Research article

A multiplicity result for double phase problem in the whole space

  • Received: 21 May 2022 Revised: 20 July 2022 Accepted: 25 July 2022 Published: 28 July 2022
  • MSC : 35D30, 35J20, 35J60

  • In the present paper, we discuss the solutions of the following double phase problem

    $ -{\rm div}(|\nabla u|^{^{p-2}}\nabla u+ \mu(x) |\nabla u|^{^{q-2}}\nabla u)+ |u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u = f(x, u), \;x\in \mathbb{R}^N, $

    where $ N \geq2 $, $ 1 < p < q < N $ and $ 0\leq\mu\in C^{^{0, \alpha}}(\mathbb{R}^N), \; \alpha\in(0, 1] $. Based on the theory of the double phase Sobolev spaces $ W^{^{1, H}}(\mathbb{R}^N) $, we prove the existence of at least two non-trivial weak solutions.

    Citation: Yanfeng Li, Haicheng Liu. A multiplicity result for double phase problem in the whole space[J]. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963

    Related Papers:

  • In the present paper, we discuss the solutions of the following double phase problem

    $ -{\rm div}(|\nabla u|^{^{p-2}}\nabla u+ \mu(x) |\nabla u|^{^{q-2}}\nabla u)+ |u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u = f(x, u), \;x\in \mathbb{R}^N, $

    where $ N \geq2 $, $ 1 < p < q < N $ and $ 0\leq\mu\in C^{^{0, \alpha}}(\mathbb{R}^N), \; \alpha\in(0, 1] $. Based on the theory of the double phase Sobolev spaces $ W^{^{1, H}}(\mathbb{R}^N) $, we prove the existence of at least two non-trivial weak solutions.



    加载中


    [1] B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. http://dx.doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
    [2] X. F. Cao, B. Ge, W. S. Yuan, Existence and nonexistence of solutions for the double phase problem, Results Math., 76 (2021), 132. http://dx.doi.org/10.1007/S00025-021-01444-Z doi: 10.1007/S00025-021-01444-Z
    [3] W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. http://dx.doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
    [4] K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. http://dx.doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237
    [5] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. http://dx.doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7
    [6] Z. H. Liu, N. S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J. Differ. Equations, 316 (2022), 249–269. http://dx.doi.org/10.1016/j.jde.2022.01.040 doi: 10.1016/j.jde.2022.01.040
    [7] N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 20500006. http://dx.doi.org/10.1142/S0219199720500066 doi: 10.1142/S0219199720500066
    [8] L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739. http://dx.doi.org/10.1016/j.na.2019.111739 doi: 10.1016/j.na.2019.111739
    [9] A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. http://dx.doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
    [10] W. Liu, G. Dai, Multiplicity results for double phase problems in $\mathbb{R}^N$, J. Math. Phys., 61 (2020), 091508. http://dx.doi.org/10.1063/5.0020702 doi: 10.1063/5.0020702
    [11] W. L. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 507 (2022), 125762. http://dx.doi.org/10.1016/j.jmaa.2021.125762 doi: 10.1016/j.jmaa.2021.125762
    [12] R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^N$, Nonlinear Anal., 214 (2022), 112580. http://dx.doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580
    [13] B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differential Equ., 27 (2022), 1–30.
    [14] J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 2021. http://dx.doi.org/10.1080/17476933.2021.1988585
    [15] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [16] M. Willem, Minimax theorems, Boston, MA: Birkhauser, 1996.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1289) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog