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Abstract: In this article, we propose a novel variational model for restoring images in the presence
of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that
features the mixed noise as an infimal convolution of two noise distributions and total variation
regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian
noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation
regularization enables adequate denoising in homogeneous regions while conserving edges. Despite
the nonconvexity of the model, the existence of a solution is proven. By employing an alternating
minimization approach and the alternating direction method of multipliers, we present an iterative
algorithm for solving the proposed model. Experimental results validate the effectiveness of the
proposed model compared to other existing models according to both visual quality and some image
quality measurements.
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1. Introduction

Different image acquisition and transmission factors cause the observed images corrupted by a
mixture of noise statistics. Image denoising aims to retrieve a clean image from the observed noisy
image, which is an essential problem in image processing. We here focus on the image denoising
problem in the presence of mixed Cauchy and additive white Gaussian noise. In real circumstances,
there are noises with a strong impulsive nature which the Gaussian model fails to describe, such as
atmospheric noise caused by lighting, picture noise, radar noise and so on. The Cauchy noise is a type
of alpha-stable noise that is impulsive in nature and has a heavy tail. It can occur in low-frequency
atmospheric signals [1], underwater acoustic signals [2, 3], radar clutter [4, 5], multiple access
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interference in wireless communication systems [6], powerline communication channels [7], air
turbulence [8], biomedical images, and synthetic aperture radar images [9, 10]. Thus, the removal of
Cauchy noise has been of great importance in many applications such as sonar, radar, image
processing and communications [11–13]. On the other hand, the additive white Gaussian noise
frequently appears due to the temperature of the sensor and the level of illumination in the
environment that corrupts every pixels. These noises can appear simultaneously in practice. Indeed,
the mixed Cauchy and Gaussian noise can occur in real world applications such as communication
systems, where in the receiver one has the sum of the Gaussian noise due to electronic components
and impulsive noise due to environmental effects [14], or astrophysical image processing [15], where
the cosmic microwave background radiation is described as the sum of Gaussian distributed from the
antenna beam and symmetric alpha-stable distributed random variables from galaxies. Thus, it is a
necessary problem to suppress this mixed noise.

Let Ω ⊂ R2 be a connected bounded image domain with a Lipschitz boundary. We consider a noisy
image f : Ω→ R given by

f = u + n, (1.1)

where n is the mixture of Cauchy noise and Gaussian noise. The Gaussian noise is assumed to follow
a Gaussian distribution, N(0, σ2), with zero mean and standard deviation σ, and the Cauchy noise
is assumed to follow a Cauchy distribution, C(0, γ). Specifically, the Cauchy noise, w, is a random
variable following a Cauchy distribution, denoted by C(δ, γ), with the probability density function
(PDF) [16, 17]

P(w; δ, γ) =
γ

π
(
(w − δ)2 + γ2

) , (1.2)

where δ ∈ R is the parameter representing the location of the peak, and γ > 0 is the scale parameter
that determines the level of noise. The Cauchy distribution looks similar to a Gaussian distribution
with a bell-shaped curve, but it is a heavy-tailed distribution, as shown in Figure 1(a). Its tail heaviness
is determined by the parameter γ, and it increases as the value of γ increases, which can be seen in
Figure 1(b). Owing to the tail heaviness, the Cauchy distribution is more prone to producing values
that fall far from its mean. Hence, the noise generated from the Cauchy distribution is more impulsive
than the Gaussian one. For instance, the Cauchy noise tends to contain much larger noise spikes than
the Gaussian noise. In this work, we intend to recover a clean image u from the noisy image f , which
is an ill-posed inverse problem.

To solve the ill-posed inverse problem (1.1), one of the well-known approaches is to solve a
minimization problem of the following form:

min
u

E(u) = Φ(u, f ) + R(u), (1.3)

where Φ is a data-fidelity term that depends on the type of noise, and R is a regularization term that
controls the smoothness of u. The most popular regularization is the total variation (TV) [18], due to
its convexity and edge preserving property. Many TV based variational models have been proposed
for restoring images with various types of noise, such as Gaussian noise [18], impulse noise [19–21],
multiplicative noise [22–25], Poisson noise [26], Rician noise [27,28], and Cauchy noise [29–31]. The
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different noise distributions yield different data-fidelity terms, so one can attain suitable variational
image denoising models depending on noise types. For instance, the L2 data-fidelity term, Φ(u, f ) =∫
Ω

( f−u)2 dx, is typically used for the image denoising models under Gaussian noise [18], andΦ(u, f ) =∫
Ω
| f − u| dx is more appropriate for the ones under impluse noise [19].
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Figure 1. Comparison of Cauchy distribution C(0, γ) and Gaussian distribution N(0, σ2).
(a) PDFs of C(0, 1) (red) and N(0, 1) (blue), (b) PDFs of C(0, γ) with γ = 5 (green), γ = 10
(blue), γ = 15 (red).

While there are numerous denoising methods for Gaussian noise, several approaches to eliminate
Cauchy noise have been suggested. In addition to the Markov random field or wavelet-based
denoising methods [32–34], a TV-based model was proposed in [29], with the nonconvex data-fidelity
term derived from the Cauchy distribution (1.2). The same authors also suggested a convex model by
inserting a quadratic penalty term that involves a pre-denoised image achieved by applying the
median filtering to the noisy data. However, the median filtering does not always yield satisfactory
denoising results. In [30], Mei et al. showed the effectiveness of the nonconvex model in [29]
combined with the nonconvex alternating direction method of multipliers (ADMM) [35]. Moreover, a
convex TV model was proposed in [31] for restoring images with α-stable noise with α ∈ (0, 2)
(Cauchy noise when α = 1, Gaussian noise when α = 2). The experimental results showed that the
model outperformed the L1-TV [36] and Cauchy [29] models in impulsive noisy environments (i.e.,
α ∈ (0, 1.5)), while providing comparable performance in less impulsive noisy environments (i.e.,
α ∈ (1.5, 2)). The aforementioned nonconvex or convex TV models in [29] have also been extended in
various works [37–43] by adopting other regularization terms instead of TV.

Removing the mixture of noise is more challenging because of the unique nature of each of two
types of noise. For the removal of mixed impulse and Gaussian noise, various efficient two-phase
methods that integrate variational methods with adaptive median filters have been proposed [44–46].
These two-phase approaches strongly rely on precise detection of noisy pixels. A unified framework
of joint detection of noisy pixels and reduction of noise components has been suggested in [47–49].
Moreover, the combination of data-fidelity terms has been considered. Specifically, a linear
combination of the L1 and L2 data-fidelity terms was considered [50, 51]. The removal of mixed
Poisson and Gaussian (MPG) has also been extensively studied. Some early works are based on the
noise parameter estimation [52, 53], while others are mainly based on transform-domain
procedures [54–58], such as variance-stabilizing transformation [59] or Haar wavelet transform. The
MAP approaches [60, 61] lead to practical difficulties since the log-likelihood function involves
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infinite summation. The combination of data-fidelity terms has also been considered for MPG
removal [61–64]. In [65, 66], the authors proposed new TV-based denoising models under the mixed
salt-and-pepper and Gaussian noise or MPG noise, by utilizing a data discrepancy which
characterizes the mixed noise as an infimal convolution of two noise distributions. These data-fidelity
terms provided better denoising performance than a combination of different data-fidelity terms
corresponding to noise types. In [67], new operator-splitting algorithms were suggested for solving
the MPG model in [65]. On the other hand, there are a few works for dealing with mixed Cauchy and
Gaussian noise, and they are only for 1D signals [14, 15, 68, 69]. In this work, we introduce a new
model for restoring images under mixed Cauchy and Gaussian noise, by following the idea of the
work [65, 66].

To the best of our knowledge, there is no unified model for simultaneously removing both Cauchy
and Gaussian noise from images, so our main contribution is to propose a novel model for denoising
images with the mixed noise. In spite of the nonconvexity of the proposed model, the existence of a
solution is proved. We also present an efficient iterative optimization algorithm. The rest of the paper
is organized as follows. Section 2 recalls some variational models for restoring images with Cauchy
noise. In Section 3, we propose a minimization problem for image denoising under mixed noise, along
with an optimization algorithm for solving the proposed model. Section 4 presents experimental results
with comparisons to other existing models, and Section 5 concludes our work with some comments.

2. Variational models for Cauchy noise removal

Assuming that the Cauchy noise follows a zero-centered Cauchy law (δ = 0), Sciacchitano et al. [29]
derived a TV based model for the removal of Cauchy noise:

min
u∈BV(Ω)

λ

∫
Ω

log(γ2 + ( f − u)2) dx +
∫
Ω

|Du|, (2.1)

where BV(Ω) is the subspace of functions u ∈ L1(Ω) such that the following BV semi-norm is
finite [18]: ∫

Ω

|Du| := sup
ϕ∈C1

c (Ω,R2), ∥ϕ∥∞≤1

∫
Ω

u div(ϕ) dx, (2.2)

where the vector measure Du represents the distributional or weak gradient of u, and ∥ · ∥∞ is the
essential supremum norm. This is also called the total variation of u, denoted by TV(u). If u ∈ w1,1(Ω),
then

∫
Ω
|Du| =

∫
Ω
|∇u| dx. λ > 0 is a tuning parameter that determines the smoothness of the restored

image u. Despite the nonconvexity of the model (2.1), the existence and uniqueness of a minimizer
was proved under certian conditions. Mei et al. [30] also showed the efficiency of the model (2.1)
associated with the alternating direction method of multipliers (ADMM) [35].

Recently, Yang et al. [31] proposed a convex TV model for restoring images degenerated by the
α-stable noise (0 < α < 2), including Cauchy noise (α = 1):

min
u∈BV(Ω)

λ
( ∫
Ω

log (γ + | f − u|) dx +
µ

2
∥u − g∥22

)
+

∫
Ω

|Du|, (2.3)

where µ > 0 is a parameter, and g is the pre-denoised image obtained by applying a median filter to
f . The existence and uniqueness of a minimizer for the model (2.3) was shown, and the model was
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efficiently solved by employing the primal-dual algorithm [70]. The numerical results showed that the
model (2.3) provided better denoising performance than the existing models [20, 29], especially when
the noise has more impulsive properties (i.e., α ∈ (0, 1.5)).

3. Description of the proposed model and algorithm

3.1. Proposed model and convergence analysis

In this section, we introduce a new image denoising model in the presence of the mixture of Cauchy
noise and Gaussian noise.

In general, both Cauchy noise and Gaussian noise are additive noise, so we assume that both noises
occur simultaneously and independently in the entire domain. Thus, we consider a noisy image f ∈
L2(Ω) given by

f = u + w + v, (3.1)

where w is the Cauchy noise following the Cauchy distribution C(0, γ), and v is the Gaussian noise
following the Gaussian distribution N(0, σ2). Since w and v occur independently, the order of w and v
does not matter.

To eliminate both Gaussian noise v and Cauchy noise w = f − u − v from the data f , we follow the
idea in [65] which suggested infimal convolution-type data-fidelity terms for the dismissal of mixed
SP-Gaussian noise or mixed Poisson-Gaussian noise. Now we define an infimal convolution-type data-
fidelity term to remove mixed Cauchy and Gaussian noise as

Φ(u, f ) := inf
v∈L2(Ω)

{
λ1Φ1(v) + λ2Φ2(u, f − v)

}
, (3.2)

where Φ1 and Φ2 are the Gaussian and Cauchy noise components, respectively, defined as

Φ1(v) = ∥v∥22, (3.3)

Φ2(u, f − v) =
∫
Ω

log(γ2 + ( f − u − v)2) dx,

where Φ2 is acquired from the data-fidelity term in (2.1), which is nonconvex. λ1 and λ2 are positive
parameters that balances the smoothing effect of the regularization as well as the fitting with respect to
the intensity of each single noise distribution in f .

By integrating the data-fidelity term in (3.2) with the TV regularization, we propose the following
minimization problem for restoring images with mixed Cauchy and Gaussian noise:

min
u∈X, v∈L2(Ω)

{
E(u, v) = λ1Φ1(v) + λ2Φ2(u, f − v) +

∫
Ω

|Du| +
µ

2
∥u − g∥22

}
, (3.4)

where X = BV(Ω) ∩ L2(Ω), g is the pre-denoised image by applying a median filter to the data f , and
µ > 0 is a parameter. The median filtering does not always bring adequate denoising results, but we
add the last quadratic term mainly for the proof of the existence of a minimizer. Indeed, we in practice
set the value of µ very small so that the pre-denoised image g barely impacts on the denoising results.
We note that the proposed model can be extended, by utilizing other regularization terms, instead of
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TV, such as the higher-order regularization [71, 72], nonlocal TV [73], dictionary learning [74, 75], or
tight-frame approach [76], etc. This work mainly focuses on introducing a new data-fidelity term for
the mixed Cauchy-Gaussian noise model, so the adoption of new regularization terms are beyond the
scope of our work.

The energy functional E in (3.4) is nonconvex without any specific assumptions on the parameters,
but it is still available to show the existence of a minimizer for the minimization problem (3.4). In the
following theorem, we prove the existence of a minimizer for the problem (3.4).

Theorem 1. Let f ∈ L2(Ω), and g ∈ L2(Ω). Then, the minimization problem (3.4) has at least one
solution (u∗, v∗) ∈ X × L2(Ω) with X = BV(Ω) ∩ L2(Ω).

Proof. Since Φ2 has the minimum value 2|Ω| log γ when u+ v = f , the functional E in (3.4) is bounded
from below. Then we can choose a minimizing sequence (un, vn) in X × L2(Ω) such that E(un, vn) ≤ C
for a constant C > 0. So all terms in E(un, vn) are bounded, i.e.,

∥vn∥
2
2 ≤ C,

∫
Ω

log(γ2 + ( f − un − vn)2) dx ≤ C,

∥un − g∥22 ≤ C,
∫
Ω

|Dun| ≤ C. (3.5)

Hence we can extract a subsequence {vn} (still denoted in the same way) weakly converging to v∗ in
L2(Ω) and vn → v∗ a.e. in Ω. Then we have that

∥v∗∥22 ≤ lim inf
n→∞

∥vn∥
2
2. (3.6)

Since g ∈ L2(Ω), {un} is bounded in L2(Ω) from (3.5) and thus bounded in L1(Ω). Besides, {
∫
Ω
|Dun|}

is bounded, so {un} is bounded in BV(Ω). Hence, there is a subsequence {un} (still denoted in the same
way) and u∗ in BV(Ω) such that (i) un → u∗ strongly in L1(Ω), (ii) un ⇀ u∗ weakly in L2(Ω), (iii)
un → u∗ in a.e. Ω, and (iv) ∫

Ω

|Du∗| ≤ lim inf
n→∞

∫
Ω

|Dun|. (3.7)

Lastly, from Fatou’s Lemma, we can finally attain that

E(u∗, v∗) ≤ lim inf
n→∞

E(un, vn), (3.8)

which indicates that (u∗, v∗) is a minimzer of E(u, v). □

Remark. The functional E in (3.4) is convex under certain conditions. Specifically, it can be easily
proven that E(u, ·) is strictly convex if λ2 ≤ 4γ2µ, while E(·, v) is strictly convex if λ2 ≤ 8γ2λ1.
Furthermore, if λ2 <

1
2 min{8γ2λ1, 4γ2µ}, then E(u, v) is strictly convex (for the proof, see Appendix

A), so it has a unique minimizer. However, we in practice do not impose this condition on the
parameter λ2 due to the following reason: we want to reduce the influence of the pre-denoised image
g, so we set the value of µ to be very small. This leads to a small value of λ2 with the aforementioned
condition, but a small value of λ2 is not appropriate for the removal of Cauchy noise especially when
the level of Cauchy noise is high. Therefore, without the above constraint on λ2, the functional E is
nonconvex, hence we practically solve the nonconvex minimization problem.
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3.2. Optimization algorithm

To solve the proposed model (3.4), we consider a discretized image domain Ω = {(i, j) : i =
1, 2, ...,M, j = 1, 2, ...,N}, and let us be the pixel value of an image u at location s ∈ Ω. Then we
compute numerically the solution pair of the following minimization problem:

min
u,v

{
λ1∥v∥22 + λ2 G(u, v) + ∥∇u∥1 +

µ

2
∥u − g∥22

}
(3.9)

with G(u, v) = ⟨log(γ2 + ( f − u − v)2), 1⟩,

where ⟨ , ⟩ is the inner product, ∥ · ∥22 = ⟨·, ·⟩, and ∥∇u∥1 is the discrete version of the isotropic TV norm:

∥∇u∥1 =
∑

s

√(
∂x1u

)2

s
+

(
∂x2u

)2

s
,

with ∇u = [∂x1u, ∂x2u]T , denoting ∂x1u and ∂x2u by the finite difference operators that estimate the
partial derivatives of the image u along the x1-axis and x2-axis, respectively.

To solve the nonconvex problem (3.9), we first adopt the alternating minimization algorithm
(AMA). The AMA minimizes a function of two variables, and its essential idea is to keep one variable
fixed while minimizing the other variable and iterate this process. This approach has practically
performed well, even though the objective function is nonconvex. The AMA applied to (3.9) yields
the following iterative algorithm:

uk+1 ∈ arg min
u

{
λ2 G(u, vk) + ∥∇u∥1 +

µ

2
∥u − g∥22

}
,

vk+1 ∈ arg min
v

{
λ1∥v∥22 + λ2 G(uk+1, v)

}
. (3.10)

In the subsequent paragraphs, we solve the two subproblems in (3.10).

3.2.1. Solving the u-subprolem in (3.10)

First, to solve the u-subproblem in (3.10), we adopt the alternating direction method of multipliers
(ADMM) [35] applied to nonconvex minimization problems with linear constraints. By introducing an
auxiliary variable z, we can rewrite the u-subproblem in (3.10) as the following equivalent constrained
problem:

min
u,z

{
λ2 G(z, vk) + ∥∇u∥1 +

µ

2
∥u − g∥22

}
,

subject to: z = u. (3.11)

Then the augmented Lagrangian function (ALF) corresponding to (3.11) is given by

Lτ(u, z, p) = λ2 G(z, vk) + ∥∇u∥1 +
µ

2
∥u − g∥22 − ⟨p, z − u⟩ +

τ

2
∥z − u∥22, (3.12)

where p ∈ RM×N is the Lagrangian multiplier, and τ > 0 is a penalty parameter.
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The ADMM applied to (3.11) leads to the following iterative algorithm:



uℓ+1 ∈ arg minu Lτ(u, zℓ, pℓ),

zℓ+1 ∈ arg minz Lτ(uℓ+1, z, pℓ),

pℓ+1 = pℓ + τ(uℓ+1 − zℓ+1).

(3.13)

Following the Theorem 4.2 in [30], we can prove a convergence of the ADMM in (3.13) as follows:

Theorem 2. If τ > 2λ2
γ2 − µ, then the sequence {(uℓ, zℓ, pℓ)} generated by the algorithm (3.13) converges

globally to a point (u∗, z∗, p∗), which is a stationary point of Lτ.

The proof of this theorem is omitted since it is similar to the proof given in [30]. The stationary
point (u∗, z∗, p∗) satisfies the Karush–Kuhn–Tucker (KKT) conditions of problem (3.11). However,
the minimization problem (3.11) is non-convex, so the KKT conditions are only necessary optimal
conditions to (3.11). Hence, we cannot assure that (u∗, z∗) is an optimal solution of (3.11).

In the following paragraphs, we solve the two subproblems in (3.13).

u-subproblem in (3.13). First, the u-subproblem in (3.13) is convex, so it can be efficiently solved by
various convex optimization algorithms [70, 77–80]. Among them, we again utilize the ADMM [79,
80]. Specifically, to handle the nondifferential L1 term, we introduce an auxiliary variable d⃗ to replace
∇u, and then achieve the following constrained problem:

min
u,d⃗
∥d⃗∥1 +

µ

2
∥u − g∥22 − ⟨p

ℓ, zℓ − u⟩ +
τ

2
∥zℓ − u∥22, (3.14)

subject to: d⃗ = ∇u.

Analogously, the ALF for the problem (3.14) is

Lη(u, d⃗, q⃗) = ∥d⃗∥1 +
µ

2
∥u − g∥22 − ⟨p

ℓ, zℓ − u⟩ +
τ

2
∥zℓ − u∥22 − ⟨q⃗, d⃗ − ∇u⟩ +

η

2
∥d⃗ − ∇u∥22, (3.15)

where q⃗ ∈ (RM×N)2 is the vector of Lagrangian multipliers, and η > 0 is a penalty parameter. Then the
ADMM algorithm applied to (3.14) results in the following iterative algorithm:



um+1 ∈ arg minu Lη(u, d⃗m, q⃗m),

d⃗m+1 ∈ arg mind⃗ Lη(u
m+1, d⃗, q⃗m),

q⃗m+1 = q⃗m + η(∇um+1 − d⃗m+1).

(3.16)
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Algorithm 1 Solving the proposed model (3.4).
1: Input: choose the parameters λ1, λ2, µ, τ, η > 0, the maximum iteration numbers Nu, Nuu, Nz.
2: Initialization: set u0 = max(min( f , 255), 0), v0 = 0, z0 = u0, p0 = 0, q⃗0 = 0.
3: repeat
4: Compute uk+1 by iterating for ℓ = 0, 1, 2, · · · ,Nu:
5: compute uℓ+1 by iterating for m = 0, 1, 2, · · · ,Nuu:
6: um+1 by solving (3.17) using DCT,
7: d⃗m+1 = shrink

(
∇um+1 +

q⃗m

η
, 1
η

)
,

8: q⃗m+1 = q⃗m + η(∇um+1 − d⃗m+1).
9: compute zℓ+1 by iterating for n = 0, 1, 2, · · · ,Nz:

10: zn+1 = zn − τ F′(zn)
F′′(zn) ,

11: update pℓ+1 = pℓ + τ(uℓ+1 − zℓ+1).
12: Compute vk+1 by solving Eq (3.25) using Cardano’s formula.
13: until a stopping condition is satisfied.
14: Output: restored image u.

The u-subproblem in (3.16) is a least squares problem, so the solution um+1 in (3.16) can be attained
by solving the following normal equation:

(µ + τ + η∇T∇)u = µg + τ(zℓ − pℓ/τ) + η∇T (d⃗m − q⃗m/η), (3.17)

where ∇T = −div with a discrete divergence opterator such that div(w1,w2) = ∂x1w1+∂x2w2. In discrete
setting, ∇T∇ is equal to −∆, where ∆ is a discrete Laplacian operator. The discrete Laplacian operator
can be regarded as the convolution of the kernel [0 1 0; 1 − 4 1; 0 1 0]. Then, since ∆ is a symmetric
convolution operator, µ+τ+η∇T∇ can be diagonalized by the 2-dimensional discrete cosine transform
(DCT2) under the symmetric boundary condition [81]. Thus we solve the Eq (3.17) using the DCT2,
denoted by F , under the symmetric boundary condition. Then we can obtain an explicit formula for
um+1:

um+1 = F −1

F (µg + τ(zℓ − pℓ/τ) + η∇T (d⃗m − q⃗m/η))
µ + τ + ηF (∇T∇)

 , (3.18)

where F −1 denotes the inverse DCT2.
Lastly, the solution d⃗m+1 in (3.16) can be explicitly obtained as

d⃗m+1 = shrink
(
∇um+1 +

q⃗m

η
,

1
η

)
, (3.19)

where shrink is the soft thresholding operator defined as

shrink(t, ξ)s =
ts

|ts|
·max(|ts| − ξ, 0), (3.20)

where |ts| =
√

(t1,s)2 + (t2,s)2 with t = [t1, t2]T .
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z-subproblem in (3.13). Next we solve the z-subproblem in (3.13), which can be rewritten as

min
z
λ2⟨log(γ2 + (z + vk − f )2), 1⟩ +

τ

2
∥z − uℓ+1 − pℓ/τ∥22. (3.21)

The first-order optimality condition for zℓ+1 is given by

F′(z) = 2λ2
z + vk − f

γ2 + (z + vk − f )2 + τ(z − uℓ+1 − pℓ/τ) = 0, (3.22)

where F(z) = λ2 log(γ2 + (z + vk − f )2) + τ2 (z − uℓ+1 − pℓ/τ)2. This normal Eq (3.22) can be efficiently
solved by using Newton’s method as follows:

zn+1 = zn −
F′(zn)
F′′(zn)

. (3.23)

The z-subproblem (3.21) is strictly convex if λ2 ≤ 4γ2τ. This condition is satisfied in practice, so
Eq (3.22) has a unique real root. Hence, with a good initial guess, Newton’s method converges fast
within a few number of iterations. Meanwhile, Eq (3.22) can be rewritten as a cubic equation by
multiplying with the denominator. This cubic equation can be explicitly solved using Cardano’s
formula [82]. In our simulations, we decide to utilize Newton’s method due to its efficiency. Indeed,
despite the same denoising results, the total computational time when using Newton’s method is
shorter than when using Cardano’s formula.

3.2.2. Solving the v-subprolem in (3.10)

Lastly, we solve the v-subproblem in the AMA (3.10):

min
v
λ1∥v∥22 + λ2 ⟨log(γ2 + (v + uk+1 − f )2), 1⟩. (3.24)

The necessary optimality condition for vk+1 is

λ1v + λ2
v + uk+1 − f

γ2 + (v + uk+1 − f )2 = 0. (3.25)

The problem (3.24) is convex if λ2 ≤ 8γ2λ1. In practice, this condition is not satisfied due to the choice
of small values for λ1. Thus, the problem (3.24) is not convex, so we utilize the Cardano’s formula to
solve Eq (3.25). Specifically, Eq (3.25) can be written as the following cubic equation:

av3 + bv2 + cv + d = 0, (3.26)

with a = λ1, b = 2λ1(uk+1 − f ), c = λ1(γ2 + (uk+1 − f )2) + λ2, d = λ2(uk+1 − f ). The Cardano’s formula
for real roots of a cubic polynomial is given in the following proposition [82].

Proposition 1. For the cubic equation with real coefficients

ax3 + bx2 + cx + d = 0, a , 0, (3.27)
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define Q = 3ac−b2

9a2 , R = 9abc−27a2d−2b3

54a3 , and the discriminant D = Q3 + R2. If D > 0, the cubic equation
(3.27) has only one real root, which is given by

x =
3
√

R +
√

D +
3
√

R −
√

D −
b
3a
. (3.28)

Otherwise, if D ≤ 0, Eq (3.27) has three real roots (possibly equal), which are given by

x = 2
√
−Q cos

(θ + 2kπ
3

)
−

b
3a
, k = 0, 1, 2, (3.29)

where θ = cos−1(R/
√
−Q3).

If the Eq (3.25) has three real roots, we choose one which yields the minimum value of the objective
function in (3.24).

Consequently, the whole algorithm for solving the problem (3.9) is given in Algorithm 1.

4. Experimental results

This section presents the experimental results of the proposed model (3.4) and comparisons to other
existing models. We compare our model with two Cauchy denoising models, nonconvex TV model
(Cauchy-TV) [29, 30] and Yang et al.’s model [31] (Yang’s), given in (2.1) and (2.3), respectively.
Furthermore, due to the impulsive characteristics of Cauchy noise, we also present the denoising results
of the median filtering (MF) [83] and L1-TV model [19]. For solving the L1-TV and Cauchy-TV
models, we employ the convex or nonconvex ADMM algorithms.

4.1. Experimental setting

The test images are given in Figure 2, and the size of images are 256 × 256 or 481 × 321. The
range of intensity values in original images is assumed to be [0, 255]. The Cauchy noise w is generated
by applying the following property: If X and Y are two independent Gaussian distributed random
variables with mean 0 and variance 1, then the ratio X/Y follows the standard Cauchy distribution,
i.e., C(0, 1) [84, 85]. Thus w = γ n1

n2
, where n1 and n2 follow the standard normal distribution, N(0, 1),

independently. In the experiments, we consider the four mixed noise cases: (γ, σ) = (10, 20), (10, 30),
(15, 10), (15, 20). In the Yang’s model (2.3), the parameter γ is set to be the exact Cauchy noise level
like our model.
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Figure 2. Original clean images. Top to bottom (left to right): Barbara, Bird, Boat, Building
(481× 321), Cameraman, Castle (481× 321), Lake, Lena, Parrot, Peppers, Pirate, Policemen
(481 × 321).

The quality of restored images is measured by the Peak-Signal-to-Noise-Ratio (PSNR) value as

PSNR(u, u∗) = 10 log10

(2552MN
∥u − u∗∥22

)
, (4.1)

where u and u∗ are the restored and original images respectively. We also compute the structural
similarity index measure (SSIM) [86], which is a perception-based measure that uses information
about the structure of the objects in the visual sense. Specifically, we compute the mean SSIM index
value between two images u and u∗ using

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y + c2)

, (4.2)

where x and y are the spatial patches extracted from u and u∗ respectively, µx and σ2
x represent the

average and variance of x respectively, and c1 and c2 are some constants for stability. For a noisy data
f , the intensity values of some noisy pixels are much larger (or smaller) than 255 (or 0) and they mainly
affect the PSNR value of f , so the PSNR of f cannot be properly computed. Thus, we compute the
PSNR value of the cropped image, max(min( f , 255), 0), instead of f , which are given in Tables 1–4.
Moreover, we use this cropped image as an initial condition for u from the experiments in [30].

Table 1. Denoising results with mixed Cauchy-Gaussian noise when (γ, σ) = (10, 20).

Model u0 (cropped f ) Median filter Cauchy-TV [30] L1-TV [19] Yang et al. [31] Proposed

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

barbara 15.41 0.2557 22.34 0.5333 23.77 0.6410 23.92 0.6488 23.90 0.6573 24.33 0.6741
bird 15.53 0.1354 28.53 0.7056 29.89 0.8610 30.02 0.8693 30.18 0.8736 30.49 0.8786
boat 15.41 0.2693 22.41 0.5136 23.67 0.6057 23.79 0.6118 23.94 0.6193 24.39 0.6373
building 15.45 0.2461 22.75 0.5817 23.77 0.6984 23.80 0.7068 24.10 0.7179 24.52 0.7378
cameraman 15.53 0.2181 22.85 0.5831 24.68 0.7377 24.75 0.7395 24.87 0.7506 25.50 0.7756
castle 15.41 0.1820 23.36 0.5876 25.00 0.7442 25.11 0.7502 25.14 0.7560 25.84 0.7777
lake 15.33 0.3048 22.10 0.5793 23.28 0.6725 23.29 0.6772 23.31 0.6764 24.13 0.7150
lena 15.39 0.2183 24.95 0.6421 25.91 0.7211 26.01 0.7240 26.26 0.7368 26.45 0.7494
parrot 15.39 0.2453 23.12 0.6435 24.91 0.7375 24.94 0.7375 25.21 0.7583 25.51 0.7811
peppers 15.40 0.2055 25.26 0.7033 26.15 0.7825 25.86 0.7790 26.36 0.7981 26.92 0.8084
pirate 15.43 0.2889 23.03 0.4892 23.83 0.5483 24.00 0.5634 24.03 0.5613 24.31 0.5690
policemen 15.40 0.2839 20.00 0.4963 21.61 0.6541 21.82 0.6712 21.82 0.6762 22.47 0.7079
Avergae 15.42 0.2377 23.29 0.5882 24.71 0.7003 24.77 0.7065 24.92 0.7151 25.41 0.7343

* Note: Bold values indicate the best denoising performance.
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Table 2. Denoising results with mixed Cauchy-Gaussian noise when (γ, σ) = (10, 30).

Model u0 (cropped f ) Median filter Cauchy-TV [30] L1-TV [19] Yang et al. [31] Proposed

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

barbara 14.55 0.2193 21.53 0.4620 22.88 0.5732 23.19 0.5965 23.30 0.6100 23.61 0.6238
bird 14.62 0.1143 26.76 0.6129 28.16 0.8319 28.67 0.8459 28.73 0.8544 29.12 0.8471
boat 14.46 0.2293 21.98 0.4618 22.86 0.5510 23.21 0.5739 23.32 0.5779 23.63 0.5972
building 14.61 0.2145 22.22 0.5175 22.90 0.6487 23.21 0.6697 23.42 0.6803 23.45 0.6874
cameraman 14.62 0.1908 22.22 0.5097 23.70 0.7040 24.12 0.7033 24.32 0.7208 24.66 0.7465
castle 14.58 0.1603 22.71 0.5027 24.20 0.7069 24.56 0.7158 24.58 0.7280 24.97 0.7399
lake 14.63 0.2707 21.59 0.5313 22.49 0.6202 22.86 0.6461 22.91 0.6519 23.35 0.6752
lena 14.53 0.1889 24.09 0.5762 24.82 0.6754 25.12 0.6909 25.36 0.7066 25.67 0.7100
parrot 14.67 0.2231 22.48 0.5799 23.71 0.7106 24.12 0.7172 24.24 0.7434 24.55 0.7482
peppers 14.55 0.1783 24.14 0.6316 24.72 0.7373 24.77 0.7448 25.16 0.7667 25.61 0.7655
pirate 14.59 0.2489 22.42 0.4526 23.09 0.5029 23.31 0.5159 23.33 0.5062 23.61 0.5283
policemen 14.65 0.2576 19.72 0.4315 20.88 0.6118 21.28 0.6386 21.32 0.6448 21.45 0.6564
Average 14.58 0.2080 22.65 0.5224 23.70 0.6562 24.03 0.6715 24.16 0.6825 24.47 0.6938

* Note: Bold values indicate the best denoising performance.

Table 3. Denoising results with mixed Cauchy-Gaussian noise when (γ, σ) = (15, 10).

Model u0 (cropped f ) Median filter Cauchy-TV [30] L1-TV [19] Yang et al. [31] Proposed

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

barbara 14.61 0.2278 22.38 0.5471 24.06 0.6666 23.86 0.6517 23.95 0.6627 24.13 0.6687
bird 14.44 0.1150 28.98 0.7423 30.44 0.8736 30.17 0.8668 30.58 0.8792 30.72 0.8800
boat 14.49 0.2331 22.45 0.5289 24.31 0.6476 23.99 0.6318 23.89 0.6213 24.42 0.6486
building 14.51 0.2171 22.83 0.6055 24.27 0.7328 23.76 0.7120 23.99 0.7182 24.31 0.7386
cameraman 14.54 0.1914 23.05 0.6201 25.06 0.7684 24.76 0.7519 24.82 0.7647 25.28 0.7761
castle 14.47 0.1605 23.41 0.6129 25.58 0.7719 25.28 0.7504 25.13 0.7601 25.83 0.7810
lake 14.58 0.2785 22.14 0.6005 23.86 0.7082 23.51 0.6937 23.60 0.6965 24.12 0.7204
lena 14.53 0.1952 25.16 0.6629 26.35 0.7471 26.06 0.7339 26.22 0.7417 26.52 0.7518
parrot 14.48 0.2236 23.18 0.6741 25.34 0.7788 24.82 0.7674 25.18 0.7771 25.57 0.7870
peppers 14.46 0.1789 25.30 0.7296 26.77 0.7998 26.13 0.7763 26.36 0.8029 26.97 0.8068
pirate 14.48 0.2497 23.10 0.4990 24.23 0.5749 24.08 0.5715 23.95 0.5508 24.36 0.5780
policemen 14.47 0.2560 20.03 0.5213 21.88 0.6906 21.58 0.6757 21.55 0.6695 22.05 0.7044
Average 14.50 0.2105 23.50 0.6120 25.18 0.7300 24.83 0.7152 24.93 0.7203 25.35 0.7367

* Note: Bold values indicate the best denoising performance.

Table 4. Denoising results with mixed Cauchy-Gaussian noise when (γ, σ) = (15, 20).

Model u0 (cropped f ) Median filter Cauchy-TV [30] L1-TV [19] Yang et al. [31] Proposed

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

barbara 14.04 0.2053 21.63 0.4855 23.50 0.6235 23.42 0.6159 23.54 0.6304 23.64 0.6315
bird 14.16 0.1067 27.49 0.6569 29.16 0.8538 29.11 0.8532 29.25 0.8592 29.49 0.8652
boat 14.11 0.2205 22.21 0.4869 23.49 0.5958 23.43 0.5946 23.49 0.5984 23.89 0.6119
building 14.11 0.2024 22.41 0.5462 23.39 0.6877 23.36 0.6834 23.63 0.6959 23.97 0.7126
cameraman 14.09 0.1784 22.44 0.5448 24.35 0.7404 24.10 0.7343 24.31 0.7368 24.76 0.7583
castle 14.11 0.1498 22.94 0.5392 24.84 0.7416 24.71 0.7310 24.77 0.7385 25.17 0.7561
lake 14.18 0.2580 21.82 0.5581 23.18 0.6693 23.10 0.6644 23.17 0.6675 23.48 0.6836
lena 14.07 0.1771 24.47 0.6083 25.51 0.7159 25.36 0.7099 25.64 0.7199 25.75 0.7255
parrot 14.10 0.2087 22.71 0.6146 24.50 0.7413 24.24 0.7350 24.52 0.7543 24.78 0.7643
peppers 14.07 0.1682 24.55 0.6633 25.69 0.7672 25.06 0.7652 25.51 0.7818 25.99 0.7862
pirate 14.03 0.2259 22.59 0.4673 23.60 0.5405 23.56 0.5421 23.58 0.5337 23.83 0.5436
policemen 14.12 0.2446 19.84 0.4621 21.52 0.6560 21.36 0.6497 21.44 0.6565 22.07 0.6860
Average 14.09 0.1954 22.92 0.5527 24.39 0.6944 24.23 0.6898 24.40 0.6973 24.74 0.7104

* Note: Bold values indicate the best denoising performance.

The stopping criterion for our model is given by

∥giter+1 − giter∥2

∥giter+1∥2
< tol, or iter > MaxIter, (4.3)
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where g = u or z, tol is a given tolerance, and MaxIter is a maximum iteration number. For our model,
we set tol = 10−4. For the L1-TV and Yang’s models, we use the same stopping condition as ours, while
for the Cauchy-TV model we use the stopping condition given in [30]. For our model, the maximum
iteration number for Newton’s method for z is fixed as Nz = 5, and we fix Nu = 10 and Nuu = 5.

The selection of parameters for our model is as follows: The parameter µ is fixed as 10−7, and the
penalty parameters τ and η in the ADMM algorithms are fixed as 1. The parameters λ1 and λ2 mainly
influences on the quality of the restored images, and they are tuned to achieve the best denoising results.
Indeed, the parameter λ1 is set to be 0.05 when (γ, σ) = (15, 10), and 0.02 for the other noise cases.
The values of the parameter λ2 are given in all figures.

4.2. Denoising results

First, Figure 3 compares noisy images and signals degraded by the Cauchy noise with γ = 10,
Gaussian noise with σ = 20, mixed Cauchy and Gaussian noise with (γ, σ) = (10, 20), respectively.
The cross-sectional lines in the right column show that the vertical scale for the noisy signal corrupted
by the Cauchy noise goes from -200 to 900, which shows the impulsive feature of the Cauchy noise.
Besides, although the noisy signal distorted by the mixed noise is mainly influenced by the Cauchy
noise, it can be seen that the Gaussian noise also further distorts the signal.
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Figure 3. Noisy images (left) and their cross-sectional lines (right), degraded by (top row)
Cauchy noise with γ = 10, (middle) Gaussian noise with σ = 20, (bottom) mixed Cauchy-
Gaussian noise with (γ, σ) = (10, 20). Blue line: Original clean signal, Red line: Noisy
signal.

In Figure 4, we compare the denoising results of all models when the noise level is (γ, σ) = (10, 20).
The data images are given in Figure 5. First we can see that the MF enables to remove both noise to
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some extent, but its restored images are noisier and blurrier than the ones using the other TV models.
Among the TV models, the L1-TV provides similar denoising results to the Cauchy-TV model. This
is due to that the L1 data-fidelity is suitable for eliminating both impulsive noise and Gaussian noise.
On the other hand, the Yang’s model supplies slightly better or similar denoising results than the L1-
TV model, which also explains the capability of the Yang’s model to handle both noise. In fact, the
Yang’s model provides averagely higher PSNR and SSIM values than the L1-TV model in all noise
cases, as shown in Tables 1–4. Compared with these existing models, our model generates cleaner
homogeneous regions, such as the sky areas in Boat and Cameraman, while better conserving textures
and details, such as the textural part in Barbara, the ropes and iron pillars in Boat, the face and tripod
parts in Cameraman. This can be more clearly seen in the zoomed images in Figure 6. Moreover, all
these observations also match the highest PSNR and SSIM values of our model, as shown in Table 1.
Overall, these examples justify the effectiveness of our data-fidelity term for getting rid of mixed
Cauchy and Gaussian noise.

In Figure 7, we present the denoising results with higher Cauchy noise level and smaller Gaussian
noise level, i.e., (γ, σ) = (15, 10). Unlike the denoising results when (γ, σ) = (10, 20), the Cauchy-TV
model furnishes better denoising results than the L1-TV and Yang’s model. This implies that as the
Cauchy noise level increases while the Gaussian noise level decreases, the performance of the Cauchy-
TV model much enhances unlike the other models. In particular, the Yang’s model retain some Cauchy
noise in the restored images, which can be more obviously seen in the zoomed images in Figure 8.
Indeed, this problem might be fixed by decreasing the regularization parameter λ or increasing the size
of a median filter applied to g, but these cause much smoother restored images with much less PSNR
values. Thus we choose these given images as the best restored images of the Yang’s model. Despite
the improved performance of the Cauchy-TV model, our model provides better preserved details and
cleaner smooth regions than the other models, which can be seen in the window parts in Castle and
sky areas in Policemen. These also lead to the highest PSNR values of our model. These also show
the outstanding performance of our model over the other models. Lastly, Figure 9 presents the final
Gaussian components, v, corresponding to the final restored images, u, given in 7. This validates that
our model properly separates the Gaussian and Cauchy noise components.

Figure 10 compares the denoising results when (γ, σ) = (10, 20), (10, 30), (15, 20). First, it can be
observed that the Cauchy-TV model does not perform well in the presence of high-level of Gaussian
noise, although it properly removes the Cauchy noise. Moreover, the Yang’s model seems to deal with
both noise to a certain degree, but it keeps some Cauchy noise under a high level of Cauchy noise,
as shown in the denoised image when (γ, σ) = (15, 20). The L1-TV model moderately performs for
deleting both noise, but its performance does not exceed the Yang’s one with respect to the PSNR
and SSIM values. In contrast, our model well eliminates both noise in all noise cases, by sufficiently
denoising homogenous regions while conserving fine structures and edges than the other models.

In Figure 11, we present zoomed denoised images when (γ, σ) = (10, 30) and (γ, σ) = (15, 20),
respectively. The zoomed data images are given in the first row. When (γ, σ) = (10, 30), the denoised
images of our model and Yang’s model seem to be visually indistinguishable, but our model brings
cleaner homogeneous regions, such as the sky areas in both examples. On the other hand, the Yang’s
model fails to adequately remove the Cauchy noise, whose trace can be detected in some pixels in the
Pirate image. But our model sufficiently denoise smooth regions with better keeping delicate features
than the other models, leading to the highest PSNR values. These can be observed in the eye area in
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Parrot and face region in Pirate. Hence, our model attains more satisfactory denoising results even
when the noise level of Cauchy or Gaussian noise is high.

In Tables 1–4, we report the PSNR and SSIM values of the restored images of all models. The
proposed model yields the highest PSNR and SSIM values in almost all cases. Overall, our model
leads to the best denoising results with regard to these image quality assessments. These also confirm
the superior performance of our model over the existing models.

(a) Median filter (b) Cauchy-TV [30] (c) L1-TV [19] (d) Yang et al. [31] (e) Proposed

Figure 4. Denoising results of our model and other models when (γ, σ) = (10, 20). (a)
median filter of size 4×4 (top row) or 5×5 (middle-bottom rows). PSNR values (left to right):
(top row) 22.34/23.77/23.92/23.90/24.33, (middle) 22.41/23.67/23.79/23.94/24.39, (bottom)
22.85/24.68/24.75/24.87/25.50. Parameter λ2 of the proposed model (top to bottom): 24, 23,
23.

Figure 5. Noisy data f . 1st-3rd columns: Mixed Cauchy-Gaussian noise with (γ, σ) =
(10, 20), 4th-6th columns: Mixed Cauchy-Gaussian noise with (γ, σ) = (15, 10).
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(a) Cauchy-TV [30] (b) L1-TV [19] (c) Yang et al. [31] (d) Proposed

Figure 6. Zoomed denoised images from Figure 4.

(a) Median filter (b) Cauchy-TV [30] (c) L1-TV [19] (d) Yang et al. [31] (e) Proposed

Figure 7. Denoising results of our model and other models when (γ, σ) =

(15, 10). (a) median filter of size 5 × 5. PSNR values (left to right): (top
row) 23.41/25.58/25.28/25.13/25.83, (middle) 25.30/26.77/26.13/26.36/26.97, (bottom)
20.03/21.88/21.58/21.55/22.05. Parameter λ2 of the proposed model (top to bottom): 29,
30, 30.
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(a) Cauchy-TV [30] (b) L1-TV [19] (c) Yang et al. [31] (d) Proposed

Figure 8. Zoomed denoised images from Figure 7.

Figure 9. Final Gaussian noise components v corresponding to the denoised images u of the
proposed model in Figure 7 when (γ, σ) = (15, 10).
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Original f : (γ, σ) = (10, 20) (γ, σ) = (10, 30) (γ, σ) = (15, 20)

Cauchy-TV: 25.00 L1-TV: 25.11 Yang et al.: 25.14 Proposed: 25.84

Cauchy-TV: 24.20 L1-TV: 24.56 Yang et al.: 24.58 Proposed: 24.97

Cauchy-TV: 24.84 L1-TV: 24.71 Yang et al.: 24.77 Proposed: 25.17

Figure 10. Comparison of denoising results with different noise levels, (γ, σ) = (10, 20) (2nd
row), (γ, σ) = (10, 30) (3rd row), (γ, σ) = (15, 20) (4th row). Parameter λ2 of the proposed
model (top to bottom): 21, 20, 29.
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Zoomed noisy images when (γ, σ) = (10, 30) (1st-2nd columns), (γ, σ) = (15, 20) (3rd-4th columns)

(a) Cauchy-TV [30] (b) L1-TV [19] (c) Yang et al. [31] (d) Proposed

Figure 11. Zoomed denoised images using our model and other models when (γ, σ) =
(10, 30) (2nd-3rd rows), (γ, σ) = (15, 20) (4th-5th rows). Parameter λ2 of the proposed
model (top to bottom): 20, 22, 31, 33.

Figure 12 presents the plots of the energy values E(uk, vk) in (3.4) and PSNR values of uk via the
outer iteration numbers k. In all cases, as the outer iteration increases, the energy values decrease and
the PSNR values increase. Moreover, in Figure 13, we present the plots of relative errors of u and
v. We can see that these relative errors generally decrease as the iteration increases, despite slight
fluctuations in the relative errors of v. All of these illustrate the convergence behavior of the proposed
iterative algorithm even though it is not theoretically proven.

In Figures 14 and 15, we compare the denoising results of the proposed model with different values
for the parameter λ2 in (3.2). In Figure 14, we present the denoising results when (γ, σ) = (10, 20) and
(10, 30), while in Figure 15, we present the denoising resuls when (γ, σ) = (10, 20) and (15, 20). First,
it can be observed that as λ2 increases, the restored image u includes more details, but it also tends
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to retain noise. Thus, we try to select a sufficiently denoised image with PSNR and SSIM values as
high as possible for the best restored image. The optimal values of λ2 may be different depending on
images, as shown in the 1st rows in both figures, because different images have different structures and
characteristics. Moreover, the optimal value of λ2 depends on the noise level, as λ2 is a regularization
parameter that needs to be adjusted to obtain an adequately denoised image. Specifically, the optimal
value of λ2 tends to decrease as the Gaussian noise level σ increases, while it tends to increase as
the Cauchy noise level γ increases, which can be seen in the 2nd rows in both figures. However, we
note that the optimal values of λ2 are restricted to some values; for all the test images except Bird,
the optimal λ2 is chosen from {21, 22, 23, 24} when (γ, σ) = (10, 20), {20, 21, 22, 23} when (γ, σ) =
(10, 30) and {29, 30, 31, 32, 33, 34} when (γ, σ) = (15, 20), while λ1 is fixed at 0.02. Furthermore,
the restored images obtained by using the values in the same set do not change significantly and their
PSNR and SSIM values change slightly, as shown in these examples. Hence, these examples show that
the proposed model is not sensitive to the choice of parameter λ2.
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Figure 12. Plots of (left) energy values E(uk, vk) and (right) PSNR values of uk via the outer
iteration k, when (left) (γ, σ) = (15, 10), (right) (γ, σ) = (15, 20).
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Figure 13. Plots of relative errors of uk (top) and vk (bottom) via the outer iteration k. Top:
ln(∥uk+1 − uk∥2/∥uk+1∥2), bottom: ln(∥vk+1 − vk∥2/∥vk+1∥2).
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(a) λ2 = 20 (b) λ2 = 21 (best) (c) λ2 = 22 (d) λ2 = 23 (e) λ2 = 24
25.46/0.7804 25.51/0.7811 25.58/0.7815 25.67/0.7789 25.70/0.7757

(a) λ2 = 19 (b) λ2 = 20 (best) (c) λ2 = 21 (d) λ2 = 22 (e) λ23
24.38/0.7485 24.55/0.7482 24.67/0.7459 24.71/0.7456 24.77/0.7401

Figure 14. Denoising results with different λ2 in the proposed model, when (γ, σ) = (10, 20)
(top row), (γ, σ) = (10, 30) (bottom row). PSNR/SSIM values are presented. best represents
the optimal value of λ2.

(a) λ2 = 20 (b) λ2 = 21 (c) λ2 = 22 (best) (d) λ2 = 23 (e) λ2 = 24
24.15/0.5559 24.24/0.5624 24.31/0.5690 24.37/0.5746 24.41/0.5796

(a) λ2 = 31 (b) λ2 = 32 (c) λ2 = 33 (best) (d) λ2 = 34 (e) λ2 = 35
23.78/0.5382 23.82/0.5418 23.83/0.5436 23.84/0.5466 23.85/0.5490

Figure 15. Denoising results with different λ2 in the proposed model, when (γ, σ) = (10, 20)
(top row), (γ, σ) = (15, 20) (bottom row). PSNR/SSIM values are presented. best represents
the optimal value of λ2.

Figure 16 presents the denoising results of the proposed model with two different values of λ1 when
(γ, σ) = (15, 10). We recall that for the other noise cases such as (γ, σ) = (10, 20), (10, 30) and (15, 20),
λ1 is fixed at 0.02. However, when (γ, σ) = (15, 10), the restored images obtained with λ1 = 0.02 tend
to retain some Cauchy noise despite the parameter λ2 being adjusted, as seen in the top row. This is due
to that the Gaussian noise level is smaller than the other noise cases, which indicates that the parameter
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λ1 is influenced by the Gaussian noise level. By increasing the value of λ1 to 0.05, we could obtain
satisfactory restored images, as shown in the bottom row. We note that when (γ, σ) = (15, 10), the
optimal λ2 is chosen from {27, 28, 29, 30, 31} for all the test images. Thus, although the parameter λ1

depends on the noise level, two values of λ1 are enough to attain satisfactory denoising results. These
imply that the choice of parameter λ1 is not tricky in the proposed model.

In Figure 17, we present some denoising results of the proposed model with different values for the
parameter γ in (3.2). Throughout the experiments, for the Yang’s model and our model, the parameter
γ is assumed to be the exact Cauchy noise level, denoted by γ∗. So we here present the denoising
results when γ is not the accurate Cauchy noise level. Two values for γ are roughly chosen; one is
smaller than γ∗ while the other one is larger than γ∗. For the Lena image, we test with γ = 5, 15 when
γ∗ = 10, whereas for the Cameraman image, we test with γ = 10, 20 when γ∗ = 15. It can be observed
that even with the values for γ that are different from the precise noise level γ∗, we can attain similar
denoising results to the ones obtained with γ∗, especially when γ > γ∗. These indicate that although
γ = γ∗ generates the best denoising results, the parameter γ does not significantly affect the denoising
results. The estimation for the parameter γ in the presence of mixed Cauchy-Gaussian noise is another
effortful task, so we leave this problem as a future work.

(a) λ2 = 33 (b) λ2 = 34 (c) λ2 = 35 (d) λ2 = 36 (e) λ2 = 37
24.03/0.6154 24.10/0.6203 24.11/0.6212 24.13/0.6231 24.12/0.6228

(a) λ2 = 29 (b) λ2 = 30 (c) λ2 = 31 (best) (d) λ2 = 32 (e) λ2 = 33
24.15/0.6335 24.30/0.6414 24.42/0.6486 24.51/0.6539 24.59/0.6582

Figure 16. Denoising results with two different values of λ1 in the proposed model, when
(γ, σ) = (15, 10). Top: λ1 = 0.02, Bottom: λ1 = 0.05. PSNR/SSIM values are presented.
best represents the optimal value of λ2.
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(a) γ = 5: 26.36 (b) γ = 10: 26.45 (c) γ = 15: 26.37

(a) γ = 10: 25.14 (b) γ = 15: 25.28 (c) γ = 20: 25.35

Figure 17. Denoising results with different γ in the proposed model, when (γ∗, σ) = (10, 20)
(top row), (γ∗, σ) = (15, 10) (bottom row). PSNR values are presented. Parameter λ2 (left to
right): (top) 9, 20, 31, (bottom) 22, 30, 38.

Lastly, in Table 5, the computational cost of the variational models is reported. The computational
time of our model is the slowest among the models. Thus, there is a tradeoff between computing
time and restoration performance. Despite the efficiency of our optimization algorithm, reducing the
computational time of our model remains an issue.

Table 5. Computational time (in seconds) when (γ, σ) = (10, 20).

Model/Image Cauchy-TV [30] L1-TV [19] Yang et al. [31] Proposed
barbara 4.9 1.5 1.3 6.9
bird 8.6 3.2 2.0 10.8
boat 4.9 1.7 1.4 7.0
building 25.7 10.5 6.4 44.2
cameraman 4.6 2.4 1.6 7.2
castle 22.6 11.3 5.7 35.9
lake 4.9 1.8 1.7 6.5
lena 4.2 1.9 1.6 6.0
parrot 4.6 2.5 1.5 6.5
peppers 4.1 1.7 1.5 5.6
pirate 4.5 1.8 1.6 6.6
policemen 27.9 11.6 5.7 51.9

5. Conclusions

In this paper, we introduced a novel image denoising model under mixed Cauchy and Gaussian
noise. The model is composed of a nonconvex data-fidelity term, expressed as an infimal convolution
combination of two data-fidelity terms associated with two noise distributions, and total variation
regularization. This new data-fidelity term enabled the separation of Cauchy noise and Gaussian noise
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components. It facilitated simultaneous removal of both noise. Total variation regularization assisted
in the sufficient elimination of the mixed noise in homogeneous regions, while keeping structural
edges and fine features. Regardless of the nonconvexity of the model, we proved the existence of a
minimizer. To solve the proposed model, we utilized an alternating minimization approach and the
alternating direction method of multipliers. This contributed to an iterative algorithm, and its
convergence was shown experimentally. Numerical results demonstrated the effectiveness of the
proposed model, comparing to other existing models, regarding both visual aspect and image quality
assessments. However, theoretical convergence analysis of the proposed algorithm remains an issue.
Blind denoising with unknown Cauchy noise level γ is another demanding problem to be investigated
in the future.
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Appendix A

For each fixed x ∈ Ω, we define the function h : R × R→ R as

h(s, t) = λ1t2 + λ2 log(γ2 + (s + t − f (x))2) +
µ

2
(s − g(x))2.

The first-order and second-order partial derivatives of h are obtained as

∂h
∂s
= 2λ2

s + t − f (x)
γ2 + (s + t − f (x))2 + µ(s − g(x)),

∂h
∂t
= 2λ2

s + t − f (x)
γ2 + (s + t − f (x))2 + 2λ1t,

∂2h
∂s2 = C + µ,

∂2h
∂t2 = C + 2λ1,

∂2h
∂s∂t

= C, (A.1)

where C is defined as

C = 2λ2
γ2 − (s + t − f (x))2

(γ2 + (s + t − f (x))2)2 .

It can be easily proven that if 4γ2µ ≥ λ2, then ∂
2h
∂s2 (s, ·) ≥ 0, so h is convex with respect to the variable

s. Then, ∂h
∂s (s, ·) = 0 is equivalent to a cubic equation that has either two real roots or one real root.

Thus, the function h(s, ·) has only one minimizer, so h(s, ·) is strictly convex if 4γ2µ ≥ λ2. Similarly,
if 8γ2λ1 ≥ λ2, then ∂

2h
∂t2 (·, t) ≥ 0, so h is strictly convex with respect to t. Moreover, for the convexity

of h on R × R, the Hessian matrix of h needs to be positive semi-definite. That is, in addition to the
aforementioned constraints, the determinant of the Hessian matrix of h should be nonnegative:

∂2h
∂s2

∂2h
∂t2 −

( ∂2h
∂s∂t

)2
= C(µ + 2λ1) + 2µλ1 ≥ 0.

This inequality holds if λ2(µ + 2λ1) ≤ 8γ2µλ1, which is satisfied when λ2 ≤
1
2 min{8γ2λ1, 4γ2µ}. Thus,

if λ2 ≤
1
2 min{8γ2λ1, 4γ2µ}, then the Hessian matrix of h is positive semi-definte, so h is convex. In

addition, h is strictly convex if λ2 <
1
2 min{8γ2λ1, 4γ2µ}.
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