This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([
Citation: Zuliang Lu, Fei Cai, Ruixiang Xu, Lu Xing. Convergence and proposed optimality of adaptive finite element methods for nonlinear optimal control problems[J]. AIMS Mathematics, 2022, 7(11): 19664-19695. doi: 10.3934/math.20221079
This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([
[1] | D. Braess, C. Carstensen, R. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math., 107 (2007), 455–471. http://doi.org/10.1007/s00211-007-0098-6 doi: 10.1007/s00211-007-0098-6 |
[2] | P. Binev, W. Dahmen, R. Devore, Adaptive finite element methods with convergence rates, Numer. Math., 97 (2004), 219–268. https://doi.org/10.1007/s00211-003-0492-7 doi: 10.1007/s00211-003-0492-7 |
[3] | I. Babu$\mathrm{\breve{s}}$ka, W. Rheinboldt, Error estimates for adaptive finite computations, SIAM J. Numer. Anal., 15 (1978), 736–754. https://doi.org/10.1137/0715049 doi: 10.1137/0715049 |
[4] | J. Cascon, C. Kreuzer, R. Nochetto, K. Siebert, Qusi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), 2524–2550. https://doi.org/10.1137/07069047X doi: 10.1137/07069047X |
[5] | Y. Chen, Z. Lu, R. Guo, Error estimates of triangular mixed finite element methods for quasilinear optimal control problems, Front. Math. China, 7 (2012), 397–413. https://doi.org/10.1007/s11464-012-0179-4 doi: 10.1007/s11464-012-0179-4 |
[6] | P. Ciarlet, The finite element method for elliptic problems, Amsterdam: North-Holland, 1978. |
[7] | A. Demlow, R. Stevenson, Convergence and quasi-optimlity of an adaptive finite element method for controlling $L^2$ errors, Numer. Math., 117 (2011), 185–218. https://doi.org/10.1007/s00211-010-0349-9 doi: 10.1007/s00211-010-0349-9 |
[8] | M. Dobrowolski, R. Rannacher, Finite element methods for nonlinear elliptic systems of second order, Math. Nach., 94 (1980), 155–172. https://doi.org/10.1002/mana.19800940112 doi: 10.1002/mana.19800940112 |
[9] | W. D$\ddot{\mathrm{o}}$rfler, A convergent adaptive algorithm for Poisson equation, SIAM J. Numer. Anal., 33 (1996), 1106–1124. https://doi.org/10.1137/0733054 doi: 10.1137/0733054 |
[10] | X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313–355. https://doi.org/10.1007/s00211-008-0169-3 doi: 10.1007/s00211-008-0169-3 |
[11] | K. Eriksson, C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp., 50 (1988), 361–383. https://doi.org/10.1090/S0025-5718-1988-0929542-X doi: 10.1090/S0025-5718-1988-0929542-X |
[12] | K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems IV: nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729–1749. https://doi.org/10.1137/0732078 doi: 10.1137/0732078 |
[13] | A. Gaevskaya, R. Hoppe, Y. llish, M. Kieweg, Convergence analysis of an adaptive finite element method for distributed control problems with control constrains, In: Control of coupled partial differential equations, Basel: Birkhäuser, 2007, 47–68. https://doi.org/10.1007/978-3-7643-7721-2_3 |
[14] | L. Ge, W. Liu, D. Yang, $L^2$ norm equivalent a posteriori error estimate for a constrained optimal control problem, Int. J. Numer. Anal. Mod., 6 (2009), 335–353. |
[15] | L. Ge, W. Liu, D. Yang, Adaptive finite element approximation for a constrained optimal control problem via multi-grids, J. Sci. Comput., 41 (2009), 238. https://doi.org/10.1007/s10915-009-9296-y doi: 10.1007/s10915-009-9296-y |
[16] | W. Gong, N. Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality, Numer. Math., 135 (2017), 1121–1170. https://doi.org/10.1007/S00211-016-0827-9 doi: 10.1007/S00211-016-0827-9 |
[17] | J. Hu, J. Xu, Convergence and optimality of the adaptive nonconforming linear element method for the stokes problem, J. Sci. Comput., 55 (2013), 125–148. http://doi.org/10.1007/s10915-012-9625-4 doi: 10.1007/s10915-012-9625-4 |
[18] | H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on $L^2$-errors, J. Sci. Comput., 73 (2017), 438–458. https://doi.org/10.1007/s10915-017-0425-8 doi: 10.1007/s10915-017-0425-8 |
[19] | H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math., 44 (2018), 367–394. https://doi.org/10.1007/s10444-017-9546-8 doi: 10.1007/s10444-017-9546-8 |
[20] | J. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer, 1971. |
[21] | R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342 |
[22] | W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Beijing: Science Press, 2008. |
[23] | Z. Lu, Y. Chen, W. Zheng, A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems, East Asian J. Appl. Math., 2 (2012), 108–125. https://doi.org/10.4208/eajam.080212.260312a doi: 10.4208/eajam.080212.260312a |
[24] | Z. Lu, Existence and uniqueness of second order parabolic bilinear optimal control problems, Lobachevskii J. Math., 32 (2011), 320–327. https://doi.org/10.1134/S1995080211040135 doi: 10.1134/S1995080211040135 |
[25] | P. Morin, R. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466–488. https://doi.org/10.1137/S0036142999360044 doi: 10.1137/S0036142999360044 |
[26] | W. Shen, D. Yang, W. Liu, Optimal control problem governed by a linear hyperbolic integro-differential equation and its finite element analysis, Bound. Value Probl., 2014 (2014), 173. https://doi.org/10.1186/s13661-014-0173-8 doi: 10.1186/s13661-014-0173-8 |
[27] | R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), 245–269. https://doi.org/10.1007/s10208-005-0183-0 doi: 10.1007/s10208-005-0183-0 |
[28] | R. Verfürth, A review of a posteriori error estimation and adaptive Grids-Refinement techniques, Wiley, 1998. |
[29] | P. Wriggers, O. Scherf, An adaptive finite element technique for nonlinear contact problems, In: Contact mechanics, Boston, MA: Springer, 1995,183–194. https://doi.org/10.1007/978-1-4615-1983-6_24 |
[30] | J. Xu, A. Zhou, Local and parallel finite element algorithms based on two-grids discretizations, Adv. Comput. Math., 14 (2001), 293–327. https://doi.org/10.1023/A:1012284322811 doi: 10.1023/A:1012284322811 |
[31] | D. Yang, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487. |