ (3, 4 + δ). Hence, by (4.1), gδ

has on [0, 18] just two zeros: r1 ∈ (2, 3), r2 ∈ (3, 4).
Consider ẋ = ε f ±(x, t), x ∈ R, t ∈ R with a boundary function G(x) = x and

f −(x, t) = gδ(t),
f +(x, t) = gδ(−t).

Such a system is well-behaved. The corresponding averaged version of these functions is

f̄ + = f̄ +(x) =
1
18

∫ 18

0
gδ(t) dt = I > 0

and the guiding system is ẇ = I. Consider the initial value problem w(0) = −C whose solution is
w : [0, L]→ R, w(t) = −C + It where C ∈ R+ and L > C

I .
We will show that although the averaged system has a transversal solution for all choices of C and L

satisfying the conditions above, the original system has no solution that begins in R− and then crosses
over to R+.

Suppose that xε(t) is such a solution, meaning that xε(0) < 0 and there is a t∗ such that xε(t∗) = 0
(that is, it intersects the boundary Ω0 = {0}).

Let t0 = sup{t | ∀s ∈ [0, t) : xε(s) < 0}. The definition of t0 and existence of t∗ imply that
xε(t0) = 0. Since for all s < t0 we have xε(s) < 0, for each m ∈ N there is tm ∈ (t0 −

1
m , t0) such that

AIMS Mathematics Volume 4, Issue 5, 1466–1487.
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εgδ(tm) = ẋε(tm) > 0. This implies that t0 ∈ [r1 + 18l, r2 + 18l] for some l ∈ Z. Consequently, for all
t ∈ [t0, r2 + 18l] it holds that ε f −(t) ≥ 0, ε f +(t) < 0 implying that xε(t) = 0.

For all t ∈ (r2 + 18l, (18 − r2) + 18l) it holds that ε f −(t) < 0, ε f +(t) < 0 which means that ẋε(t) < 0.
Thus, xε(t) < 0 and also xε((18 − r2) + 18l) < 0.

For all t ∈ [(18 − r2) + 18l, r1 + 18(l + 1)], ε f −(t) < 0 which implies

xε(r1 + 18(l + 1)) < x((18 − r2) + 18l) < 0.

Since ∫ r2+18(l+1)

r2+18l
ε f −(t) dt > 0,

there is t1 ∈ (r1+18(l+1), r2+18(l+1)) such that xε(t1) = 0 and t1 = sup{t | ∀s ∈ (r2+18l, t) : xε(s) < 0}.
The same analysis as for t0 can be repeated for t1, etc. The solution can be extended up to infinity,

but does not cross the boundary. However, the solution of the guiding system crosses the boundary
without a problem. The problem is that the guiding system does not reflect the behavior of the original
equation at the discontinuity boundary.

Now, we provide an example of an initial value problem for a well-behaved piecewise-smooth
system. The solution of the associated guiding system is transversal, while there is a solution of
the original system for which the estimate from the averaging theorem holds and this solution is not
transversal.

Example 4.2. Let G(x) = x be the boundary function and consider a system ẋ = ε f ±(x, t), x ∈ R, t ∈ R
with

f −(x, t) = 1,
f +(x, t) = 1 − 2 cos t

and an initial condition x(0) = −2π.
The guiding system is ẇ = 1, which is transversal at x = 0 and we can immediately write the

solution of the guiding system as
w(τ) = −2π + τ

which means that
wε(t) = −2π + εt.

The solution of the original system up to the intersection with the discontinuity, that is for t ∈ [0, 2π
ε

],
is given by

xε(t) = −2π + εt = w(εt).

The solution xε can cross Ω0 transversally at t = 2π
ε

only if f +(0, 2π
ε

) > 0. That implies

t <
⋃
k∈Z

[
−
π

3
+ 2kπ,

π

3
+ 2kπ

]
.

Let εk > 0 be such that 1
εk
∈ (−1

6 + k, 1
6 + k) for some k ∈ Z (see Figure 2). For such εk, the solution

xεk makes the first contact with the boundary at t = 2π
εk
∈ (−π3 + 2kπ, π3 + 2kπ). However, since f +(t) ≤ 0

up to π
3 + 2kπ, we can say that the solution “sticks” to x = 0 up to t = π

3 + 2kπ.
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By solving the system ẋ = εk f +(x, t), x(π3 + 2kπ) = 0 we obtain a continuation of the solution xεk ,
namely

xεk(t) = εkt − 2εk sin t + Ck

where Ck = 2εk sin(π3 + 2kπ) − εk(π3 + 2kπ).

8 10 12
εt

0

1

2

3

4

5

6

7

w

xε

(a) ε = 0.5

8 10 12
εt

0

1

2

3

4

5

6

7

w

xε

(b) ε = 0.2

Figure 2. Comparison of w and a “sticking” solution xε . Graph of the solution w of the
guiding system and xε for t ≥ 1

ε
and 1

ε
∈ (−1

6 + k, 1
6 + k) for some k ∈ Z.

Such a solution does not make a contact with the boundary again. To see that, it only suffices to
look at the values of t − 2 sin t − π

3 + 2 sin(π3 ) for t > π
3 .

Now, we show that condition (2.4) is satisfied. For t ∈ [2π
εk
, 2kπ + π

3 ],

|wεk(t) − xεk(t)| = |w(εkt) − 0| ≤ |εk|

∣∣∣∣∣t − 2π
εk

∣∣∣∣∣ ≤ 2π
3
|εk|.

For t > 2kπ + π
3 ,

|wεk(t) − xεk(t)| = | − 2π + εkt − εkt + 2εk sin t −Ck|

= |εk|

∣∣∣∣∣2 sin t − 2 sin
(
π

3
+ 2kπ

)
+
π

3
+ 2kπ −

2π
εk

∣∣∣∣∣ ≤ |εk|

(
4 +

2π
3

)
because ∣∣∣∣∣π3 + 2kπ −

2π
εk

∣∣∣∣∣ ≤ 2π
3
.

The analysis for other values of ε is a bit more tricky. The solution crosses Ω0 transversally, but it
can make a contact with the boundary again. If it makes the second contact with the boundary, it will
continue with the same motion as we just analyzed (see Figure 3).

However, the difference in values of wε and xε will be less than C|ε | for some C > 0. That means
that the averaging estimate still holds on an interval [0,T ] for any T .
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(a) ε = 0.4
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(b) ε = 0.27

Figure 3. Comparison of w and a “non-sticking” solution xε . Graph of the solution w of the
guiding system and xε for t ≥ 1

ε
and 1

ε
< [−1

6 + k, 1
6 + k] for each k ∈ Z. The solution for

ε = 0.27 intersects the discontinuity boundary again and sticks to it for a bit before continuing
to Ω+.

Note that the condition that the solution of the guiding system w is transversal translates to a
condition that the system ẇ = f̄ ±(w) is transversal at x0. However, that does not imply that the
original system ẋ = ε f (x, t, ε) is transversal at x0 for all t ∈ R, ε ∈ [0, 1]. This means that the behavior
of the original system near x0 ∈ Ω0 is not reflected by the guiding system and can be more complex.
For this reason, we introduce the notion of uniform transversality of the system ẋ = ε f (x, t, ε) at x0

(uniform in t and ε).

Now consider the guiding system ẇ = f̄ ±(w) associated with ẋ = ε f ±(x, t, ε). The right-hand side
of the differential equation induced by this guiding system on the discontinuity boundary is given by

h(w) = β(x) f̄ −(w) + (1 − β(x)) f̄ +(w)

where β is given by

β(x) =
f̄ +(x) · ∇G(x)

f̄ +(x) · ∇G(x) − f̄ −(x) · ∇G(x)
.

The sliding solution of the guiding system ẇ = f̄ ±(w) is governed by h, but ḡ of (3.1) is the true
right-hand side of the guiding system for the sliding motion on Ω0.

A question that naturally arise is: What is the relationship between ḡ and h? We could hope that
these two functions are equal. However, this is not the case in general. The function ḡ is a result of
first inducing an equation on Ω0 and then averaging. For h, those operations are reversed. That is, we
first average and induce an equation on Ω0 afterwards. Their relationship is not that simple.

The following example shows a specific system, where ḡ and h are not equal.
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Example 4.3. Let the discontinuity surface be defined by G : R2 → R, G(x) = x1 and consider the
system ẋ = ε f ±(x, t), x ∈ R2, t ∈ R with

f −(x, t) = (1, 1),

f +(x, t) =

(
−1 +

1
2

sin t, 3
)

along with the initial condition x(0) = (−1,−1).
The differential equation induced on Ω0 = {0} × R is ẋ = εg(x, t), where g depends only on t, and is

given by
g(x, t) = (0, α(t) · 1 + (1 − α(t)) · 3).

The function α is defined by the equality

0 = α(t) · 1 + (1 − α(t))
(
−1 +

1
2

sin t
)
.

By solving for α and substituting into the previous equality, we get

g(x, t) =

0, 4 − 1
2 sin t

2 − 1
2 sin t

 .
By averaging over the period, we obtain

ḡ(x) =

(
0, 1 +

4
√

15

)
� (0, 2.0328).

The guiding system for this example is given by the right-hand side

f̄ −(x) = (1, 1),
f̄ +(x) = (−1, 3)

which induces a differential equation on Ω0, ẋ = εh(x), where

h(x) =

(
0,

1
2
· 1 +

1
2
· 3

)
= (0, 2) , ḡ(x).

Let us compare the solution of the original initial value problem xε and wε obtained from the guiding
system for τ ∈ [0, 2] (that is, t ∈ [0, 2

ε
]).

For t ∈ [0, 1
ε
] we have

xε(t) = wε(t) = (−1 + εt,−1 + εt)

and the solutions make contact with the boundary at t = 1
ε

in x = (0, 0). After that time, both solutions
slide along the discontinuity boundary Ω0. The motion of xε is given by the differential equation
ẋε = εg(xε , t), while the motion of wε is given by ẇε = εh(wε) = ε(0, 2) (see Figure 4).

To analyze the behavior of xε on the boundary for sufficiently small ε, we can employ the averaging
theorem for smooth systems. In the following, let us drop the first coordinate (which is constant and
equal to 0).
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The guiding system for the equation on the boundary has the right-hand side equal to ḡ0. Using
Lemma 2.4 (an extension of the averaging theorem), there is ε0 > 0, C > 0 such that for all ε ∈ (0, ε0]
and t ∈ [ 1

ε
, 2
ε
], ∣∣∣∣∣∣xε(t) − ε

(
1 +

4
√

15

) (
t −

1
ε

)∣∣∣∣∣∣ ≤ Cε.

In particular, at t = 2
ε

we have ∣∣∣∣∣∣xε
(
2
ε

)
−

(
1 +

4
√

15

)∣∣∣∣∣∣ ≤ Cε.

1.0 1.2 1.4 1.6 1.8 2.0
εt
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(a) ε = 0.1
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0.015
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0.035

(b) ε = 0.01

1.0 1.2 1.4 1.6 1.8 2.0
εt

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(c) ε = 0.005

Figure 4. Difference between xε and wε on the discontinuity boundary.

On the other side,

wε

(
2
ε

)
= 2ε

(
t −

1
ε

)∣∣∣∣∣∣
t= 2

ε

= 2 , 1 +
4
√

15
,

which means that it cannot be true that there exists a constant C̃ > 0 such that for all t ∈ [ 1
ε
, 2
ε
] and all

ε > 0 sufficiently small,
|xε(t) − wε(t)| ≤ C̃ε.
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Indeed, otherwise one would get a contradiction from∣∣∣∣∣∣2 −
(
1 +

4
√

15

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣xε

(
2
ε

)
− 2

∣∣∣∣∣∣ +

∣∣∣∣∣∣xε
(
2
ε

)
−

(
1 +

4
√

15

)∣∣∣∣∣∣ ≤ ε(C̃ + C)

(see Figure 5).

1.0 1.2 1.4 1.6 1.8 2.0
εt

1.8

1.9

2.0

2.1

2.2

2.3

g

̄g

h

Figure 5. Comparison of g, ḡ and h.

5. Analysis of the discontinuity boundary Ω0

For the purpose of this section, we denote Br(a) = {x ∈ Rn | |x − a| < r}. The next theorem shows
that the function G can be thought of as a distance function on some neighborhood of a point x0 ∈ Ω0.

Theorem 5.1. Let Ω ⊂ Rn be an open set and G : Ω → R a continuously differentiable function.
Suppose that x0 ∈ Ω0 = {x ∈ Ω | G(x) = 0} and that ∇G(x0) , 0. Then there exist positive numbers
d, α, β ∈ R, such that Bd(x0) ⊂ Ω, and for each x ∈ Bd(x0),

α|G(x)| ≤ dist(x,Ω0) ≤ β|G(x)|.

Proof. Since the functions (x, y) 7→ ∇G(x) · ∇G(y) defined on Ω×Ω and x 7→ |∇G(x)| defined on Ω are
continuous and ∇G(x0) · ∇G(x0) > 0, |∇G(x0)| > 0, there are positive constants d, a, A, b, B such that
B2d(x0) ⊂ Ω and for all x, y ∈ B2d(x0),

a ≤ ∇G(x) · ∇G(y) ≤ A, b ≤ |∇G(x)| ≤ B. (5.1)

Suppose that x ∈ Bd(x0) and z ∈ Ω0 is such that |x − z| = dist(x,Ω0). Since x0 ∈ Ω0 and |x − x0| ≤ d,
it follows that |x − z| ≤ d. Hence |x0 − z| ≤ 2d, i.e., z ∈ B2d(x0). Consequently, ∇G(z) , 0. It follows
from the geometry that x − z = k∇G(z) where k = sgn G(x) |x−z|

|∇G(z)| = sgn G(x) dist(x,Ω0)
|∇G(z)| . Hence, it holds

G(x) = G(z) +

∫ 1

0
∇G(z + t(x − z)) · (x − z) dt
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= sgn G(x)
dist(x,Ω0)
|∇G(z)|

∫ 1

0
∇G(z + t(x − z)) · ∇G(z) dt.

