In this paper, we research semi-discrete multipoint flux mixed finite element (MFMFE) method for parabolic optimal control problem (OCP). The state and co-state variables are approximated by the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element (MFE) spaces and the control is approximated by piecewise constant. The advantage of this type of mixed element method is that it can decouple the state and adjoint state variables as cell-centered difference schemes rather than to solve saddle point algebraic equations. Error estimates and convergence orders are derived rigorously for state and control variables. Finally, a numerical example is given to confirm our theoretical analysis.
Citation: Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang. Multipoint flux mixed finite element method for parabolic optimal control problems[J]. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962
In this paper, we research semi-discrete multipoint flux mixed finite element (MFMFE) method for parabolic optimal control problem (OCP). The state and co-state variables are approximated by the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element (MFE) spaces and the control is approximated by piecewise constant. The advantage of this type of mixed element method is that it can decouple the state and adjoint state variables as cell-centered difference schemes rather than to solve saddle point algebraic equations. Error estimates and convergence orders are derived rigorously for state and control variables. Finally, a numerical example is given to confirm our theoretical analysis.
[1] | W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 12 (1984), 15–27. https://doi.org/10.1007/BF01449031 doi: 10.1007/BF01449031 |
[2] | F. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28–47. https://doi.org/10.1016/0022-247X(73)90022-X doi: 10.1016/0022-247X(73)90022-X |
[3] | K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim., 8 (1982), 69–95. https://doi.org/10.1007/BF01447752 doi: 10.1007/BF01447752 |
[4] | M. Yan, W. Gong, N. Yan, Finite element methods for elliptic optimal control problems with boundary observations, Appl. Numer. Math., 90 (2015), 190–207. http://dx.doi.org/10.1016/j.apnum.2014.11.011 doi: 10.1016/j.apnum.2014.11.011 |
[5] | T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714–726. http://dx.doi.org/10.1016/j.camwa.2017.05.021 doi: 10.1016/j.camwa.2017.05.021 |
[6] | H. Choi, W. Choi, Y. Koh, A finite element method for elliptic optimal control problem on a non-convex polygon with corner singularities, Comput. Math. Appl., 75 (2018), 45–58. http://dx.doi.org/10.1016/j.camwa.2017.08.029 doi: 10.1016/j.camwa.2017.08.029 |
[7] | Z. Zhang, D. Liang, Q. Wang, Immersed finite element method and its analysis for parabolic optimal control problems with interfaces, Appl. Numer. Math., 147 (2020), 174–195. https://doi.org/10.1016/j.apnum.2019.08.024 doi: 10.1016/j.apnum.2019.08.024 |
[8] | S. Brenner, M. Oh, L. Sung, $P_1$ finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions, Results in Applied Mathematics, 8 (2020), 100090. https://doi.org/10.1016/j.rinam.2019.100090 doi: 10.1016/j.rinam.2019.100090 |
[9] | K. Porwal, P. Shakya, A finite element method for an elliptic optimal control problem with integral state constraints, Appl. Numer. Math., 169 (2021), 273–288. https://doi.org/10.1016/j.apnum.2021.07.002 doi: 10.1016/j.apnum.2021.07.002 |
[10] | P. Neittaanmaki, D. Tiba, Optimal control of nonlinear parabolic systems: theory, algorithms and applications, New York: Marcel Dekker Press, 1994. |
[11] | W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Beijing: Science Press, 2008. |
[12] | J. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer-Verlag Press, 1971. |
[13] | H. Guo, H. Fu, J. Zhang, A splitting positive definite mixed finite element method for elliptic optimal control problem, Appl. Math. Comput., 219 (2013), 11178–11190. https://doi.org/10.1016/j.amc.2013.05.020 doi: 10.1016/j.amc.2013.05.020 |
[14] | W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), 285–309. https://doi.org/10.1023/A:1014239012739 doi: 10.1023/A:1014239012739 |
[15] | P. Shakya, R. Sinha, Finite element method for parabolic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 367 (2020), 112431. https://doi.org/10.1016/j.cam.2019.112431 doi: 10.1016/j.cam.2019.112431 |
[16] | X. Xing, Y. Chen, Error estimates of mixed methods for optimal control problem by parabolic equations, Int. J. Numer. Meth. Eng., 75 (2008), 735–754. https://doi.org/10.1002/nme.2289 doi: 10.1002/nme.2289 |
[17] | Y. Chen, Z. Lu, Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods, Finite Elem. Anal. Des., 46 (2010), 957–965. https://doi.org/10.1016/j.finel.2010.06.011 doi: 10.1016/j.finel.2010.06.011 |
[18] | I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Computat. Geosci., 6 (2002), 405–432. https://doi.org/10.1023/A:1021291114475 doi: 10.1023/A:1021291114475 |
[19] | T. Arbogast, C. Dawson, P. Keenan, M. Wheeler, I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comput., 19 (1998), 404–425. https://doi.org/10.1137/S1064827594264545 doi: 10.1137/S1064827594264545 |
[20] | M. Wheeler, I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44 (2006), 2082–2106. https://doi.org/10.1137/050638473 doi: 10.1137/050638473 |
[21] | W. Xu, Cell-centered finite difference method for parabolic equation, Appl. Math. Comput., 235 (2014), 66–79. http://dx.doi.org/10.1016/j.amc.2014.02.066 doi: 10.1016/j.amc.2014.02.066 |