In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the $ L^2 $-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution $ \bar{u} $ and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results.
Citation: Woocheol Choi, Young-Pil Choi. A sharp error analysis for the DG method of optimal control problems[J]. AIMS Mathematics, 2022, 7(5): 9117-9155. doi: 10.3934/math.2022506
In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the $ L^2 $-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution $ \bar{u} $ and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results.
[1] | N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. https://doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966 |
[2] | W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 12 (1984), 15–27. https://doi.org/10.1007/BF01449031 doi: 10.1007/BF01449031 |
[3] | W. Alt, U. Felgenhauer, M. Seydenschwanz, Euler discretization for a class of nonlinear optimal control problems with control appearing linearly, Comput. Optim. Appl., 69 (2018), 825–856. https://doi.org/10.1007/s10589-017-9969-7 doi: 10.1007/s10589-017-9969-7 |
[4] | J. Bonnans, N. Osmolovskiĭ, Second-order analysis of optimal control problems with control and initial-final state constraints, J. Convex Anal., 17 (2010), 885–913. |
[5] | J. Bonnans, X. Dupuis, L. Pffiffer, Second-order sufficient conditions for strong solutions to optimal control problems, ESAIM: COCV., 20 (2014), 704–724. https://doi.org/10.1051/cocv/2013080 doi: 10.1051/cocv/2013080 |
[6] | L. Bonifacius, K. Pieper, Konstantin, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic time-optimal control problems, SIAM J. Control Optim., 57 (2019), 129–162. https://doi.org/10.1137/18M1166948 doi: 10.1137/18M1166948 |
[7] | M. Baccouch, Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations, Appl. Numer. Math., 106 (2016), 129–153. https://doi.org/10.1016/j.apnum.2016.03.008 doi: 10.1016/j.apnum.2016.03.008 |
[8] | T. Bayen, F. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations, SIAM J. Control Optim., 54 (2016), 819–844. https://doi.org/10.1137/141000415 doi: 10.1137/141000415 |
[9] | C. Christof, B. Vexler, New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints, ESAIM: COCV., 27 (2021), 4. https://doi.org/10.1051/cocv/2020059 doi: 10.1051/cocv/2020059 |
[10] | E. Casas, F. Tröltzsch, Second-order optimality conditions for weak and strong local solutions of parabolic optimal control problems, Vietnam J. Math., 44 (2016), 181–202. https://doi.org/10.1007/s10013-015-0175-6 doi: 10.1007/s10013-015-0175-6 |
[11] | E. Casas, F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261–279. https://doi.org/10.1137/110840406 doi: 10.1137/110840406 |
[12] | K. Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's, ESAIM Math. Model. Num., 44 (2010), 189–206. https://doi.org/10.1051/m2an/2009046 doi: 10.1051/m2an/2009046 |
[13] | A. L. Dontchev, W. W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim., 31 (1993), 569–603. https://doi.org/10.1137/0331026 doi: 10.1137/0331026 |
[14] | A. L. Dontchev, W. W. Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2000), 173–203. https://doi.org/10.1090/S0025-5718-00-01184-4 doi: 10.1090/S0025-5718-00-01184-4 |
[15] | A. L. Dontchev, W. W. Hager, V. M. Veliov, Second-order Runge-Kutta approximations in control constrained optimal control, SIAM J. Numer. Anal., 38 (2000), 202–226. https://doi.org/10.1137/S0036142999351765 doi: 10.1137/S0036142999351765 |
[16] | A. L. Dontchev, M. I. Krastanov, I. V. Kolmanovsky, M. M. Nicotra, V. M. Veliov, Lipschitz Stability in Discretized Optimal Control with Application to SQP, SIAM J. Control Optim., 57 (2019), 468–489. https://doi.org/10.1137/18M1188483 doi: 10.1137/18M1188483 |
[17] | A. L. Dontchev, I. V. Kolmanovsky, M. I. Krastanov, V. M. Veliov, P. T. Vuong, Approximating optimal finite horizon feedback by model predictive control, Syst. Control Lett., 139 (2020), 104666. https://doi.org/10.1016/j.sysconle.2020.104666 doi: 10.1016/j.sysconle.2020.104666 |
[18] | M. Delfour, W. W. Hager, F. Trochu, Discontinuous Galerkin methods for ordinary differential equations, Math. Comp., 36 (1981), 455–473. https://doi.org/10.1090/S0025-5718-1981-0606506-0 doi: 10.1090/S0025-5718-1981-0606506-0 |
[19] | D. Estep, A posteriori error bounds and global error control for approximation of ordinary differential equations, SIAM J. Numer. Anal., 32 (1995), 1–48. https://doi.org/10.1137/0732001 doi: 10.1137/0732001 |
[20] | G. Elnagar, M. A. Kazemi, M. Razzaghi, The pseudospectral Legendre method for discretizing optimal control problems, IEEE T. Automat. Contr., 40 (1995), 1793–1796. https://doi.org/10.1109/9.467672 doi: 10.1109/9.467672 |
[21] | U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control Optim., 41 (2003), 1843–1867. https://doi.org/10.1137/S0363012901399271 doi: 10.1137/S0363012901399271 |
[22] | C. Glusa, E. Otárola, Error estimates for the optimal control of a parabolic fractional PDE, SIAM J. Numer. Anal., 59 (2021), 1140–1165. https://doi.org/10.1137/19M1267581 doi: 10.1137/19M1267581 |
[23] | D. Hafemeyer, F. Mannel, I. Neitzel, B. Vexler, Finite element error estimates for one-dimensional elliptic optimal control by BV-functions, Math. Control Relat. F., 10 (2020), 333–363. https://doi.org/10.3934/mcrf.2019041 doi: 10.3934/mcrf.2019041 |
[24] | J. Henriques, J. Lemos, J. Eça, L. Gato, A. Falcão, A high-order discontinuous Galerkin method with mesh refinement for optimal control, Automatica, 85 (2017), 70–82. https://doi.org/10.1016/j.automatica.2017.07.029 doi: 10.1016/j.automatica.2017.07.029 |
[25] | D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), 1150–1177. https://doi.org/10.1137/070694016 doi: 10.1137/070694016 |
[26] | D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints, SIAM J. Control Optim., 47 (2008), 1301–1329. https://doi.org/10.1137/070694028 doi: 10.1137/070694028 |
[27] | D. Meidner, B. Vexler, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations, ESAIM Math. Model. Num., 52 (2018), 2307–2325. https://doi.org/10.1051/m2an/2018040 doi: 10.1051/m2an/2018040 |
[28] | R. Manohar, R. K. Sinha, Space-time a posteriori error analysis of finite element approximation for parabolic optimal control problems: A reconstruction approach, Optim. Contr. Appl. Met., 41 (2020), 1543–1567. https://doi.org/10.1002/oca.2618 doi: 10.1002/oca.2618 |
[29] | I. Neitzel, B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numer. Math., 120 (2012), 345–386. https://doi.org/10.1007/s00211-011-0409-9 doi: 10.1007/s00211-011-0409-9 |
[30] | E. Otárola, An adaptive finite element method for the sparse optimal control of fractional diffusion, Numer. Meth. Part. D. E., 36 (2020), 302–328. https://doi.org/10.1002/num.22429 doi: 10.1002/num.22429 |
[31] | N. P. Osmolovskii, H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. Part 1: Main results, Control Cybern., 34 (2005), 927–950. |
[32] | N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations, Control Cybern., 36 (2007), 5–45. |
[33] | I. M. Ross, M. Karpenko, A review of pseudospectral optimal control: From theory to flight, Annu. Rev. Control, 36 (2012), 182–197. https://doi.org/10.1016/j.arcontrol.2012.09.002 doi: 10.1016/j.arcontrol.2012.09.002 |
[34] | D. Schötzau, C. Schwab, An hp a priori error analysis of the DG time-stepping method for initial value problems, Calcolo, 37 (2000), 207–232. https://doi.org/10.1007/s100920070002 doi: 10.1007/s100920070002 |
[35] | B. Vexler, Finite element approximation of elliptic Dirichlet optimal control problems, Numer. Func. Anal. Opt., 28 (2007), 957–973. https://doi.org/10.1080/01630560701493305 doi: 10.1080/01630560701493305 |
[36] | J. Vlassenbroeck, R. Van Dooren, A Chebyshev technique for solving nonlinear optimal control problems, IEEE T. Automat. Contr., 33 (1988), 333–349. https://doi.org/10.1109/9.192187 doi: 10.1109/9.192187 |