Research article

A variational image denoising model under mixed Cauchy and Gaussian noise

  • Received: 23 June 2022 Revised: 11 August 2022 Accepted: 22 August 2022 Published: 06 September 2022
  • MSC : 68U10, 65K10, 94A08, 49J40

  • In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.

    Citation: Miyoun Jung. A variational image denoising model under mixed Cauchy and Gaussian noise[J]. AIMS Mathematics, 2022, 7(11): 19696-19726. doi: 10.3934/math.20221080

    Related Papers:

  • In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.



    加载中


    [1] M. Shinde, S. Gupta, Signal detection in the presence of atmospheric noise in tropics, IEEE Trans. Commun., 22 (1974), 1055–1063. https://doi.org/10.1109/TCOM.1974.1092336 doi: 10.1109/TCOM.1974.1092336
    [2] M. A. Chitre, J. R. Potter, S. H. Ong, Optimal and near optimal signal detection in snapping shrimp dominated ambient noise, IEEE J. Oceanic Eng., 31 (2006), 497–503. https://doi.org/10.1109/JOE.2006.875272 doi: 10.1109/JOE.2006.875272
    [3] S. Banerjee, M. Agrawal, Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter cauchy-gaussian mixture model, 2013 Ocean Electronics (SYMPOL), 2013, 1–7. https://doi.org/10.1109/SYMPOL.2013.6701903
    [4] G. A. Tsihrintzis, P. Tsakalides, C. L. Nikias, Signal detection in severely heavy-tailed radar clutter, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995,865–869. https://doi.org/10.1109/ACSSC.1995.540823
    [5] E. E. Kuruoglu, W. J. Fitzgerald, P. J. W. Rayner, Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution, IEEE Commun. Lett., 2 (1998), 282–284. https://doi.org/10.1109/4234.725224 doi: 10.1109/4234.725224
    [6] H. El Ghannudi, L. Clavier, N. Azzaoui, F. Septier, P. A. Rolland, $\alpha$-stable interference modeling and cauchy receiver for an ir-uwb ad hoc network, IEEE Trans. Commun., 58 (2010), 1748–1757. https://doi.org/10.1109/TCOMM.2010.06.090074 doi: 10.1109/TCOMM.2010.06.090074
    [7] M. Zimmermann, K. Dostert, Analysis and modeling of impulsive noise in broad-band powerline communications, IEEE Trans. Electromagn. Compat., 44 (2002), 249–258. https://doi.org/10.1109/15.990732 doi: 10.1109/15.990732
    [8] P. M. Reeves, A non-gaussian turbulence simulation, Air Force Flight Dynamics Laboratory, 1969.
    [9] A. Achim, P. Tsakalides, A. Bezerianos, Sar image denoising via bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Trans. Geosci. Remote Sens., 41 (2003), 1773–1784. https://doi.org/10.1109/TGRS.2003.813488 doi: 10.1109/TGRS.2003.813488
    [10] Y. Peng, J. Chen, X. Xu, F. Pu, Sar images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145–2163. https://doi.org/10.3390/rs5052145 doi: 10.3390/rs5052145
    [11] C. L. Nikias, M. Shao, Signal processing with alpha-stable distri?butions and applications, Hoboken, NJ, USA: Wiley, 1995.
    [12] S. A. Kassam, Signal detection in non-gaussian noise, New York, USA: Springer, 2012.
    [13] S. R. Krishna Vadali, P. Ray, S. Mula, P. K. Varshney, Linear detection of a weak signal in additive cauchy noise, IEEE Trans. Commun., 65 (2017), 1061–1076. https://doi.org/10.1109/TCOMM.2016.2647599 doi: 10.1109/TCOMM.2016.2647599
    [14] J. Ilow, D. Hatzinakos, Detection in alpha-stable noise environments based on prediction, Int. J. Adapt. Control Signal Proc., 11 (1997), 555–568.
