Research article

Convergence and proposed optimality of adaptive finite element methods for nonlinear optimal control problems

  • Received: 26 February 2022 Revised: 04 August 2022 Accepted: 17 August 2022 Published: 06 September 2022
  • MSC : 49J20, 65N30

  • This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([21] H. Leng and Y. Chen, 2017) is extended accordingly. Linear discretisation of the equation of state and the equation of common state is performed using continuous segmentation functions. At the same time, we use the bubble function technique to prove that the posterior error estimates are obtained from the upper and lower bounds. What is more, for the adaptive finite element method, we also consider convergence and quasi-optimality, where we find that the demand $ h_0\ll 1 $ on the initial grid is unconstrained for the convergence analysis of the proposed adaptive algorithm for the nonlinear optimal control problem. Simultaneously, some numerical simulation is used to verify our theoretical analysis.

    Citation: Zuliang Lu, Fei Cai, Ruixiang Xu, Lu Xing. Convergence and proposed optimality of adaptive finite element methods for nonlinear optimal control problems[J]. AIMS Mathematics, 2022, 7(11): 19664-19695. doi: 10.3934/math.20221079

    Related Papers:

  • This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([21] H. Leng and Y. Chen, 2017) is extended accordingly. Linear discretisation of the equation of state and the equation of common state is performed using continuous segmentation functions. At the same time, we use the bubble function technique to prove that the posterior error estimates are obtained from the upper and lower bounds. What is more, for the adaptive finite element method, we also consider convergence and quasi-optimality, where we find that the demand $ h_0\ll 1 $ on the initial grid is unconstrained for the convergence analysis of the proposed adaptive algorithm for the nonlinear optimal control problem. Simultaneously, some numerical simulation is used to verify our theoretical analysis.



    加载中


    [1] D. Braess, C. Carstensen, R. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math., 107 (2007), 455–471. http://doi.org/10.1007/s00211-007-0098-6 doi: 10.1007/s00211-007-0098-6
    [2] P. Binev, W. Dahmen, R. Devore, Adaptive finite element methods with convergence rates, Numer. Math., 97 (2004), 219–268. https://doi.org/10.1007/s00211-003-0492-7 doi: 10.1007/s00211-003-0492-7
    [3] I. Babu$\mathrm{\breve{s}}$ka, W. Rheinboldt, Error estimates for adaptive finite computations, SIAM J. Numer. Anal., 15 (1978), 736–754. https://doi.org/10.1137/0715049 doi: 10.1137/0715049
    [4] J. Cascon, C. Kreuzer, R. Nochetto, K. Siebert, Qusi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), 2524–2550. https://doi.org/10.1137/07069047X doi: 10.1137/07069047X
    [5] Y. Chen, Z. Lu, R. Guo, Error estimates of triangular mixed finite element methods for quasilinear optimal control problems, Front. Math. China, 7 (2012), 397–413. https://doi.org/10.1007/s11464-012-0179-4 doi: 10.1007/s11464-012-0179-4
    [6] P. Ciarlet, The finite element method for elliptic problems, Amsterdam: North-Holland, 1978.
    [7] A. Demlow, R. Stevenson, Convergence and quasi-optimlity of an adaptive finite element method for controlling $L^2$ errors, Numer. Math., 117 (2011), 185–218. https://doi.org/10.1007/s00211-010-0349-9 doi: 10.1007/s00211-010-0349-9
    [8] M. Dobrowolski, R. Rannacher, Finite element methods for nonlinear elliptic systems of second order, Math. Nach., 94 (1980), 155–172. https://doi.org/10.1002/mana.19800940112 doi: 10.1002/mana.19800940112
    [9] W. D$\ddot{\mathrm{o}}$rfler, A convergent adaptive algorithm for Poisson equation, SIAM J. Numer. Anal., 33 (1996), 1106–1124. https://doi.org/10.1137/0733054 doi: 10.1137/0733054
    [10] X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313–355. https://doi.org/10.1007/s00211-008-0169-3 doi: 10.1007/s00211-008-0169-3
    [11] K. Eriksson, C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp., 50 (1988), 361–383. https://doi.org/10.1090/S0025-5718-1988-0929542-X doi: 10.1090/S0025-5718-1988-0929542-X
    [12] K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems IV: nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729–1749. https://doi.org/10.1137/0732078 doi: 10.1137/0732078
    [13] A. Gaevskaya, R. Hoppe, Y. llish, M. Kieweg, Convergence analysis of an adaptive finite element method for distributed control problems with control constrains, In: Control of coupled partial differential equations, Basel: Birkhäuser, 2007, 47–68. https://doi.org/10.1007/978-3-7643-7721-2_3
    [14] L. Ge, W. Liu, D. Yang, $L^2$ norm equivalent a posteriori error estimate for a constrained optimal control problem, Int. J. Numer. Anal. Mod., 6 (2009), 335–353.
    [15] L. Ge, W. Liu, D. Yang, Adaptive finite element approximation for a constrained optimal control problem via multi-grids, J. Sci. Comput., 41 (2009), 238. https://doi.org/10.1007/s10915-009-9296-y doi: 10.1007/s10915-009-9296-y
    [16] W. Gong, N. Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality, Numer. Math., 135 (2017), 1121–1170. https://doi.org/10.1007/S00211-016-0827-9 doi: 10.1007/S00211-016-0827-9
    [17] J. Hu, J. Xu, Convergence and optimality of the adaptive nonconforming linear element method for the stokes problem, J. Sci. Comput., 55 (2013), 125–148. http://doi.org/10.1007/s10915-012-9625-4 doi: 10.1007/s10915-012-9625-4
    [18] H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on $L^2$-errors, J. Sci. Comput., 73 (2017), 438–458. https://doi.org/10.1007/s10915-017-0425-8 doi: 10.1007/s10915-017-0425-8
    [19] H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math., 44 (2018), 367–394. https://doi.org/10.1007/s10444-017-9546-8 doi: 10.1007/s10444-017-9546-8
    [20] J. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer, 1971.
    [21] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
    [22] W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Beijing: Science Press, 2008.
    [23] Z. Lu, Y. Chen, W. Zheng, A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems, East Asian J. Appl. Math., 2 (2012), 108–125. https://doi.org/10.4208/eajam.080212.260312a doi: 10.4208/eajam.080212.260312a
    [24] Z. Lu, Existence and uniqueness of second order parabolic bilinear optimal control problems, Lobachevskii J. Math., 32 (2011), 320–327. https://doi.org/10.1134/S1995080211040135 doi: 10.1134/S1995080211040135
    [25] P. Morin, R. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466–488. https://doi.org/10.1137/S0036142999360044 doi: 10.1137/S0036142999360044
    [26] W. Shen, D. Yang, W. Liu, Optimal control problem governed by a linear hyperbolic integro-differential equation and its finite element analysis, Bound. Value Probl., 2014 (2014), 173. https://doi.org/10.1186/s13661-014-0173-8 doi: 10.1186/s13661-014-0173-8
    [27] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), 245–269. https://doi.org/10.1007/s10208-005-0183-0 doi: 10.1007/s10208-005-0183-0
    [28] R. Verfürth, A review of a posteriori error estimation and adaptive Grids-Refinement techniques, Wiley, 1998.
    [29] P. Wriggers, O. Scherf, An adaptive finite element technique for nonlinear contact problems, In: Contact mechanics, Boston, MA: Springer, 1995,183–194. https://doi.org/10.1007/978-1-4615-1983-6_24
    [30] J. Xu, A. Zhou, Local and parallel finite element algorithms based on two-grids discretizations, Adv. Comput. Math., 14 (2001), 293–327. https://doi.org/10.1023/A:1012284322811 doi: 10.1023/A:1012284322811
    [31] D. Yang, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1128) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog