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1. Introduction

With the development of computer technology, the finite element method follows closely in the early
1960s. The research on the reliability and validity of finite element analysis promoted the development
of the finite element method [3-5,25,27]. Applying finite element methods, the emergence of errors
has captured the attention of scholars. One of the main sources of errors is the error caused by the
discretisation of the model, while researchers dissect various aspects of finite element analysis. In
addition, the generation of finite element mesh is also a concern for scholars. In the early conventional
FEA, scholars usually used experience, intuition or even guesses to generate meshes to simple judge
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whether the approximation results are reasonable or not. If it is not reasonable, the grid needs to
be redesigned whenever necessary for the efficiency of the analysis and the reliability of the results.
Therefore, the emergence of the adaptive finite element method is because the computer, after checking
the current conditions, decides whether the solution is accurate enough to meet the determination needs
according to the error information obtained during the adjustment process.

To the best of our knowledge, the adaptive finite element method is a numerical method that can
automatically adjust the algorithm to improve the process of solving [2]. An appropriate mesh can
greatly reduce the errors arising from the discretisation of the finite element approximation process
during the replication. According to the current situation, solutions of optimal control problems
for nonlinear systems are usually not available. Besides the complexity and diversity of nonlinear
equations, it is also very practical to use the adaptive finite element method for solving nonlinear
equations.

Adaptive finite element methods have been widely and successfully applied in various linear
optimal control problems, for example, Eriksson and Johnson proposed that the adaptive finite element
algorithm produces a series of successively refined meshes in which the final mesh satisfies a given
error tolerance [11]. Gaevaskaya and Hope et al. proposed an adaptive finite element method for
a class of distributed optimal control problems with control constraints is analysed by applying the
reliability and discrete local efficiency of the posterior estimator and the quasi-orthogonality property
as basic tools [13]. Braess and Carstensen et al. Investigate the residual jump contributions of a
standard explicit residual-based a posteriori error estimator for an adaptive finite element method [1].
Hu and Xu et al. performed research on the convergence and optimality of the adaptive nonconforming
linear element method for the stokes problem [17]. However, a large number of literature show that the
researches on adaptive finite element method for nonlinear optimal control problems have not reached
its peak yet.

Recently, for instance, Wriggers and Scherf propose an adaptive finite element technique for
nonlinear contact problems [29]. Eriksson and Johnson consider adaptive finite element methods
for parabolic problems to a class of nonlinear scalar problems, the authors obtain posteriori error
estimates and design corresponding adaptive algorithms [12]. Nowadays, the problem of nonlinear
optimal control problems, similar to big data, is the focus of scholars worldwide. Hence it is worthy of
investigating the adaptive finite element method for such nonlinear problems.

Many scholars have also studied the prior error estimates of the bilinear optimal control problem.
For example, Yang, Demlow, and Dobrowolski et al. investigated the prior error estimates and
superconvergence of optimal control problems for bilinear models and give the optimal L?>-norm error
estimates and the almost optimal L*-norm estimates about the state and co-state variables [7, 8, 31].
Lu investigated a second-order parabolic bilinear optimal control problems and provided a priori error
estimates for the finite element solutions of the state equations describing the system [24]. Shen and
Yang et al. investigated a quadratic optimal control problem governed by a linear hyperbolic integro
differential equation and its finite element approximation, a priori estimates have been carried out
using the standard functional analysis techniques, and the existence and regularity of the solution are
provided by using these estimates. At the same time, some scholars have analysed the posteriori
error estimates of the finite element method for bilinear optimal control problems [15,26]. Lu, Chen,
and Leng et al. discussed the discretisation of Raviart-Thomas mixed finite element for general
bilinear optimal control problems, a posteriori error estimates are derived for both the coupled state
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and the control solutions [18,23]. Although bilinear optimal control problems are frequently met in
applications, they are much more difficult to handle than linear or nonlinear cases. There is little work
on nonlinear optimal control problems.

In this paper, we focus on nonlinear optimal control problem with integral control constraints where
we deal with the control via adopting piecewise constant discetization while applying continuous
piecewise linear discretization for the state and the co-state, respectively. Then a posteriori error
estimates is gained. For the convergence and the quasi-optimality, we prove them relying on quasi-
orthogonality and discrete local upper bound. Based on the mild assumption to the initial grids, we
obtain the proof of convergence and quasi-optimality by means of the solution operator of nonlinear
elliptic equations. Finally, some numerical simulations are provided support for our theoretical
analysis.

Here are some notations will be used in this paper. Let Q be a bounded Lipschitz domain in R?
and 0Q denote the boundary of Q. We use the standard notation W™4(w) with norm || - ||, 4. and
seminorm | - |,, 4., to express the standard Sobolev space for w C Q. Moreover, we will omit the
subscription if w = Q. For ¢ = 2, we denote W™*(Q) by H™(Q) and || - ||,, = || - 2. Also for
m = 0 and g = 2, we denote W*?(w) = L*(w) and || - llo2.o = || - llo. Additionally, we observe that
H)(Q) = {v e H(Q) : v = 0 0on dQ}. Let Ty, be the initial partition of Q into disjoint triangles. By
newest-vertex bisections for 77, we can obtain a class T of conforming partitions. For 77, 77, e T, we
use 75, € 7, to indicate that 75, is a refinement of 75, and hy = |T|'/?, T is the partition diameter. In
addition (-, -) denotes the L? inner product. Beyond that, let C be a constant which independent of grids
size, then we use A ~ B to represent cA < B < CA.

The rest of the paper is organized as follows. In Section 2, we introduce the optimal control
problem of our interest and obtain a posteriori error estimates. The relevant algorithms are introduced
in Section 3. In Section 4, we use quasi-orthogonality and discrete local upper bounds to prove the
convergence of the adaptive finite element method, as well as quasi-optimality in Section 5. We provide
an adaptive finite element algorithm and some numerical simulations to verify our theoretical analysis
in Section 6. Finally, we summarize the results of this paper and develop a plan for future work.

2. A posteriori error estimates for finite element method

In this paper we mainly enter into meaningful discussions with the following nonlinear optimal
control problem governed by nonlinear elliptic equations:

. (1 2, @5
min {1y = yalf + Sl

—Ay+¢(y)=f+u, inQ,
y=0, ondQ,

where y is the state variable, u is the control variable, f is a function of the control variable, « is a
constant greater than zero, y; € L>(Q), U,y = {v : v € L} (Q), fQ v dx > 0} is a closed convex subset
of U = L*(Q) and ¢(-) € W>*(=R,R) for any R > 0, ¢'(y) € L*(Q) for any y € H'(Q), ¢’ > 0. Let
V = Hy(Q), we give the weak formulation to deal with state equation, namely, find y € V such that

a(y,v) + (¢(y),v) = (f +u,v), Yvey,
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where

a(y,v):ny-Vvdx.
Q

Then the nonlinear optimal control problem can be restated as follows

. (1
min {1y =yl + 5 ), @.1)
a(y,v) + (@), v) =(f+u,v), YveV (2.2)

It is well known [14,20] that the nonlinear optimal control problem has at least one solution (y, u),
and that if a pair (y, u) is the solution of the nonlinear optimal control problem, then there is a co-state
p € V such that the triplet (y, p, u) satisfies the following optimality conditions:

a(y,v) + (¢),v) = (f +u,v), Vvey, (2.3)
a(q,p) + (@ Op.q) = -yaq), YgeV, (2.4)
(au+p,v—u)>0, VveUy. (2.5

Due to coercivity of a(-,-), we define a linear operator S : L>(Q) — Hé(Q) such that S(f +u) =y
and let §* be the adjoint of S such that S*(y — y;) = p where V), is the continuous piecewise linear
finite element space with respect to the partition 7, € T. For 7, € T, we define U" as the piecewise
constant finite element space with respect to 7. Let UZ =1 € U : fQ vydx > 0}. Then we derive
the standard finite element discretization for the nonlinear optimal control problem as follows:

(1 , 2}
iy, — a , 2.6
uiggfd{znyh vally + 2||uh||0 (2.6)
a()}h’ V) + (¢(yh)a V) = (f + Up, V), v V€ Vh' (27)

Similarly the nonlinear optimal control problem (2.6)—(2.7) has a solution (yy, u;,), and that if a pair
() € V" x U" is the solution of (2.6)—(2.7), then there is a co-state p;, € V, such that the triplet
(Y1, P, uy) satisfies the following optimality conditions:

a(yp,v) + (¢(yn),v) = (f +up,v), VveV, (2.8)
a(q, pp) + @' OPn@) = On —Ya-q)s Y g€V, (2.9)
(aup + pp,vp—up) 20, Vv, € UZd' (2.10)

Here we define some error indicators we largely and frequently use in this paper where 7(-) are error
indicators and osc(+) represent the data oscillations. For 7, € T, T € 7}, we define

. (o T) = K2V pill3 7,

Wyt v T) = I + 0 = SOOI + R[] - 1R e
5.7, O P> T) = Bzllyn = Ya = 8" Owpallo r + ArllIVpal - 5 7 a0
0scy, (. T) = Wllf = fillgr

053, = Yar T) = WO = ) = On = Ya)r I 7
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where u;, € Ugd,

and fr = % For w C 73, we have

(@) = > 17 (o1 T,

Tew

osc%l (f,w) = Z osc(zrh(f, 1),

Tew

by which 173 - (s, yn, @), 175 7. (s, yn, @) and o0sc3 (v, — ya, w) can be denoted similarly.

2.1. A posteriori error estimates

Y Pn € Vi, and where fr is L*>-projection of f onto piecewise constant space on T

Also, a reliable and effective a posteriori error estimates for the nonlinear optimal control

problem (2.1)—(2.2) which is presented in next Theorem.

Theorem 2.1. For 7, € T, let (y, p,u) be the exact solution of problem (2.3), (2.4) and (2.5) and
(Y, Pn> Un) be the solution of problem (2.8), (2.9) and (2.10) with respect to T,. Then there exist

constants ¢ and C such that

2 2 2
e — wnlly + [ly = yalli +lp = pally

<C (77%,771 (i Ti) + ., s Y Ti) + 13,0, O i Th)) ,
and
c (U%,Th(l?h, T) + 157 Wiy Yo Th) + 1.7, ks Pis ‘Th))
<l = wll§ + Wy = yall; + p = pall} + o5, (f. Ti) + 053 (vn = Yar Th)-

Proof. Step 1. We seek functions y", p" € V satisfying the following auxiliary problems

a(y",v) + (¢("),v) = (f + up,v), Yvev,
alg, p") + (@' O"MP" @) = On —yarq), Y qeV.
It follows that
llu = usllg < Claw, u — uy) — Clauy, u — uy)

< —C(au, u — uy)

= C(ozuh, up —u) + C(ozuh — Uy, U — Uy).
With the help of the proof of Lemma 3.4 in [14] and the lemma 3.4 in [21], we have

(th, up — u) = (Quy, + py, Uy — u)

<c( D o= mnll s + = i)

TeTh
< C(O; 7, (s T) + Corllu = w5,

(2.11)

(2.12)

(2.13)
(2.14)

(2.15)
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where 177 - (i, Tn) = Z 7 ¢ (pn, T), and
€/n

(au" — awp,u — wy) = (pu — p'yu — uy)
< C@p" = pally + Collu — i3, (2.16)

where 7, is the L*-projection operator onto piecewise constant space on 7, C(c) is a universal
constant, which depends on o, o is an arbitrary positive number, and C is a general universal constant,
which can include C(o). Obviously, from (2.15) and (2.16) there holds

llu = usllg < COT; o, (i Ti) + 10" = Palld)

Let e’ = y" —y,, and ) = #;¢”, where #), is the average interpolation operator defined in Lemma 3.2
of [14], then we can obtain

cle’ll; (VO™ = yu), Ve') + (") — ¢(yn), €)
=(VO" = yu), V(€ = &) + (9" — (1), & — )

= Z (f + up — dyp))(e’ — e))dx — Z ([Vyu] - m)(e’ — e))dx

rer, VT rer, YT
<C() ) 1 f (f + 1, = pow)dx + C(a) > hr f ([Vyil - n)’dx + Calle’|}
TeTh r OT\oQ

:C(O')Ugg'h (Mh7 Y, Th) + CO—lleyH%’

C

where ¢ is an arbitrary positive number. The definition of 7, will be given later on. Then let o~ = 57,

we have

Iy = yullt < C113 7, (@t y> T)-

Similarly, let e” = p” — p;, and e] be the average interpolation of e”, then we can get

clle’Il} <(Ve?, V(p" — pu) + (¢ O")P" = pi). €”)
=(Ve?,V(p" — pi)) + @' " = ¢’ )i, €”) + (¢ ) — ¢’ ' Npns €”)
=(V(e? =€), V(p" = p)) + (&' )P" — ¢’ G)pn. €” — €)) + (Ve . V(p" - pp)
+ (&' OMP" = ¢ 0w ) + (&' On) — ¢’ ") pa, €F)

= Z f;@’h —Ya— ¢ On)p)(e’ — e))dx

TeTy
= > | VP mye” = e)) = O =y €) + (@' Gn) = ' 0PNy €)elx
aroa ™Y or
<C(o) ) 1 f O = ya = ¢ OWp)’dx+C(a) Y hr f ([Vpul - m)*dx
TeTh T aT\0Q or

vco Y i f [VerPdx + Clly" = yillolle?ll + Cllg' o)
T

TeTy
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— &' llollprllo.alle’llo.a
<C(@M5.,0ns P Ti) + C@OIY" = will§ + C@ONpallIy" = yall§ + Collp" = pall?)
<C(R7, O s Ti) + CIY' = wullg + Corllp” = pall3,

in which we apply the embedding theorem ||v|[p4 < C|v|l; (see [6]) and the property: ||pilli < C,
COY" =yl + CONpl Y = yill3 < CIY" =yl + Co)CIlY" = yallz < Clly" — yull3. The definition
of n; will be given later on. Absolutely, we can obtain

Ip" = pullt < Cr3. O s Ti) + CIY" = Wl

Hence we gain

lipn = P < Clipn = P + Cllys = Y|
< COp3., Uy Y Th) + 5., O P> Th)).-

By the triangular inequality we obtain that

Iy = yalli < Ily =yl + IV = yalli < C(llwe = unllo + 1Y = yally)s
lp = palli < llp = P+ 1p" = palli < CAly = yalls + 112" = pally).

In connection with what we discussed above, we have
llue = unlls + lp = pall; + ly = yulld < CORf o7, (s Ti) + M3, s Vs T) + 103 7, O P> Ti))-

Step 2. Now we are in the position to get the lower bound. Consulting to the proof of Lemma 3.6
in [14] and Lemma 3.4 in [21], we conclude that

WV pallg = Z P = 7apallg 7 < Clllu = unllg + 1lp = pall?)- (2.17)
=

Proof. It is easily seen that

2
D pn=mpilly = D Ipn = mupllollps = p + p = 7ap + 7ap = mapillor
TeT, TeTn

1 2
< D Ipw=mpallorllp = mpll + 5 > ps = mupalls
TeTh TeTh

+ Clips = pli;.
Since u + p = max(0, p) = const, hence
my(u + p) = u + p,
such that

> Ipn = mapllorllp = mpllor
TeTy
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= > s =mupullozllp + u = m(p + 1) + 7up = llor
TeTh,

= > lipn = mupallollmn(ue = wa) = (e = wy)llor
TeTh

1 2 2
<3 E pn = 7npullo 7 + Cllun — ully.
3
TeTy,

This completes the proof.

According to [28], we empoly the standard bubble function technique to estimate error indicators
.7, (Uns Y, T) and 034, YV, pp, T). Similar to Chapter 7.2 in [22], there exists polynomials wy €

H(T) and wyr € Hy(0T\ALQ) such that
f (V] - 0Pdx = | ((Vpul- mwards,
oT oT

fh%((yh —Ya)r — ¢ On)pn)’dx = f((Yh = Yot — ¢ Gnpr)wrdsx,
T T
and apparently
||W8T||%,5T\ag Scf hr([Vp] - n)de,
or
h2lwar I oo <C f hr([Vpal - m)*dx,
T
Iwrll}  <C f W (Gn = Ya)r = &' w)pr)dx,
h
hlwrlls <C f W (O = Ya)r = ¢’ On)pi)dx.
h
By using the Schwarz inequality, it follows from (2.18), (2.20), and (2.21) that
f hr([Vpa] - m)*dx
ar
= f ([Vpn] - m)wsrdx
T
= f ([Vpal-n = [Vp] - mwyrdx
T
= f V(pn — p)Vwordx + div(A(p, — p)Iwor
ar
= f V(pn — p)Vwordx + f O = Ya)dx = ¢'(y)p)wardx
ar ar
= f V(py — p)Vwordx + f Oh = Ya = ¢'On)pn)wardx
T T

+ fa (O =ya) = On — ya))wardx + fa (&' )P — ") pr)wardx
T T

<C()lpn = PIF yrva0 + C@Nly = Yalls srr00

AIMS Mathematics Volume 7, Issue 11
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+ | O)Np—prwordx + | (@' () = ¢ Gn))pawordx

oT oT

+ C(O')f On = ya — & Onpn)dx + Collwarll} gra + H Iwarll§ o7 00)
oT
<C()llpn — p”i()T\aQ +C(o)lly - yh”g,ar\ag

+ C(NI' DG g0l (P = PG o700 + f ¢ )y = yn) puwardx
or

+C@) | On=ya= ¢ Onpn)dx + Calwarlly a0 + b IWarllg gra0)
orT

SC(O-)”ph - p”iar\ag + C(O-)”y - yh”(z),aT\aQ

+ C(O')||¢~5N(Yh)||g,,9r\(9gl|y - yh”(z),ar\ag”ph”(z),af\ag
+ C(O')f On = ya — & Onpw)’dx + Collwarll} gr a0 + H Iwarll§ o7 00)
or
<C()llpn - p”iar\()g + C(o)lly - yh”%,(?T\(?Q

+C(@) | n—vya—¢'n)pr)dx+ Co f hr([Vps] - n)dx,
oT

oT

where o is an arbitrary positive number and ¢(-) € W>*(Q) has been used. Then let o = % and we
have

f he(IVpal - 0Ydx <Cllps = PR o750+ ClY = B oo
oT

e fa O = va - & G)pYelx. 2.24)
T

Next, it follows from (2.19), (2.22), and (2.23) that
fT W (On = Yo — ¢ Gn)pn) dx
= fT (On = ya)r — ¢ ) pr)wrdx
= [ on=ya=#npmwdrs [ Gu=r0= 1=y
< fT On=Ya =" Gnpn — O = ya) + ¢ )p)wrdx
+C() [ Fy(on =3 = 0n =y + Corhilnlf
—— [ V= pTrdr [ On=30 =0 = ywrdrs | @ Oom-#Oprdx

+C(0) f W (O = Ya) = On = Ya)r)*dx + Cah|lwrlly -
T
<C()lpn = plI 7 + CONE = ya) = On = Yl 7

+ fT ¢’ On)(pn — pIwrdx + fT (@' (vn) = ¢' () pwrdx
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+C(0) f W (O = Ya) = On = Ya)r)*dx + Collwrll 7 + hzlwrllG 1)
T

<C(@)llpn = pll; 7 + C(@lly = yillg r + C(0) f h3((vh = Ya) — O — ya)r)*dx
T

+ @G GIE s = plIE + C@NIF” OIE llyn = yIE APl
+ Colwrll 7 + h2lwrli2)

<C()llp = plI 7 + C@ly = yallg.r + C(0r) f 7 (n = Ya) = On = Ya)r)*dx
T

+ Co-fh%(()’h —ya)r — ¢ On)pr)dx,
T

where ¢(-) € W>*(Q) has been used. Absolutely, we can deduce that

f B3 = ya)r — &' ) pa)dx

T

<Cllpy = plli 7 + Clly = yillg 7 + C f hi(n = Ya) = On = Ya)r)’dx.
T

Then we have

fhzr()’h —Ya— ¢ On)pa)dx
T

Scfh%((m — )71 = ¢ On)pr)dx + C f W3 (n = Ya) = 0w = Ya)r)*dx
T

T

<Clipy = plii 7 + Clly = yillg 7+ + C f hi(n = ya) = O = Ya)r) dx.
T

In connection with (2.24) and (2.25) we are easy to gain

1.0, O P> Th) = Z f h(vn = Ya — & n)pa)dx
T

TeTh

Y [ mp)-wras
ar\oQ YT

<Clipy = plft + Clly = yallg + € | fh%((yh = Ya) = O = ya)r)’dx
T

TeT,
<Cllps = pll + Clly = yll; + Coscz n = ya- Ti)-

It can also be deduced that

U%,ﬂl(uhayh,ﬂz) = Z fh%(f + up, — d(yp))dx
T

TeTh

+ [ s
onoa YT

<Cliys = yIf + Cllu = will} + € " f W(f = fr)dx
T

TeTh

(2.25)

AIMS Mathematics Volume 7, Issue 11, 19664—19695.
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<Cllyn = ylIf + Cllu — uyllg + Cosca- (f, Tn).

Above-mentioned results tell the proof of Theorem 2.1 is accomplished. O
3. The algorithms

In this section, we introduce two related algorithms as follows:

Algorithm 3.1. Adaptive finite element algorithm for nonlinear optimal control problems:

(0) Given an initial grids T}, and construct finite element space UZ; and Vy,. Select marking
parameter 0 < 6 < 1 and set k := 0.

(1) Solve the discrete nonlinear optimal control problem (2.8)—(2.10), then obtain approximate
solution (up,, yn,, pn,) with respect to Ty,.

(2) Compute the local error estimator UThk(T) forall T € Ty,.

(3) Select a minimal subset M, of T}, such that

nz, M) > 6nz, (Th),

where 07, (@) =17 g, (P @) + 173 7, (s Y ) + 13 7, O i ) for all € T

(4) Refine M,, by bisecting b > 1 times in passing from T, to Ty, and generally additional
elements are refined in the process in order to ensure that T,,, is conforming.

(5) Solve the discrete nonlinear optimal control problem (2.8)—(2.10), then obtain approximate
solution (up,,,, Yn.,» Ph.,) With respect to Tp,.,,.

(6) Set k =k + 1 and go to step (2).

Algorithm 3.2. Given an initial control ug eU 2 » then seek (yﬁ, p’}‘l, u’;) such that

a(yp, wi) + (), wi) = (f + s~ wy), Y wy € Vi,
algn, Py ") + (6O0Py " an) = OF = yas ). Y qn € Vi,
(au’/‘l + p’;l_l,vh - u’;l) >0, V vfz € Ui’d,

fork=1,2,---, and apparently
p_ 1 k —k
u, = a( - phph + max (0’ ph))9

k
where Py, is the L*-projection from L*(Q) to U" and pj, = fg\gl)h

4. Convergence analysis for adaptive finite element method

In this section we first consider the nonlinear elliptic equations as follows:

{mwaw:ﬂ in Q, @

y=0, ondQ,

AIMS Mathematics Volume 7, Issue 11, 19664—19695.
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where f € L*(). We introduce the quantity J (%) in view of the idea in [30] as follows:

J(h) = sup inf IS —walls,

FEL2(Q), lIflloo=1 """

where S is the solution operator for nonlinear elliptic equations. Obviously, J(h) < 1 for h € (0, hy)
if hy < 1. Hereinafter there holds the Lemma about the quantity referring to [10, 30].

Lemma 4.1. For each f € L*(Q), there exists a constant C such that

1S f = Sufllr < CTMIf o, (4.2)

and

IS f = Sufllo < CTMIS f = Siflh (4.3)
where S, is the discrete solution operator for nonlinear elliptic equations.

Here, Lemma 4.1 is a preparation for Lemma 4.4.

4.1. Local perturbation property

According to [19], the local perturbation property plays an important role for the proof of the
convergence. It impels us to combine the sum of the error estimates.

Lemma 4.2. For 7, € T, T € T}, let uy,,uy, € UZd, Viys Yhys Phys Py € Vi, we have

M7 P> T) = 01.75,(Py> T) < Chrllpn, = pislhirs (4.4)

2.7, (Unys Yny s T) = 2.7, (Uinys Yy T) < CChrlun, — unyllor + llyn, — Yaolli1), 4.5)
.7 Ons Prys T) = 13,75, Ongs Piy> T) < Clhrllyn, — Yiollor + lpa, — paollir), (4.6)
oscr, O = Yas T) = 05¢r,n, = Ya, T) < Chillyn, = Yo lliz- 4.7)

Proof. Step 1. According to [16,21] we have
Wllogran < CChz PIVllo.r + hy Wil 1). (4.8)
By adopting the inverse estimates and (4.8) we obtain

1Y, = )] - Mlloarae < CEZM 2y = Yiollhwrs (4.9)
IV (pn, = pi)] - Dllograa < CAZ 2 1pn = Piolliors (4.10)

where wr denotes the patch of elements that share an edge with 7. By the definition of 1, +,(pn, T)
and (4.10) we can deduce that

M.7,(Pn>T) <07, (Phys T) + Chrll[V(pr, — piy)] - Dlloorioq-

Then we have

M7, (Pns T) = M7, (Piy> T) <Chr||IIV(pr, — pio)] - Dllograa < Chrllpn, — pasllirs
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where the proof of (4.4) is finished.
Step 2. By the definition of 7,4, (s, yu, T') and (4.9), we can deduce that

.7, Wny s Vi T) — Mo, (Unys iy T)
<hrllun, — upllor + By * NIV Oy = Yi)] - Mllogrian + ArllgOn) — dn)llor
<hgllun, — unllor + Cllyn, — Ynolli.wp + Chzlld Gu)lozllve, — Y llor

<C(hrllup, — upllor + llyn, — Ynollir),

where ¢(-) € W>*(Q) has been used and the proof of (4.5) is finished.
Step 3. By the definition of 13 4, (y4, pr, T') and (4.10) we can derive that

137> Prys T) = 3,75, Vngs Piys T)
<hrllys, = ylloz + by IV (pa, = p)] - Wlloaraa + hrllg’ )P, = ¢ G piollo.r
<hzllyn, = ymllor + Clipn, = Py + hrlld’ Gu)llo.zllpn, = Pasllor
+ hrllg” a)lloz Iy = Y llorl1Payllo.r
<hrllyn, = Ymllor + Cllpn, = Polliwr + Chrllpn, — Phyllor
<C(hrllyn, = Ymllo.r + llPny — Pmollir)s

where ¢(-) € W>(Q) has been used and the proof of (4.6) is finished.
Step 4. Similarly, we have

0scr,n = Ya» T) = 05¢q,(Vny = Yas T) <h3llyn, = Yollor-

In brief, Lemma 4.2 is proved. O

4.2. Error reduction

The authors in [25] demonstrate an error reduction provided the current errors are larger than the
desired errors, that is to say, the errors may not be reduced in the process of coarse grids refinement
before introducing a node of the refined grids inside each marked element while Dorfler proves a
similar result assumption [9].

Lemma4.3. Let T, C T, for Ty, ‘7~71~€ T. M, C T, denotes the set of elements which are marked from
T to Ty Then for u, € U" | @iy, € U, i, py € Vi, 5, Pi € Vj and any 6,6, € (0, 1], we have

I 1, oo T = (1 00{07 3,0 T3 = (1= 27 (R

<C(1+6")h3llps = pill, @11

and

nﬁﬂ(ﬁh,ih, Tu)— (1 + 5){775,7(%,%, Th) — ﬁﬂ%,fh(uh,yh, Mh)}

< C(1+ 67" (hgllu, — ally + llyn = 5ul?) (4.12)
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and
1, P T30 = (1 + 17,0 i T2 = A, Gt s M)}
<C(1+ 6‘1>(h§||yh — 52 + llpn - mn%), (4.13)
and
03¢5, (0 = Yas T O Ti) = 205¢3. (s = Yas Th 0 T)
< 2Chjllyn = Full3 (4.14)

where 1 =1 — 2‘%, hy = ;ngl_x hr and R, denotes the set of elements which are refined from T, to Ty
€ ho

Proof. Step 1. Applying the Young’s inequality with parameter 6; and (4.4) we get
U%’fh(ﬁh’(fh) - Uffh(Ph,(fh) <Chillpn = palls + 217, (Bi> T) - 1.7, (P> T)
<C(1 +67Yhgllpn = pully + 61177 7 (P Th- (4.15)

Note that 7 will be bisected at least one time for the element T € R, C 7, then we have

Z 7, (P T') <27 017,(pn, T).
TeT

For T € 7,\R;, we gain
;7. (s T) = 111 7, (s T

In connection with the above estimates we demonstrate that
5, P T) = (1 00 {, (1 70 = (1 = 27 P17 s R
=7 (1 Ri) 1, (0 TR = (1 + 0{ 7, 1o T30 = (1 = 27 P, R

<27 g (e Ri) + 77, 7, (P T\R) = (1 + 61>{n%,¢h(ph, T = (1 =27 7,(pn, Rz»}
<C (1 +67") hllpn = plly,

which illustrates (4.11) has been proved.
Step 2. Employing the Young’s inequality with parameter ¢ and (4.5) we obtain

ng’fh@ha ﬁh, (]:h) - 77§’7=h0’h’ ph’ (f;h)

<CQL+ 7 Y el =l + 16 = pall) + O - 9 s T,
TeT)

where it is similar to (4.15). Then let 75, = {T € 7, : T C T’} where T’ € M, is a marked element.
For arbitrary p;, € Vi, C Vi, we find the jump [Vp,] = 0 on the interior sides of U77,,. Suppose b is
the number of bisections, we can deduce that

hy = |T|'"? < @7 T')'? <2 % hy,
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due to refinement by bisection, then we obtain

_b ,
Z Ui,ﬂ(Yh,Ph, T)<2 277%,7,1()’/1,19;,, 7).

TE(]:hT/

It is easy to find that

r];rfh(yha Ph T) < 77%,77,(}’11’ DPhn» T)’

for any T € 7,\ M, In connection with the above estimates we expound that

s . s Pis 1) = 115 . Ok Pis M) + 175 2. Oy Py Ti\M)
< 2730 s Pis M) + 1835 O Pis TiAMG)
= 1, O P T) = (1= 270 . s e M)
As has been said, we can achieve (4.13) connecting with the above estimates to which the proof

of (4.12) is similar.
Step 3. For arbitrary T € 7, N 7, via using (4.7) and the Young’s inequality we obtain that

05¢7,(Yn = Ya, T) = 0scg,(yn — Ya, T),
05¢7, (3 = Yas T) = 205¢% 5 = ya, T) < 2CH3 1[5y = yull} 1.

Obviously, (4.14) can be got by summing the above inequality over T € 7,N7 . To sum up, Lemma 4.3
is proved. O

4.3. Quasi-orthogonality

As to the proof of the convergence, one of the main obstacle is that there do not have the
orthogonality while it is vital to prove the convergence. Thus getting back to the second place we
transfer proof of the quasi-orthogonality. The latter is popularly adopted in the adaptive mixed and
the nonconforming adaptive finite element methods [19]. Apparently it is true for the following basic
relationships with 75,,75,,, € Tand 73, C T4,,,,

”M — Up,, ”% = ”M - uhk”(z) - ”uhk - Up,y ”(2) - 2(” — Uppyys Uy — uhk), (416)
1Y = Vi IF = 1Y = Vil = 1 = Ve I3 = 2600 = Yiors Yo, = Vi) (4.17)
1P = P IE = 1lp = P} = 11Pne = Prucs|lF = 2a(D = Piy> Phiss = Pi)s (4.18)

where (u,y, p) are the solution of (2.3)—(2.5), (un,,Yn. pr,) and (uy,.,,, Yn.,,> Pn.,,) are the solution of
(2.8)—(2.10) with respect to 7, and 7, ,, respectively. Accordingly we have the quasi-orthogonality
below.

Lemma 4.4. For 7;,,7,,, € Tand Ty, C Ty,.,, we have

2 2 2
(1 - 6)”” - uhk+1||0 - ”l/l - uhkllo + ”th - uth”O

< C5™ (117, (P Re) + T2 (o) 7, (s Yo Ri) + 1.7, O P R)) (4.19)
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and

(1= )y = Y I = 1y = eI} = g = e I} = e = 20, 11
< €57 (11 1, (i R + T2 o)1, s Vs Re) + 1 7, s P R0)))

and

(1 - 6)”]7 - phk+1”% - ”p - phk”% + ”phk - pth”% - 5”)’ - yth”%
S C6—1 (ni"]“hk (phka Rh) + jz(h())(n%,’rhk (”hk’)’hk’ Rh) + n%:]‘hk (yhk’ phka Rh))) .

Proof. Step 1. It follows from Lemma 4.3 in [19] that for Ui’fl C UZ’Z*‘ we have

2
aAllup,,, — vunllo <(Phey = Phi> Ung — Uny,,) + (@Up, + Dy Up, — Upy,,)
< hs S (f +un) = va) = S5, (S (f + ) = Ya), un, — uny.,)
+ Cn],‘Thk (phk, Rh)”uhk - Up,y ”07

where R, is the set of elements which are refined from 77, to 77,,,.

(4.20)

(4.21)

(4.22)

For the right-hand first item of (4.22) we let {j, € H(‘)(Q) be the solution of the following problem

based on Lemma 4.1

alnq) = (S, S (f +un) = ya) = S5 (S (f + un) = ya). @), ¥ q € Hy(Q).

Hence we can get

IS 5 S OF + un) = ya) = S5 (S (f + ) = ya)llg
=a(ln> S jyo, S iy f + ) = ya) = S, (S, (f + un) = Ya)
=a(n = Ln> S hsy St F + un) = ya) = 81, (S, (f + ) = Ya)
+ S+ un) = Sn(f + un)s &y = En) + (S oy (F + un) = S (f + un), &)

From the proof of Lemma 3.3 in [19], we infer that

a(ln = Lnes S e, S F + ) = ya) = S5, (S (f + un) — ya)
ST ho)lIS .., (S e (f + un) = ya) = S5, (S n (f + up,) — yallo
(S pyer F + un) = S (f +wp )l + 1S5, (S (f +un) = ya) = 83, (Sn(f + un) = yalli)s

and
(S heo (f +un) = S (f +un), &y — &)
SCI oIS neo, (f + un) = S, (f + unllo
NS fs, S (f + un) = ya) = 83, (S (f + un) = ya)llo,
and

(Shk+1(f + uhk) - Shk(f + uhk)’ {)
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NS e OF + i) = S (f +un)llo - 1S, S w (f + ) — ya) = S5, (S (f + ur) — ya)llo-

Similar to Lemma 4.6 in [4], we derive that

IS b (f + ) = Sn (f + un)lh < Cro,7s, (s s Ri),
IS b, S (f + un) = ya) = S5, (Sn(f + un) = yallli < Cris7, Ons P Ri)-

In connection with the above estimates we conclude that

1S5, S n (f + un) = ya) = S5, (Sn(f + ) = ya)llo
< C(j(hO)(UZ,Thk (uhk9 yhka Rh) + 773,77% ()’hk, Phk» Rh)) + ||Shk+1(f + l/lhk) - Shk(f + uhk)”())'

For the third term at the right end of the above inequality, we let ¢, € Hé (Q) be the solution of the
following problem

a(gs ) = (Sp, (f + ) = S (f +un), @), ¥ q € Hy(Q).

According to the standard duality theory, we can deduce that

IS s, O + tn) = S 1 (f + un)Il5
:a(Shkﬂ(f + uhk) - Shk(f + uhk)’ On — Qohk)
<CI IS o (f + up) = S (f + up)lly - 1S 1y, (F + wn) = Sp (F + up)llo,

where ¢, is the standard finite element estimate of ¢, with respect to V, . So we have

1S, S (f + ) = ya) = S5, (S (f + un) = ya)llo
Sc(j(ho)(ﬂz,nk(uk,yk, Ri) + 13,75, Ohes Phis Rh)))-
As mentioned above, we can get
(Piier = Phu i, = Uny) SC(T (ho) (na7, s Y- Ri)
+ 13,75, Ones P> Ri)lut, — ., ||0)~

In combination with (4.22) and above inequality, we deduct that

llet, — py,, llo < C(Ul,frhk (Pris Rn) + T (ho) a7, g, Y, Ri) + 13,75, Ones P Rh)))- (4.23)

It is easy to derive the desired result (4.19) with the help of (4.16) and (4.23).
Step 2. Our task now is to prove (4.20) and so is (4.21). Obviously we have

heer = Yuello = IS e, (F + wan,,) = Si, (F + un)llo
S WS et F + ttne) = S F + wn)llo + 1S peey (F + ) = S, (F + wn)llo
< Clllun, = un, llo + T (ho)mag, Wy, i Ri))- (4.24)
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By using the Cauchy inequality, we obtain
2a(y - Yhisrs Yhyery — yhk)
:2(11 —Unpys Yo — yhk) - 2(¢(y) - ¢(yhk+1)’ Yhor — )’hk)

1 i
S5”” - uhk+1”3 + 5||yhk+1 - yhk”é + (¢ (y)(y - yhk+l)’ Yo — yhk)
1 p
<6llu — up,, II§ + gllyhkﬂ = Yellg + 18 Mol = Yo lolya, = Yo

1 1
<6llu — up,, Ilg + gllyhkﬂ = Y ll§ + C6Slly = Y, g + 5||yhk+1 — ) - (4.25)
It is easy to derive the desired result (4.20) with the assistance of (4.17) and (4.23)—(4.25). O

4.4. Convergence

For 73, € T, we will denote Ugfl, Vi, and the solution (uy,, yn,, p,) of (2.8)—(2.10) with respect to
T, by Uﬁ;, Vi, and (up,, yn,, pr,) and we define some notations before we prove the convergence of
Algorithm 3.1 as follows:

2 2 2 2
€, = llu=upllg + lly =y lli + 10 = oIy,

2 2 2 2
Ehk = ||uhk - uhk+1||0 + ||yhk _yth”l + ||phk - pth”l’

ﬁ‘%’hk (w) = ng,‘]’hk (uhk’yhk’ w) + ng,ﬂlk (yhk’ Phys w)’
for w C Q.

Theorem 4.1. Let (T},, UZZ, Vies Ungs Vi Pr,) be the sequence of grids, finite element spaces and
discrete solutions produced by the Algorithm 3.1. Then there exist constants v, > 0, y, > 0 and
a € (0, 1), only depending on the shape regularity of initial grids T},, b, and the marking parameter
6 € (0, 1], such that

s + V7 Phecis T + 1270, (T S @ (e, + v, (us T + 1270, (T3)), - (4.26)

provided hy < 1.

Proof. We get the following results from Theorem 2.1, Lemma 4.3 and Lemma 4.4,

e, < Cng,, (T 4.27)

=2 ~2 ~2 1 )
777’hk+1 (7-/’lk+1) <1+ (5){77'7‘,1]( (Thk) - /lT]Thk (th)} +C|1+ 5 Ehk’ (4.28)

n%,‘rhkﬂ (phk+l ’ 7th-#l) S (1 + 6]){’7%’77% (phka 7-]‘11() - (1 - 2_1/2)77%’77,]( (phk’ th)}
1
+C (1 + 5—1) hollpw, = Py Iy (4.29)
1 ~

(1- 25)6}21k+1 < elek - Elzlk + Cg(nif/"hk (Pngs Ri) + j(ho)ﬂgrhk (771;{)), (4.30)
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where R), is the set of elements which are refined from 7, to 73,,,. Applying the upper bound in
Theorem 2.1, (4.29) can be simplified into

Ty, Pes T < (L+ 51){’7%,%(1%”77%) (1 =2y, (phk’th)}
1 2
+ C(l + 6_1)h(2)(77%,7’hk+1 (phk+1’7-hk+1) + 7777%1 (‘77”‘“)

+ 0, (Do Ti) + 7, (T))- (4.31)

Multiplying (4.28) and (4.31) with ¥, and vy}, respectively, and adding the results to (4.30) yields

(1- 25)€ik+] +71 77%,’77,](+l (p/’lk+l ’ 7~hk+l) + YZﬁ%kH (ﬂlkﬂ)
< e, +7o(1+ 0)iny,, (Ta,) = Ay, (M)

- 1 5 _ 1
+7C(1+ B — Ej = (71 +60(1 =27 = Co)ni 7, (pie Ry)
+V1(L+60m 7, (P Th) + C [fz(ho)n(rh (Th)
nc(l+ L) 75 iy (T i T + iz (T
+ 7’1C( + 5 ) o(’h,ﬂk P> Thier) + N7, 1( her) F 771,T,,k(phk’ ) + nThk( hk))'
1 +1 +

If y, is such that
1
yi(l +6)(1 =271 - Cg >0,

and one chooses ¥, such that
. 1
720(1 + 5) =1, (4.32)

then we have
(1-20)e;  + 771(1 - C(l + 51 )i12)171 T, Phicrs Tiar)
(- 7ic(1+ = 5 V)T, (T
< ei + 71((1 + é‘1) + C(l + 51 )hz)nl‘T] (Phk’ ‘7.hk)
(7 + 0+ 7iC(1 4 5B + €T )i, (T

= (77, (i M) + 723, (M),

where 1
¢ = min {y,(1 + )4, 71(1 + 61)(1 - 27"/%) - Cg}.

By using the marking strategy in Algorithm 3.1 and the upper bound in Theorem 2.1 to arrive at
. 1
(1 =28)e;,., +71(1 = C(1+ St , P T
. 1
+ (7=t + 5 i), T
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s(r—a%ki+0uu+6o+co+§9%)—wa—ﬁ»mﬂgmwﬂm
+le+&+VKXL+%y%+céj%%)—wﬂ—ﬁﬁmhﬂhx

where 8 € (0, 1). Then we deduce that

2 2 ~2
eth + ylnl,Tth (phk+1 ’ 771/(+1) + 7277771k+] (ﬂkﬂ)

2 2 ~2
< ayey, + i g, (Puy Toy) + @syaiiy, (),

where
_1-ce
R Y
7(1-c +67HR)
[ 1-26 ’
P 7iCU + 87
7= 1-26 ’
A((1+60) + C +67HRE) = co(l - )
s = )
7(1-ca+6Hn)
Yo(1 +8) + 71C(1 + 6,2 + C5 T2(ho) — c6(1 — B)
a3 = .

Y2 — viC(1 + 6,Hh;
As long as 6 < 1 and g is small enough, a; € (0, 1) can be guaranteed. To facilitate judgment, we
transfer the following adjustments to the above formula:

- - co(1-pB)
_a-ca+ SThG) + 81 +2C(1 + 67 hg — 2

1-C(1+6Hh5

1 +6)-7C0+ SO+ 27,C(1 + 67D + C57' T (ho) — (1 — B)
Yo —iC(1 + 6, '

an

b

as

It is absolutely clear that
@ €(0,1),

if hy < 1 and 9, is sufficiently small. Then consider (4.32) to deduce that

62
2= ca+oy
which can say
as € (0, 1),

if hy < 1 and ¢ is sufficiently small. Therefore if choose @« = max{a,, a,, @3}, we can derive the
expected results.
O
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Theorem 4.2. Let (T}, UZZ, Vi Wnes Vi Pr,) be the sequence of grids, finite element spaces and
discrete solutions produced by the Algorithm 3.1 and the conditions of Theorem 4.1 keep. Then we
have

e = upJIg + 1y = yellf +11p = poJlf = 0 as k — oo
Proof. It is obviously true combining Theorem 2.1 and Theorem 4.1. O

5. Quasi-optimality for adaptive finite element algorithm

In this section we consider the quasi-optimality for the adaptive finite element method. Firstly we
give the notations interpretation. For 7,7, 75, € T, let #7, be the number of elements in 7, and
Tn, ® Th, be the smallest common conforming refinement of 77, and 7, and satisfies [4,27]

H(Tn, © Thy) < #Tp, + #Ty, — #T . (5.1)
According to [19], we need defining a function approximation class

A =, y, p,yar f) € LH(Q) X Hy(Q) x Hy(Q) X L*(Q)
X LXQ) : [(w,y, p, ya> s < +00},

where
. X . . 2
|(u,y, p,ya» f)ls :==sup N* inf inf {1 = upllg
N>0 ThETN (upyn.pr) UL XV xV)
2 2 2 2 1
+ly = wlly + lp = pally + oscz (f, Tw) + oscz, (vn — Ya, T2,
and

Ty :={Tn €T #T, — #T 4, < No}.

5.1. Localized upper bound

To illustrate the quasi-optimality of the adaptive finite element method, we need a local upper bound
on the distance between nested solutions [4], since the error of this method can only be estimated by
using the indicators of refined elements without a buffer layer.

Lemma 5.1. For 75,9, € T and T3, C T, let R), be the set of refined elements from T, to 7. Let
(un, yn, pn) and (i1, y, p) be the solutions of (2.8)—(2.10) with respect to T}, and T respectively. Then
there exists a constant C, depending on the shape regularity of initial grids T, and b such that

llup = allg + llyw = FIIT + lps — DI < Cniz- (R, (5.2)

where

Mo (Ri) = 17, 7. (Phs Ri) + M., (s Yoo Ri) + 13,7, O P R
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Proof. From (4.23) of Lemma 4.4, we have
ey, = il < 177, (Ri). (5.3)
By Lemma 4.6 in [4], we deduce that
lyn =3l = IS w(f + un) = S5(F + Dl

SNSH(f +up) = Si(f +upll + IS5 + wp) = Si(f + Dl (5.4)
< C(no7, (upy yu, Ri) + g, — iillo)-

The corresponding result is attained by the similar method above

pn = Plli = 1S5S w(f + un) = ya) = S (SH(f + i) — ya)lls
< C13,.73, s P R) + Ny = Flh)- (5.5)

In connection with (5.3), (5.4) and (5.5) we can derive (5.2). O

5.2. Dorfler property

Dorfler introduced a crucial marking and proved strict energy error reduction for the Laplacian
provided the initial grids 7, satisfying a mild assumption [9]. If the sum of errors satisfy suitable
error reductions, the error indicators on the coarse grids must satisfy a Dorfler property on the refined
one [19].

Lemma 5.2. Assume that the marking parameter 6 € (0, 6%), where

_ C
20+ EH+ 1

%

For Ty, T, € Tand T;, C T, let (up, yn, pr) and (it, y, p) be the solutions of (2.8)—(2.10) with respect to
T and T, respectively. If
ezﬁ + osczﬁ(‘Th) < ,u[egrh + oscgrh(ﬂ)], (5.6)

is satisfied for u := %(1 - 9%). Then, the set Ry, of elements which are refined from T}, to T}, satisfies the
Dorfler property
7, (Ru) = 6177, (),

where

ez, = llu—willy + lly = yally + llp = pally,

0sc;, (W) = 0sc3, (f, w) + 05¢, (Vi = Ya ),
for w C T, and e%, osc%(‘f'h) similarly defined.

Proof. By the lower bound in Theorem 2.1 and (5.6) to obtain that

(1 = 2u)Cn3, (T3) < (1 = 2u)(ex, + oscx (Th))
< efrh - Ze% + osc?rh(?'h) - 2080%(771)-
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It is well-known that there exists the fundamental relationships:

e = wnll§ < 2llee = allg + 2y, — @l

1y = yall < 21y = 511} + 21lyn = 517,

lp = pall} < 2llp = BII; +2llps B
Hence we can get the following result form Lemma 5.1

2 2 2
ey, — 2e,7~.h < 2Cnz, (Rp)- 5.7

For T € 75, N T5,, we can get the following result from (4.14) of Lemma 4.3

05¢, (= Yas T N Th) = 205¢%. (5 = yas T N T1) < 2C(highpg, (Ri))- (5.8)

According to Remark 2.1 in [4], we get the following result as the indicator 7, (7)) dominates
oscillation oscg, (T)
oscy- (T) < 7 (D), (5.9)

for all T € R,,. Then in connection with (5.7), (5.8) and (5.9) one obtains

(1 = 2W)Cn3 (Th) < RCA + k) + Dz (Ry),
(1 = 2w)0 75 (Th) < 77, (Rn),
O (Th) < 17, (Ra),

where

. C

0= ——=  and 6=(1-2u)0"
20 +ih+1 (1=2)

O

Lemma 5.3. Let (u,y, p) and (T}, UZZ, Vie> Ung> Vi P, ) be the solution of (2.3)—(2.5) and the sequence
of grids, finite element spaces and discrete solutions produced by Algorithm 3.1, respectively. Assume
that the marking parameter 6 satisfies the condition in Lemma 5.2, then the following estimate is valid

1
#M, < C(NFI,y, p,ya, 5 (e), + 053, (Ti)) %), (5.10)

l.f(l/l,y,P,yd,f) € A

Proof. Let € := yN‘l(e% + osc,zrk((/"k)), where N shall be produced in the proof of (5.13) and u is
defined in Lemma 5.2. Because of (u,y, p,ya, f) € A, there exists a 7, € T and a (up_, yn_. pn.) €
UZ; X Vi, XV, such that

#T5, — #T 5 < |y, p,ya, HIV € €15, (5.11)
and
e = wn Ilg + 1ly = yu |} + lp = pa|F + 05c7, (f, Ta) + 05¢7, (n, = Ya- Ta) < €. (5.12)
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Let (up,, yn., pn,) be the solution of (2.8)—(2.10) with respect to 7, where 7, = 75, @ T}, is the
smallest common refinement of 7, and 77,. In the following we will prove the following inequality
firstly

h

e+ osczﬂ* (Th) < N(egr,,f + osc,zrhe (‘7';,6)), (5.13)
where

2 . 2 2 2
er,. = lu—ullg + Iy = yully + llp = pallis

0sc2. (T3,) = osck, (f.T3) + 05¢2, O, = yasTi).
According to the principle of adding one item and subtracting one item, then we have
e = w15 = Noe = w115+ lletn, = wn 1§ + 2Cu = y,, wy, — uap,),
Iy = Y lIF = 1y = Ya I} + yn, = YnlIF + 240y = ya Y. = yn),
Ip = pulls = 1lp = pull; +1Ipa, = pull; + 2a(p = pu., pu. = pa,)-
With the help of the Young’s inequality one obtains

(u - Up,, Up, — th) = (u - Up, Up, — th) - (Mh* — Up,, Up, — th)
< (u—up,, up, — up,)

1
2 2
< lu — upllg + Z”Mm — up Il

and so are a(y — yu.,yn, — Yn,) and a(p — pa,, pn, — pi.)- Hence in connection with what we get above
we deduce that

lloe = wn 1§ + Nt = w5 + 1y = i1z + yn, = yall} +1lp = pall; + Ipn, = pally
< 6(1l = w1, 115 + lly = yu I} +llp = pa ). (5.14)

From Remark 2.1 in [4] and (4.14) in Lemma 4.3 with 7, = Tn= Th,, Yy =yn and y = y;_, we obtain
that

0S¢ (. = Yas Th.) = 205¢% O, = Yas Th,) < 052 (. = Ya. i) = 2052 O, = Yar Ti.)
< 2Nhgllys, = yilIT- (5.15)
Forany T’ € 7, let T}, :={T € T}, : T € T'}. From the proof of Lemma 4.3 in [19], we derive that

2 W = frllr < NIF = frlls -

T<Th,,

And then we can get
052 (f,T-) < N(osck(f. To). (5.16)

Combining (5.14)—(5.16) to obtain (5.13) and using (5.12) and the definition of €2, we have
e;i + oscfzrh* (Th) < N(e?rhg + oscg-he (The)) < Né* = ,u(eik + osc?rhk (Thk)).
It is true for the following result from Lemma 5.2
#My,, < H#Ry < H#T ), —#T ), < HT ), — #T . (5.17)
Combining (5.11), (5.17) and the definition of € to derive the desired result (5.10). O
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5.3. Quasi-optimality

The following consequence is the result of previous estimates where the truth is that the number of
elements is a dwindle for the errors. Namely, if a given adaptive method is used to approximate the
exact solution at a certain convergence rate, the iteratively constructed grids sequence will achieve this
rate until a constant factor.

Theorem 5.1. Let (u,y,p) and (ﬂk,UZZ, Vies Ungs Yie» Pr,) be the solution of (2.3)—«(2.5) and the

sequence of grids, finite element spaces and discrete solutions produced by Algorithm 3.1, respectively.
Assume that T, satisfies the condition (b) of Section 4 in [27]. Let (u,y, p,ya, f) € A, then we have

: -4
#T 5 = #T5, < Clw,y, p.ya, NI (€5, + 0sc3, (T3)) ™ (5.18)

provided hy < 1.

Proof. It follows from Theorem 2.1 and Lemma 5.3 that

€ + V1M1, (Phs T + ¥2iiry, (Th) = €, + oscz, (Th,). (5.19)

From Lemma 2.3 in [4], we have
k-1

#ﬂk - #‘7710 <C Z Mhi- (520)
i=0

With the assistance of Lemma 5.3 and (5.20) to gain

k=1 = 1

#T 5, —#Th, < C Z My, < C(M Z (e3, +osck, (T3)) ), (5.21)
i=0

i=0

—

where 1
M = NEKM’)’,p,)’d,f)HO/_E-
Then it follows from (5.19), (5.21) and Theorem 4.1 that

k
HT p, — #Tp, < C(M(e,zlk + osczﬂk(?’hk))_% Z a’i)
i=1
1

1 ~%
< Clw,y, p,ya Pli (e, + 05¢3, (T3,)) 7,

which tells the proof of Theorem 5.1. O
6. Numerical experiments

In this section, we firstly present an adaptive finite element and then give the adaptive iteration
method where the purpose is to provide empirical analysis for our theory.

Example 1. We consider the nonlinear optimal control problem governed by nonlinear elliptic
equations subject to the state equation

—Ay+y = f+u, —Ap+3y’p=y-ya
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where we choose a = 1 and Q = [0, 1] X [0, 1] and apparently exact solution

1 _

u =—(max(0, p) - p),
a

y =sin(mx;) + sin(mx,),

pP==)

By simple calculation we have fQ pdx = —% which satisfies u € U .

We choose 15 adaptive loops for Example 1, then we plot the profiles of the exact state and the
numerical state on adaptively refined grids with 6 = 0.5 in Figure 1. It is easy to see that the solution is
smooth, but we can find larger gradients in some regions, hence comparing with uniform refinement,
adaptive finite element method can provide smaller error. In Figure 2, we provide the triangle refined

grids after 6 and 12 adaptive iterations of Algorithm 3.1.
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Figure 1. The exact state (left) and the numerical state (right) for Example 1.

Figure 2. The adaptive grids after 6 steps (left) and 12 steps (right) for Example 1.
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Figure 3. The error estimate compares between adaptively (left) and uniformly (right) refined
grids for Example 1.

In Figure 3, we plot the convergence history for the errors where the left is adaptive refinement
(6 = 0.5) and the right is uniform refinement (6 = 1). We can find it very intuitively when we provide
the optimal convergence rate slope —1 via adopting the linear finite elements, the error reduction can
be observed.

Example 2. We consider the same nonlinear optimal control problem as Example 1 with a = 0.1,
Q=(-1,1)x(0,1)U (-1,0) x (-1, 0] and apparently exact solution

_[-5x10%en,  m<0,
"o, m>0,

y=-p,
m = (x; —0.2)* + (x; — 0.6)*> = 0.04,

where u € U,y can be guaranteed.

Comparing with Example 1, we provide some plots concerning with 21 adaptive loops for
Example 2 with 6 = 0.5. In Figure 4, it is more easy to say that the solution is smooth while the
large gradients can be found in some regions illustrating that adaptive refinement can obtain smaller
errors than the uniformly refinement where we offer the error estimate graphs to explain. In Figure 5,
the left plot tells us the error estimates on adaptive refinement (6 = 0.5) and the right shows the
error estimates on uniform refinement (6 = 1). With the slope —1 being the optimal convergence rate
expected, we see the error reduction from Figure 5. Meanwhile we can also find that the convergence
order of the total-error and the error estimate indicators are approaching to straight line slope —1 in
which they are roughly parallel where it is showed that the posteriori error estimates we obtained in
Section 2 are reliable.
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Figure 4. The exact state (upper-middle) and the numerical state (left) and the adjoint state
(right) variables for Example 2.
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Figure 5. The error estimate compares between adaptively (left) and uniformly (right) refined
grids for Example 2.

In Figure 6, we show the adaptive grids after 9 and 19 adaptive iterations for Example 2 of 21
adaptive loops with § = 0.5. We can find that the grids are concentrated on the regions where the
solutions have larger gradients. Only can we note that reduced orders are observed for the uniform
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refinement because of the singularity of the solutions.

Figure 6. The adaptive grids after 9 steps (left) and 19 steps (right) for Example 2.

7. Conclusions and future expectation

In this paper, we first study the adaptive finite element method for nonlinear optimal control
problems and give the corresponding adaptive algorithm. To evaluate the adaptive finite element
method, we obtain the a posteriori error estimates for the nonlinear elliptic equations with upper
and lower bound convergence and optimality, which are also important indicators for evaluating the
algorithms. Therefore, we prove that the sum of the posterior errors of the control, state and covariance
variables are convergent, as shown in Theorem 4.2. Based on the local upper bound, we prove the
quasi-optimality of the proposed adaptive algorithm, see Section 5. To verify our theoretical analysis,
we finally provide some numerical simulations. In previous research papers, the finite element methods
for linear optimal control problems were studied. Our innovation is to extend the method of linear
optimal control problems to a series of nonlinear optimal control problems.

There are a lot of problems which can not be tackled, such as the L? — L? posteriori error estimates
for nonlinear elliptic equations as well as the convergence and quasi-optimality for nonlinear parabolic
equations. Furthermore, we note that the analysis in this paper can be generalized to common nonlinear
parabolic problems and boundary problems, and we will work on these problems.
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