In the present paper, we discuss the solutions of the following double phase problem
$ -{\rm div}(|\nabla u|^{^{p-2}}\nabla u+ \mu(x) |\nabla u|^{^{q-2}}\nabla u)+ |u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u = f(x, u), \;x\in \mathbb{R}^N, $
where $ N \geq2 $, $ 1 < p < q < N $ and $ 0\leq\mu\in C^{^{0, \alpha}}(\mathbb{R}^N), \; \alpha\in(0, 1] $. Based on the theory of the double phase Sobolev spaces $ W^{^{1, H}}(\mathbb{R}^N) $, we prove the existence of at least two non-trivial weak solutions.
Citation: Yanfeng Li, Haicheng Liu. A multiplicity result for double phase problem in the whole space[J]. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963
In the present paper, we discuss the solutions of the following double phase problem
$ -{\rm div}(|\nabla u|^{^{p-2}}\nabla u+ \mu(x) |\nabla u|^{^{q-2}}\nabla u)+ |u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u = f(x, u), \;x\in \mathbb{R}^N, $
where $ N \geq2 $, $ 1 < p < q < N $ and $ 0\leq\mu\in C^{^{0, \alpha}}(\mathbb{R}^N), \; \alpha\in(0, 1] $. Based on the theory of the double phase Sobolev spaces $ W^{^{1, H}}(\mathbb{R}^N) $, we prove the existence of at least two non-trivial weak solutions.
[1] | B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. http://dx.doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007 |
[2] | X. F. Cao, B. Ge, W. S. Yuan, Existence and nonexistence of solutions for the double phase problem, Results Math., 76 (2021), 132. http://dx.doi.org/10.1007/S00025-021-01444-Z doi: 10.1007/S00025-021-01444-Z |
[3] | W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. http://dx.doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[4] | K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. http://dx.doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237 |
[5] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. http://dx.doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[6] | Z. H. Liu, N. S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J. Differ. Equations, 316 (2022), 249–269. http://dx.doi.org/10.1016/j.jde.2022.01.040 doi: 10.1016/j.jde.2022.01.040 |
[7] | N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 20500006. http://dx.doi.org/10.1142/S0219199720500066 doi: 10.1142/S0219199720500066 |
[8] | L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739. http://dx.doi.org/10.1016/j.na.2019.111739 doi: 10.1016/j.na.2019.111739 |
[9] | A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. http://dx.doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[10] | W. Liu, G. Dai, Multiplicity results for double phase problems in $\mathbb{R}^N$, J. Math. Phys., 61 (2020), 091508. http://dx.doi.org/10.1063/5.0020702 doi: 10.1063/5.0020702 |
[11] | W. L. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 507 (2022), 125762. http://dx.doi.org/10.1016/j.jmaa.2021.125762 doi: 10.1016/j.jmaa.2021.125762 |
[12] | R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^N$, Nonlinear Anal., 214 (2022), 112580. http://dx.doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580 |
[13] | B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differential Equ., 27 (2022), 1–30. |
[14] | J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 2021. http://dx.doi.org/10.1080/17476933.2021.1988585 |
[15] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[16] | M. Willem, Minimax theorems, Boston, MA: Birkhauser, 1996. |