In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.
Citation: Miyoun Jung. A variational image denoising model under mixed Cauchy and Gaussian noise[J]. AIMS Mathematics, 2022, 7(11): 19696-19726. doi: 10.3934/math.20221080
[1] | Zeshan Qiu . Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318 |
[2] | Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650 |
[3] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[4] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[5] | Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481 |
[6] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[7] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[8] | Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074 |
[9] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[10] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.
In this paper, we consider the Cauchy problem for the following two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion:
{ρt+u⋅∇ρ=0,(t,x)∈R+×R2,ρ(ut+u⋅∇u)−Δu+∇P+σdiv(∇b⊗∇b−12|∇b|2I)=0,bt+u⋅∇b+1ν(e′(b)−σΔb)=0,divu=0,(ρ,u,b)(t,x)|t=0=(ρ0,u0,b0)(x), | (1.1) |
where the unknowns ρ=ρ(x,t), u=(u1(x,t),u2(x,t)) and b=b(x,t) stand for the density, velocity of the fluid and the spherical part of the elastic strain, respectively. P is a scalar pressure function, which guarantees the divergence-free condition of the velocity field. The coefficients ν and σ are two positive constants. In addition, we suppose that e(⋅) is a smooth convex function about b and e(0)≤0, e′(0)=0, e″(b)≤C0, where C0 is a positive constant depending on the initial data. The class of fluids is the elastic response described by a spherical strain [3]. Compared with [3], we have added the divergence-free condition to investigate the effect of density on viscoelastic rate-type fluids, while the divergence-free condition is for computational convenience.
It is easy to observe that for σ=0, the system (1.1) degenerates two distinct systems involving the inhomogeneous Navier-Stokes equation for the fluid and a transport equation with damped e′(b). Numerous researchers have extensively studied the well-posedness concern regarding the inhomogeneous Navier-Stokes equations; see [1,7,8,9,11,14] and elsewhere. However, the transport equation has a greater effect on the regularity of density than on that of velocity. Additionally, due to the presence of the damped term e′(b), the initial elasticity in system (1.1) exhibits higher regularity compared to the initial velocity.
In the case where σ>0, system (1.1) resembles the inhomogeneous magnetohydrodynamic (MHD) equations, with b as a scalar function in (1.1) that does not satisfy the divergence condition found in MHD equations. It is essential to highlight that the system (1.1) represents a simplified model, deviating from standard viscoelastic rate-type fluid models with stress-diffusion to facilitate mathematical calculations. Related studies on system (1.1) can be found in [3,4,15]. In particular, Bulíček, Málek, and Rodriguez in [5] established the well-posedness of a 2D homogeneous system (1.1) in Sobolev space. Our contribution lies in incorporating the density equation into this established framework.
Inspired by [11,18], we initially establish a priori estimates for the system (1.1). Subsequently, by using a Friedrich's method and the compactness argument, we obtain the existence and uniqueness of the solutions. Our main result is as follows:
Theorem 1.1. Let the initial data (ρ0,u0,b0) satisfy
0<m<ρ0(x)<M<∞,(u0,b0)∈H1(R2)×H2(R2),e(b0)∈L1(R2), | (1.2) |
where m,M are two given positive constants with m<M. Then system (1.1) has a global solution (ρ,u,b) such that, for any given T>0, (t,x)∈[0,T)×R2,
m<ρ(t,x)<M,u∈L∞(0,T;H1(R2))∩L2(0,T;H2(R2)),∂tu∈L∞(0,T;L2(R2))∩L2(0,T;H1(R2)),b∈L∞(0,T;H2(R2))∩L2(0,T;H3(R2)),∂tb∈L∞(0,T;H1(R2))∩L2(0,T;H2(R2)). |
Moreover, if ∇ρ0∈L4(R2), then the solution is unique.
Remark 1.1. Compared to the non-homogeneous MHD equations, handling the damping term e′(b) poses a challenge, so that we cannot obtain the time-weighted energy of the velocity field. To explore the uniqueness of the solution, it is necessary to improve the regularity of the initial density data.
The key issue to prove the global existence part of Theorem 1.1 is establishing the a priori L∞(0,T;H1(R2)) estimate on (u,∇b) for any positive time T. We cannot directly estimate the L2 estimate of (u,b), which mainly occurs in the velocity term div(∇b⊗∇b−12|∇b|2I). Therefore, we need to estimate the L2 of the ∇b equation. Afterwards, the L2 estimation of equation b was affected by a damping term e′(b), so we made an L2 estimation of equation e′(b). Finally, to show the L∞(0,T;H1(R2)) of u, we also need an estimate of the second derivative of b. In summary, we found that the initial value of the b equation needs to be one derivative higher than the initial value of the u equation.
Concerning the uniqueness of the strong solutions, a common approach is to consider the difference equations between two solutions and subsequently derive some energy estimates for the resulting system differences based on the fundamental natural energy of the system. However, for system (1.1), the presence of a damping term e′(b) of the equation b and density equation prevents the calculation of the time-weighted energy of the velocity field. To research the solution's uniqueness, we need to enhance the regularity of the initial density data.
The paper is structured as follows: Section 2 presents prior estimates for system (1.1). In Section 3, we establish the existence and uniqueness of Theorem 1.1.
Proposition 2.1. Assume that m,M are two given positive constants and 0<m≤M<∞, the initial data ρ0 satisfies 0<m≤ρ0≤M<+∞, and the initial data (√ρ0u0,∇b0)∈L2(R2)×L2(R2). Let (ρ,u,b) be a smooth solution of system (1.1), then there holds for any t>0,
0<m≤ρ(t)≤M<+∞, | (2.1) |
‖(√ρu,∇b,u)(t)‖2L2+∫t0‖(∇u,∇2b)‖2L2dτ≤C‖(√ρ0u0,∇b0)‖2L2, | (2.2) |
where C is a constant depending only on σ, ν.
Proof. First, any Lebesgue norm of ρ0 is preserved through the evolution, and 0<m≤ρ(t)≤M<+∞.
To prove (2.2), taking the L2 inner product of the second equation of (1.1) with u and integrating by parts, then we obtain
12ddt‖√ρu‖2L2+‖∇u‖2L2=−σ∫R2Δb∇b⋅udx, | (2.3) |
where we used the fact that
div(∇b⊗∇b−12|∇b|2I)=Δb∇b. |
Multiplying the third equation of (1.1) by −σΔb and integrating by parts, we obtain
σ2ddt‖∇b‖2L2+σ2ν‖Δb‖2L2−σ2ν∫R2e′(b)Δbdx=σ∫R2u⋅∇bΔbdx. | (2.4) |
Thanks to the convexity of e(b), we know
−σ2ν∫R2e′(b)Δbdx=σ2ν∫R2∇(e′(b))∇bdx=σ2ν∫R2e″(b)|∇b|2dx≥0. | (2.5) |
By inserting (2.5) into (2.4), combining the result with (2.3), one yields
ddt‖(√ρu,∇b)‖2L2+‖∇u‖2L2+C‖Δb‖2L2≤0. |
Integrating it with respect to time, we have
‖(√ρu,∇b)(t)‖2L2+∫t0‖(∇u,∇2b)‖2L2dτ≤C‖(√ρ0u0,∇b0)‖2L2. | (2.6) |
On the other hand, applying 0<m≤ρ≤M<+∞, which together with (2.6) implies
‖u‖2L∞(L2)≤m−1‖√ρu‖2L∞(L2)≤C‖(√ρ0u0,∇b0)‖2L2, |
which, along with inequality (2.6), yields (2.2).
Proposition 2.2. Under the assumptions of Proposition 2.1, the corresponding solution (ρ, u, b) of the system (1.1) admits the following bound for any t>0:
‖(∇u,∇2b,∇b,b)‖2L2+∫t0‖(∇2u,∇3b,√ρuτ,bτ,uτ)‖2L2dτ≤C, | (2.7) |
where C is a positive constant depending on m, M, u0, ρ0, and ∇b0.
Proof. First, we obtain by taking L2 inner product of (1.1)3 with e′(b) that
ddt∫R2e(b)dx+1ν‖e′(b)‖2L2≤‖u⋅∇b‖L2‖e′(b)‖L2+14ν‖e′(b)‖2L2+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C‖u‖2L4‖∇b‖2L4+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C‖u‖L2‖∇u‖L2‖∇b‖L2‖∇2b‖L2+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C(‖∇u‖2L2+‖∇2b‖2L2). |
Integrating with respect to time, we obtain
‖e(b)‖L∞(L1)+‖e′(b)‖2L2(L2)≤‖(√ρ0u0,∇b0)‖2L2+‖e(b0)‖L1. | (2.8) |
Similarly, multiplying (1.1)3 by b, we have
12ddt‖b‖2L2+‖∇b‖2L2≤C(‖b‖2L2+‖e′(b)‖2L2), |
after using (2.8) and Grönwall's inequality, we obtain
b∈L∞(0,t;L2(R2))∩L2(0,t;H1(R2)). | (2.9) |
In the following, applying Laplace operator Δ to (1.1)3 and multiplying the resulting equation by Δb; additionally, multiplying (1.1)2 by ut and (1.1)3 by bt, respectively, then integrating them on R2 and adding up all these results together, we obtain
12ddt∫R2(|Δb|2+|∇u|2+σν|∇b|2)dx+∫R2(ρ|ut|2+|bt|2+σν|∇3b|2)dx=−∫R2ρu⋅∇u⋅utdx−σ∫R2Δb∇b⋅utdx−∫R2u⋅∇bbtdx−1ν∫R2e′(b)btdx−∫R2Δ(u⋅∇b)⋅Δbdx−1ν∫R2Δe′(b)⋅Δbdx≜6∑j=1Ij. | (2.10) |
Utilizing Gagliardo-Nirenberg's, Hölder's, Young's inequalities (2.2), we estimate the first term as follows:
I1≤‖√ρ‖L∞‖√ρut‖L2‖u‖L4‖∇u‖L4≤116‖√ρut‖2L2+C‖u‖2L4‖∇u‖2L4≤116‖√ρut‖2L2+C‖u‖L2‖∇u‖2L2‖∇2u‖L2≤116‖√ρut‖2L2+116‖∇2u‖2L2+C‖∇u‖4L2. |
Similarly, by direct calculations, the other terms can be bounded as
I2≤116‖√ρut‖2L2+σ8ν‖∇3b‖2L2+C‖∇2b‖4L2,I3≤14‖bt‖2L2+C‖∇u‖2L2+C‖∇b‖2L2‖Δb‖2L2,I4≤14‖bt‖2L2+C‖e′(b)‖2L2,I5≤3σ16ν‖∇3b‖2L2+116‖∇2u‖2L2+C‖∇u‖4L2+C‖∇2b‖4L2,I6≤3σ16ν‖∇3b‖2L2+C‖∇b‖2L2. |
Next, according to the regularity theory of the Stokes system in Eq (1.1)2, it follows that
‖∇2u‖2L2≤‖ρut‖2L2+‖ρu⋅∇u‖2L2+σ‖∇bΔb‖2L2≤‖√ρut‖2L2+C‖∇u‖2L2‖∇2u‖L2+C‖∇2b‖2L2‖∇3b‖L2≤‖√ρut‖2L2+12‖∇2u‖2L2+σ2ν‖∇3b‖2L2+C(‖∇u‖4L2+‖∇2b‖4L2), |
after multiplying by 18, we arrive at
116‖∇2u‖2L2≤18‖ρut‖2L2+σ16ν‖∇3b‖2L2+C(‖∇u‖4L2+‖∇2b‖4L2). | (2.11) |
Substituting the estimates I1−I6 into (2.10) and combining inequality (2.11), we have
ddt(‖(∇u,∇b,∇2b)‖2L2+1)+‖(√ρut,bt,∇3b,∇2u)‖2L2≤C(‖(∇u,∇b,∇2b)‖2L2+1)‖(∇u,∇b,∇2b)‖2L2+C‖e′(b)‖2L2, |
which, along with Grönwall's inequality (2.2), (2.8), and (2.9), leads to
‖(∇u,∇b,∇2b)‖2L2+∫t0‖(√ρuτ,bτ,∇3b,∇2u)‖2L2dτ≤C, | (2.12) |
which completes the proof of Proposition 2.2.
Proposition 2.3. Under the assumptions of Proposition 2.2, there holds
‖(√ρut,bt,∇bt,ut)‖2L2+∫t0‖(∇uτ,∇bτ,Δbτ)‖2L2dτ≤C, | (2.13) |
where C is a positive constant depending on m, M, u0, ρ0 and b0.
Proof. Taking the derivative of Eq (1.1)2 with respect to time t, then multiplying ut on both sides of the resulting equation and integrating by parts gives
12ddt‖√ρut‖2L2+‖∇ut‖2L2=−∫R2ρtut⋅utdx−∫R2ρtu⋅∇u⋅utdx−∫R2ρut⋅∇u⋅utdx−∫R2σΔbt∇b⋅utdx−σ∫R2Δb∇bt⋅utdx. | (2.14) |
Next, we compute each term on the right-hand side of the equation above one by one using estimates (2.2) and (2.7). The bound of the first term has been estimated as
−∫R2ρtut⋅utdx=∫R2 div(ρu)ut⋅utdx=−∫R22ρuut⋅∇utdx≤C‖ρ‖L∞‖u‖L4‖ut‖L4‖∇ut‖L2≤C‖u‖12L2‖∇u‖12L2‖∇ut‖32L2‖ut‖12L2≤110‖∇ut‖2L2+C‖∇u‖2L2‖ut‖2L2. |
By using Gagliardo-Nirenberg's, Hölder's, and Young's inequalities and (2.2), we have
−∫R2ρtu⋅∇u⋅utdx=∫R2∇⋅(ρu)u⋅∇u⋅utdx=−∫R2ρu⋅∇u⋅∇u⋅utdx−∫R2ρu⋅u⋅∇2u⋅utdx−∫R2u⋅∇u⋅ρu⋅∇utdx≤‖ρ‖L∞(‖u‖L6‖∇u‖2L3‖ut‖L6+‖u‖2L6‖∇2u‖L2‖ut‖L6+‖u‖2L6‖∇u‖L6‖∇ut‖L2)≤C‖u‖13L2‖∇u‖2L2‖∇2u‖23L2‖ut‖13L2‖∇ut‖23L2+C‖u‖23L2‖∇u‖43L2‖∇2u‖L2‖ut‖13L2‖∇ut‖23L2 +C‖u‖23L2‖∇u‖53L2‖∇2u‖23L2‖∇ut‖L2≤110‖∇ut‖2L2+C‖∇2u‖2L2+C‖∇u‖2L2‖ut‖2L2. |
Similarly,
−∫R2ρut⋅∇u⋅utdx≤C‖ρ‖L∞‖∇u‖L2‖ut‖2L4≤110‖∇ut‖2L2+C‖∇u‖2L2‖ut‖2L2 |
and
−∫R2σΔbt∇b⋅utdx−σ∫R2Δb∇bt⋅utdx≤C‖Δbt‖L2‖∇b‖L4‖ut‖L4+C‖Δb‖L4‖∇bt‖L2‖ut‖L4≤C‖Δbt‖L2‖∇b‖12L2‖Δb‖12L2‖ut‖12L2‖∇ut‖12L2+C‖Δb‖12L2‖∇3b‖12L2‖∇bt‖L2‖ut‖12L2‖∇ut‖12L2≤σ16ν‖∇bt‖2L2+σ16ν‖Δbt‖2L2+110‖∇ut‖2L2+C(‖∇b‖2L2+‖∇3b‖2L2)‖∇2b‖2L2‖ut‖2L2. |
Inserting these estimates into (2.14), we have
ddt‖√ρut‖2L2+85‖∇ut‖2L2≤σ8ν‖(∇bt,Δbt)‖2L2+C‖∇2u‖2L2+C‖(∇u,∇2b,∇3b)‖2L2‖ut‖2L2. | (2.15) |
Now we turn to the b equation of (1.1). Differentiating (1.1)3 with respect to t, we obtain
btt+ut⋅∇b+u⋅∇bt+1ν(e″(b)bt−σΔbt)=0. |
Multiplying it by bt and −Δbt, integrating the resulting equation, and summing up these results, due to the divergence-free condition divu=0, we obtain
12ddt‖(bt,∇bt)‖2L2+σν‖(∇bt,Δbt)‖2L2+1ν∫R2e″(b)(bt)2dx=∫R2ut⋅b⋅∇btdx+∫R2ut⋅∇b⋅Δbtdx+∫R2u⋅∇bt⋅Δbtdx+1ν∫R2e″(b)bt⋅Δbtdx≤‖ut‖L4‖b‖L4‖∇bt‖L2+‖ut‖L4‖∇b‖L4‖Δbt‖L2+‖u‖L4‖∇bt‖L4‖Δbt‖L2+C‖bt‖L2‖Δbt‖L2≤σ4ν‖∇bt‖2L2+‖ut‖L2‖∇ut‖L2‖b‖L2‖∇b‖L2+σ8ν‖Δbt‖2L2+‖ut‖L2‖∇ut‖L2‖∇b‖L2‖Δb‖L2+σ8ν‖Δbt‖2L2+C‖u‖L2‖∇u‖L2‖∇bt‖L2‖∇2bt‖L2+σ8ν‖Δbt‖2L2+C‖bt‖2L2≤σ4ν‖∇bt‖2L2+σ2ν‖Δbt‖2L2+12‖∇ut‖2L2+C(‖∇b‖2L2+‖Δb‖2L2)‖ut‖2L2+C‖bt‖2L2+C‖∇u‖2L2‖∇bt‖2L2. | (2.16) |
Summing up (2.15) and (2.16) yields that
ddt‖(√ρut,bt,∇bt)‖2L2+‖(∇ut,∇bt,Δbt)‖2L2≤C‖∇2u‖2L2+C‖bt‖2L2+C‖(∇u,∇2b,∇3b,∇b)‖2L2‖(√ρut,bt,∇bt)‖2L2. |
Applying (2.7) and Grönwall's inequality to the above inequality, we obtain
‖(√ρut,bt,∇bt)‖2L2+∫t0‖(∇uτ,∇bτ,Δbτ)‖2L2dτ≤C. |
What's more, by the same argument of ‖u‖L∞(L2) in Proposition 2.1, we have
‖ut‖L∞(L2)≤C, |
which completes the proof of Proposition 2.3.
Proposition 2.4. Under the assumption of Proposition 2.3, it holds that for any t>0:
∫t0‖∇u‖L∞dτ≤Ct23 | (2.17) |
and
sup | (2.18) |
Proof. Again, it follows from the regularity of the Stokes system
\begin{align*} &\Vert \nabla^2 u \Vert _{L^4}+\|\nabla P\|_{L^4} \\& \le \Vert \rho u_t \Vert _{L^4} + \Vert \rho u \cdot \nabla u \Vert _{L^4} + \Vert \Delta b \nabla b \Vert _{L^4} \\ & \le C (\Vert u_t \Vert _{L^4} + \Vert u \Vert _{L^\infty} \Vert \nabla u \Vert _{L^4} + \Vert \Delta b \Vert _{L^4} \Vert \nabla b \Vert _{L^\infty} )\\ & \le C (\Vert u_t \Vert _{L^2}^ \frac{1}{2}\Vert \nabla u_t \Vert _{L^2}^ \frac{1}{2} + \Vert u \Vert _{L^2}^ \frac{1}{2} \Vert \nabla^2 u \Vert _{L^2} \Vert \nabla u \Vert _{L^2}^ \frac{1}{2} + \Vert \nabla^2 b \Vert _{L^2}^ \frac{1}{2} \Vert \nabla^3 b \Vert _{L^2} \Vert \nabla b \Vert _{L^2}^ \frac{1}{2} ). \end{align*} |
By Propositions 2.1–2.3, we obtain
\begin{align*} \begin{split} \int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4} \mathrm{d} \tau+ &\int_{0}^{t} \Vert \nabla P \Vert _{L^4} \mathrm{d}\tau \le C (\int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{2} t^\frac{1}{2} +C (\int_{0}^{t} \Vert \nabla P \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{2} t^\frac{1}{2}\\ &\le C\big(\Vert u_t \Vert _{L^2(L^2)}+ \Vert \nabla u_t \Vert _{L^2(L^2)}+ \Vert u \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla u \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^2 u \Vert _{L^2(L^2)} \\ &\qquad + \Vert \nabla b \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^2 b \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^3 b \Vert _{L^2(L^2)}\big)t^\frac{1}{2}\\ &\le C t^\frac{1}{2}, \end{split}& \end{align*} |
and
\begin{align*} \begin{split} \int_{0}^{t} \Vert \nabla u \Vert _{L^\infty} \mathrm{d} \tau &\le \int_{0}^{t} \Vert \nabla u \Vert _{L^2}^\frac{1}{3} \Vert \nabla^2 u \Vert_{L^4} ^\frac{2}{3} \mathrm{d} \tau \le C (\int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{3} t^\frac{2}{3} \\ &\le \Big(\Vert u_t \Vert _{L^2(L^2)}^{\frac{2}{3}}+ \Vert \nabla u_t \Vert _{L^2(L^2)}^{\frac{2}{3}}+ \Vert u \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla u \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^2 u \Vert _{L^2(L^2)}^{\frac{2}{3}} \\ & \qquad + \Vert \nabla b \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^2 b\Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^3 b \Vert _{L^2(L^2)}^{\frac{2}{3}}\Big)t^\frac{2}{3}\\ &\le C t^\frac{2}{3}, \end{split}& \end{align*} |
which leads to (2.17). Finally, we recall that the density \rho satisfies
\begin{align*} \partial_t\rho+u\cdot\nabla\rho = 0. \end{align*} |
Applying the operator \nabla to both sides of the above equation yields
\begin{align*} \partial_t\nabla\rho+u\cdot\nabla (\nabla\rho) = -\nabla u\cdot\nabla\rho. \end{align*} |
By applying the L^p estimate to the above equation, combined with the divergence free condition implies
\begin{align*} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla\rho\|_{L^p}\leq\|\nabla u\|_{L^\infty}\|\nabla \rho\|_{L^p}. \end{align*} |
The Grönwall's inequality implies
\begin{align*} \|\nabla \rho\|_{L^p}\leq\|\nabla\rho_0\|_{L^p}\exp\int_{0}^{t}\|\nabla u\|_{L^\infty}\mathrm{d}\tau\leq C(t). \end{align*} |
We thus complete the proof of Proposition 2.4.
The section is to prove Theorem 1.1. For any given \rho_0 and (u_0, b_0)\in H^s(\mathbb{R}^2)\times H^{s+1}(\mathbb{R}^2) , we define the initial data
\rho_0^{\epsilon} = \rho_0\ast\eta_\epsilon, \quad u_0^{\epsilon} = u_0\ast\eta_\epsilon, \quad b^{\epsilon} = b_0\ast\eta_\epsilon, |
where \eta_\epsilon is the standard Friedrich's mollifier with \epsilon > 0 . With the initial data (\rho_0^{\epsilon}, u_0^{\epsilon}, b_0^{\epsilon}) , the system (1.1) has a unique global smooth solution (\rho^{\epsilon}, u^{\epsilon}, b^{\epsilon}) . From Propositions 2.1 and 2.2, we obtain
m\leq\rho^{\epsilon}(x, t)\leq M, |
\begin{align*} \Vert (u^{\epsilon}, b^{\epsilon}, \nabla u^{\epsilon}, \nabla b^{\epsilon}, \nabla^2 b^{\epsilon}) \Vert_{L^2}^2 + \int_{0}^{t} \Vert (\sqrt{\rho} u^{\epsilon}_\tau , b^{\epsilon}_\tau, \nabla ^3 b^{\epsilon}, \nabla^2 u^{\epsilon}) \Vert_{L^2}^2\mathrm{d} \tau\le C. \end{align*} |
By standard compactness arguments and Lions-Aubin's Lemma, we can obtain a subsequence denoted again by (u^{\epsilon}, b^{\epsilon}) , that (u^{\epsilon}, b^{\epsilon}) converges strongly to (u, b) in L^2(\mathbb{R}^+; H^{s_1})\times L^2(\mathbb{R}^+; H^{s_2}) , as \epsilon\rightarrow 0 , for s_1 < 2 and s_2 < 3 . By the definition of \rho_0^{\epsilon} and let \epsilon\rightarrow 0 , we find that the limit \rho of \rho^{\epsilon} satisfies m\leq\rho\leq M.
Next, we shall prove the uniqueness of the solutions. Assume that (\rho_i, u_i, b_i)\, (i = 1, 2) be two solutions of system (1.1), which satisfy the regularity propositions listed in Theorem 1.1. We denote
\begin{align*} (\tilde{\rho}, \tilde{u}, \tilde{b}, \tilde{P})\overset{def}{ = }(\rho_2-\rho_1, u_2-u_1, b_2-b_1, P_2-P_1). \end{align*} |
Then the system for (\tilde{\rho}, \tilde{u}, \tilde{b}, \tilde{P}) reads
\begin{equation} \begin{cases} \tilde{\rho}_t+u_2\cdot\nabla\tilde{\rho} = -\tilde{u}\cdot\nabla\rho_1, \\ \rho_2\tilde{u}_t+\rho_2 u_2\cdot\nabla\tilde{u}-\Delta\tilde{u}+\nabla\tilde{P} = \tilde{F}, \\ \tilde{b}_t+u_2\cdot\nabla\tilde{b}+\frac{1}{\nu}(e'(b_2)-e'(b_1)-\sigma\Delta \tilde{b}) = -\tilde{u}\cdot\nabla b_1, \\ \mathrm{div}\, \tilde{u} = 0, \\ (\tilde{\rho}, \tilde{u}, \tilde{b})(t, x)|_{t = 0} = (0, 0, 0), \end{cases} \end{equation} | (3.1) |
where
\tilde{F} = -\sigma\Delta\tilde{b}\nabla b_2-\sigma\Delta b_2 \nabla\tilde{b}-\tilde{\rho}\partial_tu_1-\tilde{\rho}u_1\cdot\nabla u_1-\rho_2\tilde{u}\cdot\nabla u_1. |
Setting \nu = \sigma = 1 in what follows.
Step 1: Taking L^2 inner product to the second equation of (3.1) with \tilde{u} , we have
\begin{align} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2+\|\nabla\tilde{u}\|_{L^2}^2 = &-\int_{\mathbb{R}^2}\Delta\tilde{b}\nabla b_2\cdot \tilde{u}\mathrm{d}x -\int_{\mathbb{R}^2} \Delta b_2 \nabla\tilde{b}\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{\rho}\partial_tu_1\cdot\tilde{u}\mathrm{d}x\\ &-\int_{\mathbb{R}^2}\tilde{\rho}u_1\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\rho_2\tilde{u}\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x. \end{align} | (3.2) |
By Hölder's and interpolation inequalities, we have
\begin{equation} \begin{split} &-\int_{\mathbb{R}^2}\Delta\tilde{b}\nabla b_2\cdot \tilde{u}\mathrm{d}x -\int_{\mathbb{R}^2} \Delta b_1 \nabla\tilde{b}\cdot\tilde{u}\mathrm{d}x\\ &\leq C\|\Delta\tilde{b}\|_{L^2}\|\nabla b_2\|_{L^4}\|\tilde{u}\|_{L^4}+C\|\Delta b_1 \|_{L^4}\|\nabla\tilde{b}\|_{L^2}\|\tilde{u}\|_{L^4}\\ &\leq C\|\Delta\tilde{b}\|_{L^2}\|\nabla b_2\|_{L^2}^{\frac{1}{2}}\|\nabla^2 b_2\|_{L^2}^{\frac{1}{2}}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla\tilde{u}\|_{L^2}^{\frac{1}{2}}\\ &\quad+C\|\Delta b_1 \|_{L^2}^{\frac{1}{2}}\|\nabla^3 b_1\|_{L^2}^{\frac{1}{2}}\|\nabla\tilde{b}\|_{L^2}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla \tilde{u}\|_{L^2}^{\frac{1}{2}}\\ &\leq \frac{1}{8}\|(\Delta\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C(\|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2})\|\tilde{u}\|_{L^2}^2. \end{split} \end{equation} | (3.3) |
Similarly,
\begin{equation} \begin{split} &-\int_{\mathbb{R}^2}\tilde{\rho}\partial_tu_1\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{\rho}u_1\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x\\ &\leq \|\tilde{\rho}\|_{L^2}(\|\partial_tu_1\|_{L^4}+\|u_1\cdot\nabla u_1\|_{L^4})\|\tilde{u}\|_{L^4}\\ &\leq \|\tilde{\rho}\|_{L^2}\big(\|\partial_tu_1\|_{L^2}+\|\nabla\partial_tu_1\|_{L^2}+\|u_1\|_{L^\infty}\|\Delta u_1\|_{L^2}+\| u_1\|_{L^\infty}\|\nabla u_1\|_{L^2}\big)\\ &\quad\times(\|\tilde{u}\|_{L^2}+\|\nabla\tilde{u}\|_{L^2}) \\ &\leq \frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+\mathcal{F}_1(t)\|\tilde{\rho}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2, \end{split} \end{equation} | (3.4) |
where
\mathcal{F}_1(t) = \|\partial_tu_1\|_{L^2}^2+\|\nabla\partial_tu_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\Delta u_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\nabla u_1\|_{L^2}^2. |
Hölder's inequality implies
\begin{align} -\int_{\mathbb{R}^2}\rho_2\tilde{u}\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x\leq\|\nabla u_1\|_{L^\infty}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2. \end{align} | (3.5) |
By substituting above estimates (3.3)–(3.5) into (3.2), we have
\begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2+\|\nabla\tilde{u}\|_{L^2}^2\leq\frac{1}{4}\|\Delta\tilde{b}\|_{L^2}^2+\frac{1}{4}\|\nabla\tilde{b}\|_{L^2}^2+C\mathcal{F}_2(t)\|\tilde{u}\|_{L^2}^2+\mathcal{F}_1(t)\|\tilde{\rho}\|_{L^2}^2, \end{align} | (3.6) |
where
\mathcal{F}_2(t) = \|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2}+\|\nabla u_1\|_{L^\infty}+1. |
Step 2: Taking L^2 inner product to the third equation of (3.1) with \tilde{b}-\Delta\tilde{b} , we obtain
\begin{align} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\|(\nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2+\int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\tilde{b}\mathrm{d}x\\ & = \int_{\mathbb{R}^2}u_2\cdot\nabla \tilde{b}\cdot\Delta\tilde{b}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{u}\cdot\nabla b_1\cdot(\tilde{b}-\Delta\tilde{b})\mathrm{d}x+\int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\Delta\tilde{b}\mathrm{d}x. \end{align} | (3.7) |
We shall estimate each term on the right-hand side of (3.7). For the first term of (3.7), using Hölder's inequality, we have
\begin{align} \int_{\mathbb{R}^2}u_2\cdot\nabla \tilde{b}\cdot\Delta\tilde{b}\mathrm{d}x\leq\|u_2\|_{L^\infty}\|\nabla\tilde{b}\|_{L^2}\|\Delta\tilde{b}\|_{L^2}\leq\frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|u_2\|_{L^\infty}^2\|\nabla\tilde{b}\|_{L^2}^2. \end{align} | (3.8) |
Meanwhile, we have
\begin{align} \int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\tilde{b}\mathrm{d}x = \int_{\mathbb{R}^2}e''(\xi)\tilde{b}^2\mathrm{d}x > 0, \end{align} | (3.9) |
where \xi is a function between b_2 and b_1 .
Moreover,
\begin{align} &-\int_{\mathbb{R}^2}\tilde{u}\cdot\nabla b_1\cdot(\tilde{b}-\Delta\tilde{b})\mathrm{d}x\leq C\|\tilde{u}\|_{L^4}\|\nabla b_1\|_{L^4}(\|\tilde{b}\|_{L^2}+\|\Delta\tilde{b}\|_{L^2})\\ &\leq \frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}\|\nabla\tilde{u}\|_{L^2}\|\nabla b_1\|_{L^2}\|\Delta b_1\|_{L^2}\\ &\leq \frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2, \end{align} | (3.10) |
and
\begin{align} \int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\Delta\tilde{b}\mathrm{d}x& = \int_{\mathbb{R}^2}e''(\xi)\tilde{b}\Delta\tilde{b}\mathrm{d}x\\ &\le C_0 \|\tilde{b}\|_{L^2}\|\Delta\tilde{b}\|_{L^2}\le\frac{1}{4}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2. \end{align} | (3.11) |
By inserting (3.8)–(3.11) into (3.7), one yields
\begin{equation} \begin{split} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\frac{1}{2}\|(\nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2\\ &\leq C\|u_2\|_{L^\infty}^2\|\nabla\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2. \end{split} \end{equation} | (3.12) |
Step 3: We will derive the estimate of \|\tilde{\rho}\|_{L^2} as follows:
\begin{align} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\tilde{\rho}\|_{L^2}^2&\leq \|\tilde{u}\cdot\nabla\rho_1\|_{L^2}\|\tilde{\rho}\|_{L^2}\\ &\leq\|\tilde{u}\|_{L^4}\|\nabla\rho_1\|_{L^4}\|\tilde{\rho}\|_{L^2}\\ &\leq \|\nabla\tilde{u}\|_{L^2}^\frac{1}{2}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla\rho_1\|_{L^4}\|\tilde{\rho}\|_{L^2}\\ &\leq \frac{1}{4}\|\nabla\tilde{u}\|_{L^2}^2+C\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}(\|\tilde{\rho}\|_{L^2}^2+\|\tilde{u}\|_{L^2}^2). \end{align} | (3.13) |
Step 4: Summing up the above estimates, that is, (3.6), (3.12), and (3.13), we obtain
\begin{align} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\|(\nabla\tilde{u}, \nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2\\ &\leq C\mathcal{F}_5(t)\|\nabla\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+C\mathcal{F}_4(t)\|\tilde{u}\|_{L^2}^2+\mathcal{F}_3(t)\|\tilde{\rho}\|_{L^2}^2\\ &\leq C(1+\mathcal{F}_3(t)+\mathcal{F}_4(t)+\mathcal{F}_5(t))\|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^2}^2, \end{align} | (3.14) |
where
\begin{align*} &\mathcal{F}_3(t) = \|\partial_tu_1\|_{L^2}^2+\|\nabla\partial_tu_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\Delta u_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\nabla u_1\|_{L^2}^2+\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}, \\ &\mathcal{F}_4(t) = \|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2}+\|\nabla u_1\|_{L^\infty}+\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2\\ &\qquad\quad+\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}+1, \\ &\mathcal{F}_5(t) = \|u_2\|_{L^\infty}^2. \end{align*} |
Noticing the fact that \int_0^t \big(1+\mathcal{F}_3(\tau)+\mathcal{F}_4(\tau)+\mathcal{F}_5(\tau)\big)\mathrm{d}\tau\le Ct+C and that \|f\|_{L^\infty}^2\leq\|f\|_{L^2}\|\nabla^2f\|_{L^2} , we can obtain that there exists a small \epsilon_0 such that
\begin{equation*} \begin{split} \|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^\infty(L^2)} = 0, \end{split} \end{equation*} |
for t\in [0, \epsilon_0] . Therefore, we obtain \tilde{\rho}(t) = \tilde{u}(t) = \tilde{b}(t)\equiv 0 for any t\in [0, \epsilon_0] . The uniqueness of such strong solutions on the whole time interval [0, +\infty) then follows by a bootstrap argument.
Moreover, the continuity with respect to the initial data may also be obtained by the same argument in the proof of the uniqueness, which ends the proof of Theorem 1.1.
This paper focuses on two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion. We have established its global solution, and the uniqueness of the solution in specific situations is also proved in this paper.
Xi Wang and Xueli Ke: Conceptualization, methodology, validation, writing-original draft, writing-review & editing. All authors have read and approved the final version of the manuscript for publication.
The authors would like to thank the anonymous referees for their suggestions which make the paper more readable.
The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.
[1] |
M. Shinde, S. Gupta, Signal detection in the presence of atmospheric noise in tropics, IEEE Trans. Commun., 22 (1974), 1055–1063. https://doi.org/10.1109/TCOM.1974.1092336 doi: 10.1109/TCOM.1974.1092336
![]() |
[2] |
M. A. Chitre, J. R. Potter, S. H. Ong, Optimal and near optimal signal detection in snapping shrimp dominated ambient noise, IEEE J. Oceanic Eng., 31 (2006), 497–503. https://doi.org/10.1109/JOE.2006.875272 doi: 10.1109/JOE.2006.875272
![]() |
[3] | S. Banerjee, M. Agrawal, Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter cauchy-gaussian mixture model, 2013 Ocean Electronics (SYMPOL), 2013, 1–7. https://doi.org/10.1109/SYMPOL.2013.6701903 |
[4] | G. A. Tsihrintzis, P. Tsakalides, C. L. Nikias, Signal detection in severely heavy-tailed radar clutter, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995,865–869. https://doi.org/10.1109/ACSSC.1995.540823 |
[5] |
E. E. Kuruoglu, W. J. Fitzgerald, P. J. W. Rayner, Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution, IEEE Commun. Lett., 2 (1998), 282–284. https://doi.org/10.1109/4234.725224 doi: 10.1109/4234.725224
![]() |
[6] |
H. El Ghannudi, L. Clavier, N. Azzaoui, F. Septier, P. A. Rolland, \alpha-stable interference modeling and cauchy receiver for an ir-uwb ad hoc network, IEEE Trans. Commun., 58 (2010), 1748–1757. https://doi.org/10.1109/TCOMM.2010.06.090074 doi: 10.1109/TCOMM.2010.06.090074
![]() |
[7] |
M. Zimmermann, K. Dostert, Analysis and modeling of impulsive noise in broad-band powerline communications, IEEE Trans. Electromagn. Compat., 44 (2002), 249–258. https://doi.org/10.1109/15.990732 doi: 10.1109/15.990732
![]() |
[8] | P. M. Reeves, A non-gaussian turbulence simulation, Air Force Flight Dynamics Laboratory, 1969. |
[9] |
A. Achim, P. Tsakalides, A. Bezerianos, Sar image denoising via bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Trans. Geosci. Remote Sens., 41 (2003), 1773–1784. https://doi.org/10.1109/TGRS.2003.813488 doi: 10.1109/TGRS.2003.813488
![]() |
[10] |
Y. Peng, J. Chen, X. Xu, F. Pu, Sar images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145–2163. https://doi.org/10.3390/rs5052145 doi: 10.3390/rs5052145
![]() |
[11] | C. L. Nikias, M. Shao, Signal processing with alpha-stable distri?butions and applications, Hoboken, NJ, USA: Wiley, 1995. |
[12] | S. A. Kassam, Signal detection in non-gaussian noise, New York, USA: Springer, 2012. |
[13] |
S. R. Krishna Vadali, P. Ray, S. Mula, P. K. Varshney, Linear detection of a weak signal in additive cauchy noise, IEEE Trans. Commun., 65 (2017), 1061–1076. https://doi.org/10.1109/TCOMM.2016.2647599 doi: 10.1109/TCOMM.2016.2647599
![]() |
[14] | J. Ilow, D. Hatzinakos, Detection in alpha-stable noise environments based on prediction, Int. J. Adapt. Control Signal Proc., 11 (1997), 555–568. |
[15] |
D. Herranz, E. E. Kuruoglu, L. Toffolatti, An \alpha-stable approach to the study of the p(d) distribution of unresolved point sources in cmb sky maps, Astron. Astrophys., 424 (2004), 1081–1096. https://doi.org/10.1051/0004-6361:20035858 doi: 10.1051/0004-6361:20035858
![]() |
[16] | W. Feller, An introduction to probability theory and its applications, Vol. 2, 2 Eds., New York: John Wiley & Sons Inc., 1991. |
[17] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, Vol. 1, 2 Eds., New York: Wiley, 1994. |
[18] |
L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithm, Phys. D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
![]() |
[19] |
M. A. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20 (2004), 99–120. https://doi.org/10.1023/B:JMIV.0000011326.88682.e5 doi: 10.1023/B:JMIV.0000011326.88682.e5
![]() |
[20] |
R. H. Chan, Y. Dong, M. Hintermuller, An efficient two-phase l1-tv method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), 1731–1739. https://doi.org/10.1109/TIP.2010.2045148 doi: 10.1109/TIP.2010.2045148
![]() |
[21] |
J. F. Cai, R. Chan, M. Nikolova, Fast two-phase image deblurring under impulse noise, J. Math. Imaging Vis., 36 (2010), 46–53. https://doi.org/10.1007/s10851-009-0169-7 doi: 10.1007/s10851-009-0169-7
![]() |
[22] |
G. Aubert, J. F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925–946. https://doi.org/10.1137/060671814 doi: 10.1137/060671814
![]() |
[23] |
J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294–321. https://doi.org/10.1137/070689954 doi: 10.1137/070689954
![]() |
[24] |
Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598–1625. https://doi.org/10.1137/120870621 doi: 10.1137/120870621
![]() |
[25] |
J. Lu, L. Shen, C. Xu, Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518–539. https://doi.org/10.1016/j.acha.2015.10.003 doi: 10.1016/j.acha.2015.10.003
![]() |
[26] |
T. Le, R. Chartrand, T. Asaki, A variational approach to reconstructing images corrupted by poisson noise, J. Math. Imaging Vis., 27 (2007), 257–263. https://doi.org/10.1007/s10851-007-0652-y doi: 10.1007/s10851-007-0652-y
![]() |
[27] | P. Getreuer, M. Tong, L. A. Vese, A variational model for the restoration of mr images corrupted by blur and rician noise, In: Advances in visual computing, Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-24028-7_63 |
[28] |
L. Chen, T. Zeng, A convex variational model for restoring blurred images with large rician noise, J. Math. Imaging Vis., 53 (2015), 92–111. https://doi.org/10.1007/s10851-014-0551-y doi: 10.1007/s10851-014-0551-y
![]() |
[29] |
F. Sciacchitano, Y. Dong, T. Zeng, Variational approach for restoring blurred images with cauchy noise, SIAM J. Imag. Sci., 8 (2015), 1894–1922. https://doi.org/10.1137/140997816 doi: 10.1137/140997816
![]() |
[30] |
J. J. Mei, Y. Dong, T. Z. Hunag, W. Yin, Cauchy noise removal by nonconvex admm with convergence guarantees, J. Sci. Comput., 74 (2018), 743–766. https://doi.org/10.1007/s10915-017-0460-5 doi: 10.1007/s10915-017-0460-5
![]() |
[31] | Z. Yang, Z. Yang, G. Gui, A convex constraint variational method for restoring blurred images in the presence of alpha-stable noises, Sensors, 18 (2018). https://doi.org/10.3390/s18041175 |
[32] |
Y. Chang, S. R. Kadaba, P. C. Doerschuk, S. B. Gelfand, Image restoration using recursive markov random field models driven by cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65–66. https://doi.org/10.1109/97.905941 doi: 10.1109/97.905941
![]() |
[33] |
A. Achim, E. Kuruoǧlu, Image denoising using bivariate \alpha-stable distributions in the complex wavelet domain, IEEE Signal Process. Lett., 12 (2005), 17–20. https://doi.org/10.1109/LSP.2004.839692 doi: 10.1109/LSP.2004.839692
![]() |
[34] | A. Loza, D. Bull, N. Canagarajah, A. Achim, Non-gaussian model-based fusion of noisy images in the wavelet domain, Comput. Vis. Image Und., 114 (2010), 54–65. |
[35] |
Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78 (2019), 29–63. https://doi.org/10.1007/s10915-018-0757-z doi: 10.1007/s10915-018-0757-z
![]() |
[36] |
J. Yang, Y. Zhang, W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Computing, 31 (2009), 2842–2865. https://doi.org/10.1137/080732894 doi: 10.1137/080732894
![]() |
[37] |
M. Ding, T. Z. Huang, S. Wang, J. J. Mei, X. L. Zhao, Total variation with overlapping group sparsity for deblurring images under cauchy noise, Appl. Math. Comput., 341 (2019), 128–147. https://doi.org/10.1016/j.amc.2018.08.014 doi: 10.1016/j.amc.2018.08.014
![]() |
[38] |
J. H. Yang, X. L. Zhao, J. J. Mei, S. Wang, T. H. Ma, T. Z. Huang, Total variation and high-order total variation adaptive model for restoring blurred images with cauchy noise, Comput. Math. Appl., 77 (2019), 1255–1272. https://doi.org/10.1016/j.camwa.2018.11.003 doi: 10.1016/j.camwa.2018.11.003
![]() |
[39] |
G. Kim, J. Cho, M. Kang, Cauchy noise removal by weighted nuclear norm minimization, J. Sci. Comput., 83 (2020), 1–21. https://doi.org/10.1007/s10915-020-01203-2 doi: 10.1007/s10915-020-01203-2
![]() |
[40] |
S. Lee, M. Kang, Group sparse representation for restoring blurred images with cauchy noise, J. Sci. Comput., 83 (2020), 1–27. https://doi.org/10.1007/s10915-020-01227-8 doi: 10.1007/s10915-020-01227-8
![]() |
[41] |
M. Jung, M. Kang, Image restoration under cauchy noise with sparse representation prior and total generalized variation, J. Comput. Math., 39 (2021), 81–107. https://doi.org/10.4208/jcm.1907-m2018-0234 doi: 10.4208/jcm.1907-m2018-0234
![]() |
[42] |
L. Bai, A new approach for cauchy noise removal, AIMS Math., 6 (2021), 10296–10312. https://doi.org/10.3934/math.2021596 doi: 10.3934/math.2021596
![]() |
[43] |
X. Ai, G. Ni, T. Zeng, Nonconvex regularization for blurred images with cauchy noise, Inverse Probl. Imag., 16 (2022), 625–646. https://doi.org/10.3934/ipi.2021065 doi: 10.3934/ipi.2021065
![]() |
[44] |
J. F. Cai, R. H. Chan, M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus gaussian noise, Inverse Probl. Imag., 2 (2008), 187–204. https://doi.org/10.3934/ipi.2008.2.187 doi: 10.3934/ipi.2008.2.187
![]() |
[45] |
Y. Xiao, T. Y. Zeng, J. Yu, M. K. Ng, Restoration of images corrupted by mixed gaussian-impulse noise via l_{1}-l_{0} minimization, Pattern Recogn., 44 (2010), 1708–1720. https://doi.org/10.1016/j.patcog.2011.02.002 doi: 10.1016/j.patcog.2011.02.002
![]() |
[46] | R. Rojas P. Rodríguez, B. Wohlberg, Mixed gaussian-impulse noise image restoration via total variation, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, 1077–1080. https://doi.org/10.1109/ICASSP.2012.6288073 |
[47] |
B. Dong, H. Ji, J. Li, Z. W. Shen, Y. H. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2011), 268–279. https://doi.org/10.1016/j.acha.2011.06.001 doi: 10.1016/j.acha.2011.06.001
![]() |
[48] |
J. Liu, X. C. Tai, H. Y. Huang, Z. D. Huan, A weighted dictionary learning models for denoising images corrupted by mixed noise, IEEE Trans. Image Process., 22 (2013), 1108–1120. https://doi.org/10.1109/TIP.2012.2227766 doi: 10.1109/TIP.2012.2227766
![]() |
[49] |
M. Yan, Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting, SIAM J. Imaging Sci., 6 (2013), 1227–1245. https://doi.org/10.1137/12087178X doi: 10.1137/12087178X
![]() |
[50] |
M. Hintermüller, A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L^1/L^2 data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134–2173. https://doi.org/10.1137/120894130 doi: 10.1137/120894130
![]() |
[51] | A. Langer, Automated parameter selection in the L^1-L^2-TV model for removing Gaussian plus impulse noise, Inverse Probl., 33 (2017). https://doi.org/10.1088/1361-6420/33/7/074002 |
[52] |
A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, Practical poissonian-gaussian noise modeling and fitting for single-image raw-data, IEEE Trans. Image Process., 17 (2008), 1737–1754. https://doi.org/10.1109/TIP.2008.2001399 doi: 10.1109/TIP.2008.2001399
![]() |
[53] | A. Jezierska, C. Chaux, J. Pesquet, H. Talbot, An EM approach for Poisson-Gaussian noise modeling, 2011 19th European Signal Processing Conference, 2011, 2244–2248. |
[54] | F. Murtagh, J. L. Starck, A. Bijaoui, Image restoration with noise suppression using a multiresolution support, Astron. Astrophys. Suppl. Ser., 112 (1995), 179–189. |
[55] | B. Begovic, V. Stankovic, L. Stankovic, Contrast enhancement and denoising of poisson and gaussian mixture noise for solar images, 2011 18th IEEE International Conference on Image Processing, 2011,185–188. https://doi.org/10.1109/ICIP.2011.6115829 |
[56] |
F. Luisier, T. Blu, M. Unser, Image denoising in mixed Poisson-Gaussian noise, IEEE Trans. Image Process., 20 (2011), 696–708. https://doi.org/10.1109/TIP.2010.2073477 doi: 10.1109/TIP.2010.2073477
![]() |
[57] |
M. Makitalo, A. Foi, Optimal inversion of the generalized anscombe transformation for Poisson-Gaussian noise, IEEE Trans. Image Process., 22 (2013), 91–103. https://doi.org/10.1109/TIP.2012.2202675 doi: 10.1109/TIP.2012.2202675
![]() |
[58] | Y. Marnissi, Y. Zheng, J. Pesquet, Fast variational bayesian signal recovery in the presence of Poisson-Gaussian noise, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, 3964–3968. https://doi.org/10.1109/ICASSP.2016.7472421 |
[59] |
F. J. Anscombe, The transformation of poisson, binomial and negative-binomial data, Biometrika, 35 (1948), 246–254. https://doi.org/10.1093/biomet/35.3-4.246 doi: 10.1093/biomet/35.3-4.246
![]() |
[60] | F. Benvenuto, A. La Camera, C. Theys, A. Ferrari, H. Lantéri, M. Bertero, The study of an iterative method for the reconstruction of images corrupted by poisson and gaussian noise, Inverse Probl., 24 (2008), 035016. |
[61] |
E. Chouzenoux, A. Jezierska, J. C. Pesquet, H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 8 (2015), 17–30. https://doi.org/10.1137/15M1014395 doi: 10.1137/15M1014395
![]() |
[62] |
J. C. De los Reyes, C. B. Schönlieb, Image denoising: Learning the noise model via nonsmooth pde-constrained optimization, Inverse Probl. Imaging, 7 (2013), 1183–1214. https://doi.org/10.3934/ipi.2013.7.1183 doi: 10.3934/ipi.2013.7.1183
![]() |
[63] | L. Calatroni, C. Chung, J. C. De Los Reyes, C. B. Schönlieb, T. Valkonen, Bilevel approaches for learning of variational imaging models, In: Variational methods: In imaging and geometric control, Berlin, Boston: De Gruyter, 2017. https://doi.org/10.1515/9783110430394-008 |
[64] |
D. N. H. Thanh, S. D. Dvoenko, A method of total variation to remove the mixed poisson-gaussian noise, Pattern Recognit. Image Anal., 26 (2016), 285–293. https://doi.org/10.1134/S1054661816020231 doi: 10.1134/S1054661816020231
![]() |
[65] |
L. Calatroni, J. C. De Los Reyes, C. B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196–1233. https://doi.org/10.1137/16M1101684 doi: 10.1137/16M1101684
![]() |
[66] | L. Calatroni, K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed gaussian and salt-and-pepper noise removal, Inverse Probl., 35 (2019), 114001. |
[67] |
J. Zhang, Y. Duan, Y. Lu, M. K. Ng, H. Chang, Bilinear constraint based admm for mixed poisson-gaussian noise removal, SIAM J. Imaging Sci., 15 (2021), 339–366. https://doi.org/10.3934/ipi.2020071 doi: 10.3934/ipi.2020071
![]() |
[68] | Y. Chen, E. E. Kuruoglu, H. C. So, L. T. Huang, W. Q. Wang, Density parameter estimation for additive cauchy-gaussian mixture, 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014,197–200. https://doi.org/10.1109/SSP.2014.6884609 |
[69] |
Y. Chen, E. E. Kuruoglu, H. C. So, Optimum linear regression in additive cauchy-gaussian noise, Signal Process., 106 (2015), 312–318. https://doi.org/10.1016/j.sigpro.2014.07.028 doi: 10.1016/j.sigpro.2014.07.028
![]() |
[70] |
A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1 doi: 10.1007/s10851-010-0251-1
![]() |
[71] |
F. Li, C. Shen, C. Shen J. Fan, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18 (2007), 322–330. https://doi.org/10.1016/j.jvcir.2007.04.005 doi: 10.1016/j.jvcir.2007.04.005
![]() |
[72] | K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521 |
[73] |
G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, SIAM J. Multiscale Model. Simul., 7 (2009), 1005–1028. https://doi.org/10.1137/070698592 doi: 10.1137/070698592
![]() |
[74] |
M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311–4322. https://doi.org/10.1109/TSP.2006.881199 doi: 10.1109/TSP.2006.881199
![]() |
[75] |
M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736–3745. https://doi.org/10.1109/TIP.2006.881969 doi: 10.1109/TIP.2006.881969
![]() |
[76] |
Y. R. Li, L. Shen, D. Q. Dai, B. W. Suter, Framelet algorithms for de-blurring images corrupted by impulse plus gaussian noise, IEEE Trans. Image Process., 20 (2011), 1822–1837. https://doi.org/10.1109/TIP.2010.2103950 doi: 10.1109/TIP.2010.2103950
![]() |
[77] |
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e doi: 10.1023/B:JMIV.0000011325.36760.1e
![]() |
[78] |
T. Goldstein, S. Osher, The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323–343. https://doi.org/10.1137/080725891 doi: 10.1137/080725891
![]() |
[79] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1–122. http://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
![]() |
[80] |
C. Chen, M. K. Ng, X. L. Zhao, Alternating direction method of multipliers for nonlinear image restoration problems, IEEE Trans. Image Process., 24 (2015), 33–43. http://doi.org/10.1109/TIP.2014.2369953 doi: 10.1109/TIP.2014.2369953
![]() |
[81] |
M. K. Ng, R. H. Chan, W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851–866. https://doi.org/10.1137/S1064827598341384 doi: 10.1137/S1064827598341384
![]() |
[82] | N. Jacobson, Basic algebra, Freeman, New York, 1974. |
[83] |
B. R. Frieden, A new restoring algorithm for the preferential enhancement of edge gradients, J. Opt. Soc. Am., 66 (1976), 280–283. https://doi.org/10.1364/JOSA.66.000280 doi: 10.1364/JOSA.66.000280
![]() |
[84] |
J. P. Nolan, Numerical calculation of stable densities and distribution functions, Commun. Stat. Stoch. Models, 13 (1997), 759–774. https://doi.org/10.1080/15326349708807450 doi: 10.1080/15326349708807450
![]() |
[85] | N. Balakrishnan, V. B. Nevzorov, A primer on statistical distributions, New York: John Wiley & Sons, 2003. https://doi.org/10.1002/0471722227 |
[86] |
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
![]() |