    [15] D. Herranz, E. E. Kuruoglu, L. Toffolatti, An $\alpha$-stable approach to the study of the p(d) distribution of unresolved point sources in cmb sky maps, Astron. Astrophys., 424 (2004), 1081–1096. https://doi.org/10.1051/0004-6361:20035858 doi: 10.1051/0004-6361:20035858
    [16] W. Feller, An introduction to probability theory and its applications, Vol. 2, 2 Eds., New York: John Wiley & Sons Inc., 1991.
    [17] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, Vol. 1, 2 Eds., New York: Wiley, 1994.
    [18] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithm, Phys. D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
    [19] M. A. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20 (2004), 99–120. https://doi.org/10.1023/B:JMIV.0000011326.88682.e5 doi: 10.1023/B:JMIV.0000011326.88682.e5
    [20] R. H. Chan, Y. Dong, M. Hintermuller, An efficient two-phase l1-tv method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), 1731–1739. https://doi.org/10.1109/TIP.2010.2045148 doi: 10.1109/TIP.2010.2045148
    [21] J. F. Cai, R. Chan, M. Nikolova, Fast two-phase image deblurring under impulse noise, J. Math. Imaging Vis., 36 (2010), 46–53. https://doi.org/10.1007/s10851-009-0169-7 doi: 10.1007/s10851-009-0169-7
    [22] G. Aubert, J. F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925–946. https://doi.org/10.1137/060671814 doi: 10.1137/060671814
    [23] J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294–321. https://doi.org/10.1137/070689954 doi: 10.1137/070689954
    [24] Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598–1625. https://doi.org/10.1137/120870621 doi: 10.1137/120870621
    [25] J. Lu, L. Shen, C. Xu, Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518–539. https://doi.org/10.1016/j.acha.2015.10.003 doi: 10.1016/j.acha.2015.10.003
    [26] T. Le, R. Chartrand, T. Asaki, A variational approach to reconstructing images corrupted by poisson noise, J. Math. Imaging Vis., 27 (2007), 257–263. https://doi.org/10.1007/s10851-007-0652-y doi: 10.1007/s10851-007-0652-y
    [27] P. Getreuer, M. Tong, L. A. Vese, A variational model for the restoration of mr images corrupted by blur and rician noise, In: Advances in visual computing, Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-24028-7_63
    [28] L. Chen, T. Zeng, A convex variational model for restoring blurred images with large rician noise, J. Math. Imaging Vis., 53 (2015), 92–111. https://doi.org/10.1007/s10851-014-0551-y doi: 10.1007/s10851-014-0551-y
    [29] F. Sciacchitano, Y. Dong, T. Zeng, Variational approach for restoring blurred images with cauchy noise, SIAM J. Imag. Sci., 8 (2015), 1894–1922. https://doi.org/10.1137/140997816 doi: 10.1137/140997816
    [30] J. J. Mei, Y. Dong, T. Z. Hunag, W. Yin, Cauchy noise removal by nonconvex admm with convergence guarantees, J. Sci. Comput., 74 (2018), 743–766. https://doi.org/10.1007/s10915-017-0460-5 doi: 10.1007/s10915-017-0460-5
    [31] Z. Yang, Z. Yang, G. Gui, A convex constraint variational method for restoring blurred images in the presence of alpha-stable noises, Sensors, 18 (2018). https://doi.org/10.3390/s18041175
    [32] Y. Chang, S. R. Kadaba, P. C. Doerschuk, S. B. Gelfand, Image restoration using recursive markov random field models driven by cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65–66. https://doi.org/10.1109/97.905941 doi: 10.1109/97.905941
    [33] A. Achim, E. Kuruoǧlu, Image denoising using bivariate $\alpha$-stable distributions in the complex wavelet domain, IEEE Signal Process. Lett., 12 (2005), 17–20. https://doi.org/10.1109/LSP.2004.839692 doi: 10.1109/LSP.2004.839692
    [34] A. Loza, D. Bull, N. Canagarajah, A. Achim, Non-gaussian model-based fusion of noisy images in the wavelet domain, Comput. Vis. Image Und., 114 (2010), 54–65.
    [35] Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78 (2019), 29–63. https://doi.org/10.1007/s10915-018-0757-z doi: 10.1007/s10915-018-0757-z
    [36] J. Yang, Y. Zhang, W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Computing, 31 (2009), 2842–2865. https://doi.org/10.1137/080732894 doi: 10.1137/080732894
    [37] M. Ding, T. Z. Huang, S. Wang, J. J. Mei, X. L. Zhao, Total variation with overlapping group sparsity for deblurring images under cauchy noise, Appl. Math. Comput., 341 (2019), 128–147. https://doi.org/10.1016/j.amc.2018.08.014 doi: 10.1016/j.amc.2018.08.014
    [38] J. H. Yang, X. L. Zhao, J. J. Mei, S. Wang, T. H. Ma, T. Z. Huang, Total variation and high-order total variation adaptive model for restoring blurred images with cauchy noise, Comput. Math. Appl., 77 (2019), 1255–1272. https://doi.org/10.1016/j.camwa.2018.11.003 doi: 10.1016/j.camwa.2018.11.003
    [39] G. Kim, J. Cho, M. Kang, Cauchy noise removal by weighted nuclear norm minimization, J. Sci. Comput., 83 (2020), 1–21. https://doi.org/10.1007/s10915-020-01203-2 doi: 10.1007/s10915-020-01203-2
    [40] S. Lee, M. Kang, Group sparse representation for restoring blurred images with cauchy noise, J. Sci. Comput., 83 (2020), 1–27. https://doi.org/10.1007/s10915-020-01227-8 doi: 10.1007/s10915-020-01227-8
    [41] M. Jung, M. Kang, Image restoration under cauchy noise with sparse representation prior and total generalized variation, J. Comput. Math., 39 (2021), 81–107. https://doi.org/10.4208/jcm.1907-m2018-0234 doi: 10.4208/jcm.1907-m2018-0234
    [42] L. Bai, A new approach for cauchy noise removal, AIMS Math., 6 (2021), 10296–10312. https://doi.org/10.3934/math.2021596 doi: 10.3934/math.2021596
    [43] X. Ai, G. Ni, T. Zeng, Nonconvex regularization for blurred images with cauchy noise, Inverse Probl. Imag., 16 (2022), 625–646. https://doi.org/10.3934/ipi.2021065 doi: 10.3934/ipi.2021065
    [44] J. F. Cai, R. H. Chan, M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus gaussian noise, Inverse Probl. Imag., 2 (2008), 187–204. https://doi.org/10.3934/ipi.2008.2.187 doi: 10.3934/ipi.2008.2.187
    [45] Y. Xiao, T. Y. Zeng, J. Yu, M. K. Ng, Restoration of images corrupted by mixed gaussian-impulse noise via $l_{1}$-$l_{0}$ minimization, Pattern Recogn., 44 (2010), 1708–1720. https://doi.org/10.1016/j.patcog.2011.02.002 doi: 10.1016/j.patcog.2011.02.002
    [46] R. Rojas P. Rodríguez, B. Wohlberg, Mixed gaussian-impulse noise image restoration via total variation, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, 1077–1080. https://doi.org/10.1109/ICASSP.2012.6288073
    [47] B. Dong, H. Ji, J. Li, Z. W. Shen, Y. H. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2011), 268–279. https://doi.org/10.1016/j.acha.2011.06.001 doi: 10.1016/j.acha.2011.06.001
    [48] J. Liu, X. C. Tai, H. Y. Huang, Z. D. Huan, A weighted dictionary learning models for denoising images corrupted by mixed noise, IEEE Trans. Image Process., 22 (2013), 1108–1120. https://doi.org/10.1109/TIP.2012.2227766 doi: 10.1109/TIP.2012.2227766
    [49] M. Yan, Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting, SIAM J. Imaging Sci., 6 (2013), 1227–1245. https://doi.org/10.1137/12087178X doi: 10.1137/12087178X
    [50] M. Hintermüller, A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed $L^1$/$L^2$ data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134–2173. https://doi.org/10.1137/120894130 doi: 10.1137/120894130
    [51] A. Langer, Automated parameter selection in the $L^1$-$L^2$-TV model for removing Gaussian plus impulse noise, Inverse Probl., 33 (2017). https://doi.org/10.1088/1361-6420/33/7/074002
    [52] A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, Practical poissonian-gaussian noise modeling and fitting for single-image raw-data, IEEE Trans. Image Process., 17 (2008), 1737–1754. https://doi.org/10.1109/TIP.2008.2001399 doi: 10.1109/TIP.2008.2001399
    [53] A. Jezierska, C. Chaux, J. Pesquet, H. Talbot, An EM approach for Poisson-Gaussian noise modeling, 2011 19th European Signal Processing Conference, 2011, 2244–2248.
    [54] F. Murtagh, J. L. Starck, A. Bijaoui, Image restoration with noise suppression using a multiresolution support, Astron. Astrophys. Suppl. Ser., 112 (1995), 179–189.
    [55] B. Begovic, V. Stankovic, L. Stankovic, Contrast enhancement and denoising of poisson and gaussian mixture noise for solar images, 2011 18th IEEE International Conference on Image Processing, 2011,185–188. https://doi.org/10.1109/ICIP.2011.6115829
    [56] F. Luisier, T. Blu, M. Unser, Image denoising in mixed Poisson-Gaussian noise, IEEE Trans. Image Process., 20 (2011), 696–708. https://doi.org/10.1109/TIP.2010.2073477 doi: 10.1109/TIP.2010.2073477
    [57] M. Makitalo, A. Foi, Optimal inversion of the generalized anscombe transformation for Poisson-Gaussian noise, IEEE Trans. Image Process., 22 (2013), 91–103. https://doi.org/10.1109/TIP.2012.2202675 doi: 10.1109/TIP.2012.2202675
    [58] Y. Marnissi, Y. Zheng, J. Pesquet, Fast variational bayesian signal recovery in the presence of Poisson-Gaussian noise, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, 3964–3968. https://doi.org/10.1109/ICASSP.2016.7472421
    [59] F. J. Anscombe, The transformation of poisson, binomial and negative-binomial data, Biometrika, 35 (1948), 246–254. https://doi.org/10.1093/biomet/35.3-4.246 doi: 10.1093/biomet/35.3-4.246
    [60] F. Benvenuto, A. La Camera, C. Theys, A. Ferrari, H. Lantéri, M. Bertero, The study of an iterative method for the reconstruction of images corrupted by poisson and gaussian noise, Inverse Probl., 24 (2008), 035016.
    [61] E. Chouzenoux, A. Jezierska, J. C. Pesquet, H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 8 (2015), 17–30. https://doi.org/10.1137/15M1014395 doi: 10.1137/15M1014395
    [62] J. C. De los Reyes, C. B. Schönlieb, Image denoising: Learning the noise model via nonsmooth pde-constrained optimization, Inverse Probl. Imaging, 7 (2013), 1183–1214. https://doi.org/10.3934/ipi.2013.7.1183 doi: 10.3934/ipi.2013.7.1183
    [63] L. Calatroni, C. Chung, J. C. De Los Reyes, C. B. Schönlieb, T. Valkonen, Bilevel approaches for learning of variational imaging models, In: Variational methods: In imaging and geometric control, Berlin, Boston: De Gruyter, 2017. https://doi.org/10.1515/9783110430394-008
    [64] D. N. H. Thanh, S. D. Dvoenko, A method of total variation to remove the mixed poisson-gaussian noise, Pattern Recognit. Image Anal., 26 (2016), 285–293. https://doi.org/10.1134/S1054661816020231 doi: 10.1134/S1054661816020231
    [65] L. Calatroni, J. C. De Los Reyes, C. B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196–1233. https://doi.org/10.1137/16M1101684 doi: 10.1137/16M1101684
    [66] L. Calatroni, K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed gaussian and salt-and-pepper noise removal, Inverse Probl., 35 (2019), 114001.