Using the inequalities (5.1), we arrive at

a
B

dist(x,Ω0) ≤ |G(x)| ≤
A
b

dist(x,Ω0)

and the statement easily follows. �

In the next lemma, we consider a system with C1-smooth right-hand side but included in Ω =

Ω+ ∪Ω0 ∪Ω−. So, we can estimate the time and position of the contact with Ω0.

Lemma 5.2. Let f be T-PCDLB and G be a boundary function. Let w : [0, L] → Ω be a solution of
the initial value problem ẇ = f̄ (w), w(0) = a ∈ Ω− and xε : [0, L

ε
]→ Ω be a solution to ẋ = ε f (x, t, ε),

x(0) = a. Assume that w intersects Ω0 in exactly one point x0 at τ0 ∈ (0, L) and f̄ (x0) · ∇G(x0) > 0.
Then there exist positive constants ε0, A, B such that for all ε ∈ (0, ε0], the solution xε intersects Ω0

in some point and if we define tε to be the smallest t such that xε(t) ∈ Ω0, then∣∣∣∣∣tε − τ0

ε

∣∣∣∣∣ ≤ A and |xε(tε) − x0| ≤ Bε.

Proof. Let M be a bound of | f |. Due to the smooth averaging, Lemma 2.4 can be used to show that
there exist C > 0 and ε0 > 0 sufficiently small such that for all ε ∈ (0, ε0] and t ∈ [0, L

ε
], it holds

|xε(t) − w(εt)| ≤ Cε. (5.2)

In the rest of the proof, ε0 may decrease.
Since w(L) ∈ Ω+, we have G(w(L)) > 0. Then the estimate (5.2) and the continuity of G imply that

G(xε( L
ε
)) > 0 for all ε ∈ (0, ε0]. Since G(xε(0)) = G(a) < 0, the solution xε crosses Ω0 in some point.

Due to the continuity of mapping x 7→ f̄ (x) · ∇G(x) and Theorem 5.1, there exist positive constants
d, m, α, β such that Bd(x0) ⊂ Ω, and for all x ∈ Bd(x0), it holds

f̄ (x) · ∇G(x) ≥ m and α|G(x)| ≤ dist(x,Ω0) ≤ β|G(x)|. (5.3)

Let A be a constant such that A > C
mα where C is from (5.2). Let ε0 be such that τ0−ε0A > 0, τ0+ε0A < L

and MAε0 ≤ d. If we choose ε ∈ (0, ε0], then for all τ ∈ [τ0 − Aε, τ0 + Aε] ⊂ [0, L], it holds

|w(τ) − x0| ≤

∫ τ

τ0

| f̄ (w(s))| ds ≤ M|τ − τ0| ≤ MAε ≤ d,

i.e., w(τ) ∈ Bd(x0). Since w(τ0 + Aε) ∈ Ω+, we have G(w(τ0 + Aε)) > 0 and we obtain

G(w(τ0 + Aε)) = G(w(τ0)) +

∫ τ0+Aε

τ0

f̄ (w(s)) · ∇G(w(s)) ds ≥ Aεm

due to the first inequality of (5.3). Now, we can use the other inequality of (5.3) to get

dist(w(τ0 + Aε),Ω0) ≥ α|G(w(τ0 + Aε))| ≥ αAεm.
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Observe that the set w([τ0 + Aε0, L]) is compact and lies in Ω+. Therefore, dist(w([τ0 + Aε0, L],Ω0) > 0.
Consequently, for some ε0 > 0 and all ε ∈ (0, ε0], we obtain

dist(w([τ0 + Aε, L]),Ω0)
≥ min{dist(w([τ0 + Aε, τ0 + Aε0]),Ω0), dist(w([τ0 + Aε0, L]),Ω0)} ≥ αAεm.

The estimate (5.2) implies that for any ε ∈ (0, ε0],

dist
(
xε

([
τ0 + Aε

ε
,

L
ε

])
,Ω0

)
≥ dist(w([τ0 + Aε, L]),Ω0) − sup

t∈
[
τ0+Aε
ε , L

ε

] |xε(t) − w(εt)| ≥ (αAm −C)ε.

Due to our choice of A, we deduce that xε(t) ∈ Ω+ for all t ∈ [ τ0+Aε
ε
, L
ε
], ε ∈ (0, ε0].

Using similar arguments, we can show that

dist(w(τ0 − Aε),Ω0) ≥ αAεm and xε
([

0,
τ0 − Aε

ε

])
∈ Ω−

for all ε ∈ (0, ε0] for some (possibly smaller than before) ε0 > 0. Hence, there exists tε ∈ ( τ0−Aε
ε
, τ0+Aε

ε
)

such that xε(tε) ∈ Ω0. Furthermore, the following estimate is valid:

|xε(tε) − w(τ0)| ≤ |xε(tε) − w(εtε)| + |w(εtε) − w(τ0)| ≤ Cε + M|εtε − τ0| ≤ ε(C + MA). �

6. Uniformly transversal systems

In this section, we prove an averaging theorem for uniformly transversal systems. First we prove an
auxiliary result.

Lemma 6.1. Let (Ω,G, f −, f +) be a well-behaved piecewise-smooth system that is uniformly
transversal at x0 ∈ Ω0. Let w : [0, L] → Ω be a solution of the guiding system
ẇ = f̄ ±(w),w(0) = a ∈ Ω− which intersects the boundary Ω0 in exactly one point w(τ0) = x0 at
τ0 ∈ (0, L).

Suppose that there is ε1 ∈ (0, 1] such that for all ε ∈ (0, ε1] there is a unique solution xε : [0, L
ε
]→ Ω

of the problem ẋε = ε f ±(xε , t, ε), xε(0) = a intersecting the boundary Ω0 at exactly one point in time.
Then there are ε0 ∈ (0, ε1] and C > 0 such that for all ε ∈ (0, ε0] and all t ∈ [0, L

ε
],

|xε(t) − w(εt)| ≤ Cε. (6.1)

Proof. We know that w is a solution of ẇ(τ) = f̄ −(w(τ)) for τ ∈ [0, τ0], satisfying w(0) = a. Since the
right-hand side f̄ − is defined on the whole Ω, there is a solution w− : [0, L−]→ Ω of the same problem
for some L− > τ0. This solution is equal to w on [0, τ0]. The uniform transversality at x0 implies that
ẇ−(τ0) , 0. Hence the solution w− intersects Ω0 exactly once if L− is sufficiently close to τ0.

In what follows, the constants ε0 and C may vary from step to step. By Theorem 2.2, for every
ε ∈ (0, ε0], there is a unique solution x−ε : [0, L−

ε
] → Ω of the initial value problem ẋ = ε f −(x, t, ε),

x(0) = a such that
|x−ε (t) − w−(εt)| ≤ Cε (6.2)
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for all t ∈ [0, L−
ε

]. The assumption of uniform transversality at x0 and Lemma 5.2 imply that there are
positive constants A, B such that for all ε ∈ (0, ε1], the solution x−ε intersects Ω0 and it holds∣∣∣∣∣tε − τ0

ε

∣∣∣∣∣ ≤ A and |x−ε (tε) − x0| ≤ Bε (6.3)

where tε is the earliest time of intersection. Our assumption on f − implies that tε is the time of the only
intersection. Clearly, the solution x−ε is equal to xε on [0, tε] and x−ε (t) ∈ Ω+ for t ∈ (tε , L].

Since the functions f ± are bounded, the solutions xε , w are Lipschitz continuous. For t ∈ [ τ0
ε
−

A, τ0
ε

+ A], we estimate

|xε(t) − w(εt)| ≤
∣∣∣∣∣xε(t) − x−ε

(
τ0

ε
− A

)∣∣∣∣∣ +

∣∣∣∣∣x−ε (
τ0

ε
− A

)
− w−(τ0 − εA)

∣∣∣∣∣ + |w−(τ0 − εA) − w(εt)|.

Since x−ε ( τ0
ε
− A) = xε( τ0

ε
− A) and w−(τ0 − εA) = w(τ0 − εA), using Lipschitz continuity of xε , w and

inequality (6.2), we arrive at (6.1) for t ∈ [ τ0
ε
− A, τ0

ε
+ A].

Now, let t ∈ [ τ0
ε

+ A, L
ε
]. For all such t we have that w(t), xε(t) ∈ Ω+. Hence xε is a solution of

equation ẋ = ε f +(x, t, ε) and w is a solution of the corresponding guiding system. Lemma 2.4 with
L1 = τ0, a = w(τ0) and bε = xε( τ0

ε
+ A) implies the existence of ε0,C > 0 such that for all ε ∈ (0, ε0], it

holds
|xε(t) − w(εt)| ≤ Cε

for all t ∈ [ τ0
ε

+ A, L
ε
]. This estimate concludes the proof. �

Theorem 6.2. Let (Ω,G, f −, f +) be a well-behaved piecewise-smooth system that is uniformly
transversal at x0 ∈ Ω0. Let w : [0, L] → Ω be a solution of the guiding system ẇ = f̄ ±(w),
w(0) = a ∈ Ω− which intersects the boundary Ω0 in exactly one point w(τ0) = x0 at time τ0 ∈ (0, L).

Then there are ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0] there exists a unique solution xε of the
problem ẋε = ε f ±(x, t, ε), xε(0) = a, intersecting Ω0 exactly once, the intersection is transversal, and
for all t ∈ [0, L

ε
], it holds

|xε(t) − w(εt)| ≤ Cε. (6.4)

Proof. The main idea of the proof is to use the averaging theorem, Theorem 2.2, for smooth systems in
Ω− and Ω+ separately and to construct a solution of the piecewise-smooth system ẋ = ε f ±(x, t, ε) that
crosses Ω0 only once.

The proof is divided into two parts. Lemma 6.1 shows that, given a transversal solution of ẋ =

ε f ±(x, t, ε), the averaging estimate (6.4) holds for all sufficiently small ε > 0.
Now, it only remains to show that there exists a unique transversal solution for all sufficiently

small ε. The uniform transversality at x0 implies the existence of d,m > 0 such that B2d(x0) ⊂ Ω and

f ±(x, t, ε) · ∇G(x) ≥
m
2

for all x ∈ B2d(x0), t ∈ R, ε ∈ [0, 1].
Let M be a bound of both | f +| and | f −|. Analogously to the proof of Lemma 6.1, there is L− > τ0 and

a solution w− : [0, L−] → Ω of ẇ = f̄ −(w), w(0) = a that intersects Ω0 exactly once and w−(τ) = w(τ)
for τ ∈ [0, τ0]. Due to the averaging theorem for smooth systems, there is ε1 ∈ (0, 1] and C > 0
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such that for any ε ∈ (0, ε0], there is a unique solution x−ε : [0, L−
ε

] → Ω of the initial value problem
ẋ = ε f −(x, t, ε), x(0) = a such that it holds

|x−ε (t) − w−(εt)| ≤ Cε

for all t ∈ [0, L−
ε

]. In the following again, the constants ε0 and C may vary from step to step. By Lemma
5.2, there are constants A, B such that for all ε ∈ (0, ε0] the solution x−ε intersects Ω0 and it holds∣∣∣∣∣tε − τ0

ε

∣∣∣∣∣ ≤ A and |x−ε (tε) − x0| ≤ Bε

where tε is the time of the first contact. Let ε0 be so small that the following inequalities are true

Bε0 ≤ d, ε0AM ≤
d
2
, ε0A ≤ min

{
d

2M
, L − τ0

}
. (6.5)

The first inequality of (6.5) implies
|x−ε (tε) − x0| ≤ d

for all ε ∈ (0, ε0].
Now, let ε ∈ (0, ε0] be fixed. Denote x+

ε (t) : [tε , s] → Ω the unique local solution of the initial
value problem ẋ = ε f +(x, t, ε), x(tε) = x−(tε) for some s > tε . This solution can be extended until it
approaches ∂Ω. For t ∈ [tε , s], we estimate

|x+
ε (t) − x0| ≤ |x+

ε (t) − x+
ε (tε)| + |x+

ε (tε) − x0| ≤ εM|s − tε | + d. (6.6)

Denote ∆ = min{ d
2M , L − τ0}. From the third inequality of (6.5) we deduce that

τ0 + ∆

ε
≥
τ0 + εA

ε
≥ tε .

Assume that s ≤ τ0+∆

ε
. The inequality tε ≥

τ0−εA
ε

together with (6.5) imply

εM|s − tε | ≤ εM
∣∣∣∣∣τ0 + ∆

ε
−
τ0 − εA

ε

∣∣∣∣∣ = M(∆ + εA) ≤
d
2

+
d
2

= d.

Combining this estimate with (6.6), we get

x+
ε (t) ∈ B2d(x0)

for any t ∈ [tε , s]. This means that the solution x+
ε is separated from the boundary ∂Ω on [tε , s] for

arbitrary s ≤ τ0+∆

ε
. Hence, it exists on [tε , τ0+∆

ε
]. Moreover, since x+

ε (t) ∈ B2d(x0) for all t ∈ [tε , τ0+∆

ε
], it

holds

G(x+
ε (t)) = G(x+

ε (tε)) + ε

∫ t

tε
f +(x+

ε (s), s, ε) · ∇G(x+
ε (s)) ds ≥

εm(t − tε)
2

> 0

for all t ∈ [tε , τ0+∆

ε
], and so x+

ε (t) ∈ Ω+.
For ε ∈ [0, ε0], define xε : [0, τ0+∆

ε
]→ Ω as follows:

xε(t) =

x−ε (t), t ∈ [0, tε],
x+
ε (t), t ∈ (tε , τ0+∆

ε
].
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This is a solution of the initial value problem ẋ = f ±(x, t, ε), x(0) = a, which intersects Ω0 exactly
once and the intersection is transversal. Lemma 6.1 implies validity of estimate (6.4) for ε ∈ (0, ε0] and
t ∈ [0, τ0+∆

ε
].

If τ0 + ∆ = L the proof is done. Thus assume that τ0 + ∆ < L. Let

h = dist(w([τ0 + ∆, L]),Ω0) > 0.

Since ẇ(τ) = f̄ +(w(τ)) for τ ∈ (τ0, L), we can use Lemma 2.4 with L1 = τ0+∆, a = w(L1), bε = xε( τ0+∆

ε
)

and A = 0. Hence, there is a unique solution x++
ε : [ τ0+∆

ε
, L
ε
]→ Ω such that

|x++
ε (t) − w(εt)| ≤ Cε

for all t ∈ [ τ0+∆

ε
, L
ε
] and ε ∈ (0, ε0]. Observe that x++

ε (t) ∈ Ω+ for all t ∈ [ τ0+∆

ε
, L
ε
] and ε ∈ (0, h

C ].
Finally for ε ∈ [0, ε0], we define the desired solution xε : [0, L

ε
]→ Ω as

xε(t) =


x−ε (t), t ∈ [0, tε],
x+
ε (t), t ∈ (tε , τ0+∆

ε
],

x++
ε (t), t ∈ ( τ0+∆

ε
, L
ε
]

and estimate (6.4) is valid.
The uniqueness of the solution xε follows from the smoothness of f −, f + and the transversality. �

7. Uniformly sliding systems

Notice that ∇G is used in the definition of the function g. To ensure that the function g is Lipschitz
continuous, which is needed to use the averaging theorem for smooth systems, we will need to impose
some further conditions on ∇G. One can see that we deal with a differential equation defined on
(n − 1)-dimensional surface. We will show that it can be analyzed using the techniques available for
differential equations defined on open subsets of Rn by extending the equation to an open set in Ω.

Lemma 7.1. Let (Ω,G, f −, f +) be a well-behaved piecewise-smooth system that is uniformly sliding
and let g be defined by (3.1). LetM be a compact subset of Ω0 and let∇G be continuously differentiable
and Lipschitz continuous on some open neighborhood V ofM. Then there exists an open set U ⊂ V
such that M ⊂ U, g can be defined by the formula (3.1) on U × R × [0, 1], and the function g :
U × R × [0, 1]→ Rn is T -PCDLB.

Proof. We define a function φ : Ω→ R as

φ(x) = min
t∈[0,T ], ε∈[0,1]

{ f −(x, t, ε) · ∇G(x) − f +(x, t, ε) · ∇G(x)}.

The uniform sliding implies that φ(x) ≥ 2m for all x ∈ Ω0, where m is a positive constant from the
definition of uniformly sliding systems. For every x ∈ M, there is a radius d > 0 such that Bd(x) ⊂ V
and φ(y) ≥ m for all y ∈ Bd(x). Since the compact setM is covered by these balls, there exists a finite
open subcover ofM. Let U be the union of the balls from the finite open subcover ofM. It is clear
that U ⊂ V and φ(x) ≥ m for all x ∈ U.
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This implies that for all x ∈ U, t ∈ R and ε ∈ [0, 1],

f −(x, t, ε) · ∇G(x) − f +(x, t, ε) · ∇G(x) ≥ m.

Hence, the function g can be extended to U and one can prove that it has the desired properties. �

We are now ready to formulate and prove an averaging theorem for sliding solutions of piecewise-
smooth systems.

Theorem 7.2. Let (Ω,G, f −, f +) be a well-behaved piecewise-smooth system that is uniformly sliding.
Let w : [0, L]→ Ω be a solution of the sliding adjusted guiding system

ẇ =

 f̄ −(w), x ∈ Ω−,

ḡ(w), x ∈ Ω0

associated with the initial value problem ẋ = ε f ±(x, t, ε), x(0) = a ∈ Ω−, where g is given by (3.1). Let
τ0 be such that 0 < τ0 < L, w(τ) ∈ Ω− for τ ∈ [0, τ0) and w(τ) ∈ Ω0 for τ ∈ [τ0, L]. Furthermore,
let there be an open set V such that w([τ0, L]) ⊂ V ⊂ Ω and ∇G is continuously differentiable and
Lipschitz continuous on V.

Then there is a constant ε0 > 0 such that for all ε ∈ (0, ε0], there is a unique solution xε of the
problem ẋ = ε f ±(x, t, ε), x(0) = a ∈ Ω− defined on [0, L

ε
] and sliding from time tε . In addition, there

are constants C, A > 0 such that |tε −
τ0
ε
| ≤ A and

|xε(t) − w(εt)| ≤ Cε

for all t ∈ [0, L
ε
].

Proof. The uniform sliding condition implies that

f̄ −(w) · ∇G(w) > 0.

Hence there is a solution w− of ẇ = f̄ −(w), w(0) = a defined on [0, L−] for some L− > τ0 such that
w−(τ) ∈ Ω+ for all τ ∈ (τ0, L−].

The averaging theorem for smooth systems implies that there exist ε0,C > 0 such that for all
ε ∈ (0, ε0], there is a unique solution x−ε of ẋ = ε f −(x, t, ε), x(0) = a defined on [0, L−

ε
] and it holds

|x−ε (t) − w−(εt)| ≤ Cε (7.1)

for every t ∈ [0, L−
ε

]. Lemma 5.2 implies that there are constants A, B such that for all ε ∈ (0, ε0], the
solution x−ε crosses Ω0 and we have∣∣∣∣∣tε − τ0

ε

∣∣∣∣∣ ≤ A, |x−ε (tε) − x0| ≤ Bε,

where tε is the time of the first contact of x−ε with Ω0.
For τ ∈ [τ0, L], we define w0(τ) = w(τ). Thus the function w0 is the solution of the initial value

problem ẇ = ḡ(w), w(τ0) = x0.
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Due to Lemma 7.1, there is an open set U ⊂ V such that g is T -PCDLB on U. The uniform sliding
condition implies that the solution x−ε can be uniquely extended as a solution x0

ε of the initial value
problem ẋ = εg(x, t, ε), x(tε) = x−ε (tε). Trajectories of solutions of this system lie in Ω0 and the local
solution x0

ε can be extended at least as long as the solution does not approach the boundary of U.
Suppose that x0

ε can be defined at least up to some s > tε .
Assume that s ≤ τ0

ε
+ A. For every t ∈ [tε , s], we estimate

|x0
ε (t) − w0(εt)| ≤ |x0

ε (t) − x0
ε (tε)| +

∣∣∣∣∣x−ε (tε) − xε
(
τ0

ε
− A

)∣∣∣∣∣
+

∣∣∣∣∣x−ε (
τ0

ε
− A

)
− w−(τ0 − εA)

∣∣∣∣∣ + |w−(τ0 − εA) − w−(τ0)| + |w0(τ0) − w0(εt)|.

Using estimate (7.1) and the Lipschitz continuity of solutions x0
ε , x−ε and w−, w0, we arrive at

|x0
ε (t) − w0(εt)| ≤ Cε

for tε ≤ t ≤ s ≤ τ0
ε

+ A. Observe that C does not depend on s, if s ≤ τ0
ε

+ A and x0
ε is separated from ∂U

for ε0 sufficiently small. Since s was arbitrary, the solution x0
ε can be defined up to τ0

ε
+ A.

At this point, we can use Lemma 2.4 on the initial value problem ẋ = εg(x, t, ε), x( τ0
ε

+A) = x0
ε (
τ0
ε

+A)
with w0 : [τ0, L] → Ω and L1 = τ0, a = w0(τ0), L2 = L. The assumptions of Lemma 2.4 are satisfied
since ∣∣∣∣∣x0

ε

(
τ0

ε
+ A

)
− w0(τ0)

∣∣∣∣∣ ≤ ∣∣∣∣∣x0
ε

(
τ0

ε
+ A

)
− w0(τ0 + εA)

∣∣∣∣∣ + |w0(τ0 + εA) − w0(τ0)| ≤ Cε.

Hence for all ε ∈ (0, ε0], the solution x0
ε can be extended to the interval [ τ0

ε
, L
ε
], and it holds

|x0
ε (t) − w0(εt)| ≤ Cε

for all t ∈ [ τ0
ε

+ A, L
ε
]. It is clear that the function

xε(t) =

x−ε (t), t ∈ [0, tε],
x0
ε (t), t ∈ (tε , L

ε
]

is the desired unique solution. �

8. Conclusion

We have contributed to the study of piecewise-smooth differential equations by extending the results
of averaging methods for periodic systems to the piecewise-smooth setting. Our main contribution is
the analysis of how the boundary behavior influences averaging, especially in case of sliding. We
have also proposed some sufficient conditions that allowed us to prove results on averaging in case of
transversal crossing and sliding. Moreover, we demonstrated how to achieve results for solutions of
piecewise-smooth systems by dividing them into solutions of smooth systems and patching together
results from the smooth setting. Future opportunities for study include weakening of the assumptions
in the transversal and sliding case and extension of the results to situations, in which f + ·∇G or f − ·∇G
vanish, which includes grazing solutions. Moreover, it would be interesting to develop an averaging
method for differential equations with impacts [2].
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