    [67] J. Zhang, Y. Duan, Y. Lu, M. K. Ng, H. Chang, Bilinear constraint based admm for mixed poisson-gaussian noise removal, SIAM J. Imaging Sci., 15 (2021), 339–366. https://doi.org/10.3934/ipi.2020071 doi: 10.3934/ipi.2020071
    [68] Y. Chen, E. E. Kuruoglu, H. C. So, L. T. Huang, W. Q. Wang, Density parameter estimation for additive cauchy-gaussian mixture, 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014,197–200. https://doi.org/10.1109/SSP.2014.6884609
    [69] Y. Chen, E. E. Kuruoglu, H. C. So, Optimum linear regression in additive cauchy-gaussian noise, Signal Process., 106 (2015), 312–318. https://doi.org/10.1016/j.sigpro.2014.07.028 doi: 10.1016/j.sigpro.2014.07.028
    [70] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1 doi: 10.1007/s10851-010-0251-1
    [71] F. Li, C. Shen, C. Shen J. Fan, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18 (2007), 322–330. https://doi.org/10.1016/j.jvcir.2007.04.005 doi: 10.1016/j.jvcir.2007.04.005
    [72] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521
    [73] G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, SIAM J. Multiscale Model. Simul., 7 (2009), 1005–1028. https://doi.org/10.1137/070698592 doi: 10.1137/070698592
    [74] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311–4322. https://doi.org/10.1109/TSP.2006.881199 doi: 10.1109/TSP.2006.881199
    [75] M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736–3745. https://doi.org/10.1109/TIP.2006.881969 doi: 10.1109/TIP.2006.881969
    [76] Y. R. Li, L. Shen, D. Q. Dai, B. W. Suter, Framelet algorithms for de-blurring images corrupted by impulse plus gaussian noise, IEEE Trans. Image Process., 20 (2011), 1822–1837. https://doi.org/10.1109/TIP.2010.2103950 doi: 10.1109/TIP.2010.2103950
    [77] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e doi: 10.1023/B:JMIV.0000011325.36760.1e
    [78] T. Goldstein, S. Osher, The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323–343. https://doi.org/10.1137/080725891 doi: 10.1137/080725891
    [79] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1–122. http://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
    [80] C. Chen, M. K. Ng, X. L. Zhao, Alternating direction method of multipliers for nonlinear image restoration problems, IEEE Trans. Image Process., 24 (2015), 33–43. http://doi.org/10.1109/TIP.2014.2369953 doi: 10.1109/TIP.2014.2369953
    [81] M. K. Ng, R. H. Chan, W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851–866. https://doi.org/10.1137/S1064827598341384 doi: 10.1137/S1064827598341384
    [82] N. Jacobson, Basic algebra, Freeman, New York, 1974.
    [83] B. R. Frieden, A new restoring algorithm for the preferential enhancement of edge gradients, J. Opt. Soc. Am., 66 (1976), 280–283. https://doi.org/10.1364/JOSA.66.000280 doi: 10.1364/JOSA.66.000280
    [84] J. P. Nolan, Numerical calculation of stable densities and distribution functions, Commun. Stat. Stoch. Models, 13 (1997), 759–774. https://doi.org/10.1080/15326349708807450 doi: 10.1080/15326349708807450
    [85] N. Balakrishnan, V. B. Nevzorov, A primer on statistical distributions, New York: John Wiley & Sons, 2003. https://doi.org/10.1002/0471722227
    [86] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1821) PDF downloads(167) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog