Research article

Statistical solution and piecewise Liouville theorem for the impulsive discrete Zakharov equations

  • Received: 13 October 2021 Revised: 27 February 2022 Accepted: 28 February 2022 Published: 08 March 2022
  • MSC : 35B41, 34D35, 76F20

  • This article studies the discrete Zakharov equations with impulsive effect. The authors first prove that the problem is global well-posed and that the process formed by the solution operators possesses a pullback attractor. Then they establish that there is a family of invariant Borel probability measures contained in the pullback attractor, and that this family of measures satisfies the Liouville type theorem piecewise and is a statistical solution of the impulsive discrete Zakharov equations.

    Citation: Binbin Miao, Chongbin Xu, Caidi Zhao. Statistical solution and piecewise Liouville theorem for the impulsive discrete Zakharov equations[J]. AIMS Mathematics, 2022, 7(5): 9089-9116. doi: 10.3934/math.2022505

    Related Papers:

  • This article studies the discrete Zakharov equations with impulsive effect. The authors first prove that the problem is global well-posed and that the process formed by the solution operators possesses a pullback attractor. Then they establish that there is a family of invariant Borel probability measures contained in the pullback attractor, and that this family of measures satisfies the Liouville type theorem piecewise and is a statistical solution of the impulsive discrete Zakharov equations.



    加载中


    [1] A. Bronzi, C. F. Mondaini, R. Rosa, Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems, SIAM J. Math. Anal., 46 (2014), 1893–1921. https://doi.org/10.1137/130931631 doi: 10.1137/130931631
    [2] A. Bronzi, C. F. Mondaini, R. Rosa, Abstract framework for the theory of statistical solutions, J. Differ. Equations, 260 (2016), 8428–8484. https://doi.org/10.1016/j.jde.2016.02.027 doi: 10.1016/j.jde.2016.02.027
    [3] D. D. Bainov, P. S. Simeonov, Impulsive differential equations: Periodic solutions and applications, John Wiley, New York, 1993.
    [4] T. Caraballo, P. E. Kloeden, J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B, 10 (2008), 761–781. https://doi.org/10.3934/dcdsb.2008.10.761 doi: 10.3934/dcdsb.2008.10.761
    [5] M. Chekroun, N. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Commun. Math. Phys., 316 (2012), 723–761. https://doi.org/10.1007/s00220-012-1515-y doi: 10.1007/s00220-012-1515-y
    [6] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes equations and turbulence, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511546754.004
    [7] C. Foias, R. Rosa, R. Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations, J. Dyn. Differ. Equ., 31 (2019), 1689–1741.
    [8] G. Iovane, A. V. Kapustyan, Global attractor for impulsive reaction-diffusion equation, Nonlinear Oscil., 8 (2005), 318–328. https://doi.org/10.1007/s11072-006-0004-7 doi: 10.1007/s11072-006-0004-7
    [9] G. Iovane, A. V. Kapustyan, J. Valero, Asymptotic behavior of reaction-diffusion equations with non-damped impulsive effects, Nonlinear Anal., 68 (2008), 2516–2530. https://doi.org/10.1016/j.na.2007.02.002 doi: 10.1016/j.na.2007.02.002
    [10] H. Jiang, C. Zhao, Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth, Adv. Differential Equ., 3-4 (2021), 107–132.
    [11] Z. Lin, Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations, Discrete Cont. Dyn. Syst.-B, In press.
    [12] G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B, 9 (2008), 643–659. https://doi.org/10.3934/dcdsb.2008.9.643 doi: 10.3934/dcdsb.2008.9.643
    [13] G. Łukaszewicz, J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Cont. Dyn. Syst., 34 (2014), 4211–4222. https://doi.org/10.3934/dcds.2014.34.4211 doi: 10.3934/dcds.2014.34.4211
    [14] Y. Liang, Z. Guo, Y. Ying, C. Zhao, Finite dimensionality and upper semicontinuity of Kernel sections for the discrete Zakharov equations, Bull. Malays. Math. Sci. Soc., 40 (2017), 135–161. https://doi.org/10.3934/dcds.2008.21.1259 doi: 10.3934/dcds.2008.21.1259
    [15] B. Schmalfuss, Attractors for non-autonomous and random dynamical systems perturbed by impulses, Discrete Cont. Dyn. Syst., 9 (2003), 727–744. https://doi.org/10.3934/dcds.2003.9.727 doi: 10.3934/dcds.2003.9.727
    [16] C. Wang, G. Xue, C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comput., 339 (2018), 853–865. https://doi.org/10.1016/j.amc.2018.06.059 doi: 10.1016/j.amc.2018.06.059
    [17] J. Wang, C. Zhao, T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonlinear Sci. Numer. Simu., 91 (2020), 105459. https://doi.org/10.1016/j.cnsns.2020.105459 doi: 10.1016/j.cnsns.2020.105459
    [18] X. Yan, Y. Wu, C. Zhong, Uniform attractors for impulsive reaction-diffusion equations, Appl. Math. Comput., 216 (2010), 2534–2543. https://doi.org/10.1016/j.amc.2010.03.095 doi: 10.1016/j.amc.2010.03.095
    [19] C. Zhao, L. Yang, Pullback attractor and invariant measures for three dimensional globally modified Navier-Stokes equations, Commun. Math. Sci., 15 (2017), 1565–1580.
    [20] C. Zhao, G. Xue, G. Łukaszewicz, Pullabck attractor and invariant measures for the discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021–4044. https://doi.org/10.3934/dcdsb.2018122 doi: 10.3934/dcdsb.2018122
    [21] C. Zhao, T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differ. Equations, 266 (2019), 7205–7229. https://doi.org/10.1016/j.jde.2018.11.032 doi: 10.1016/j.jde.2018.11.032
    [22] C. Zhao, Y. Li, T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differ. Equations, 269 (2020), 467–494. https://doi.org/10.1016/j.jde.2019.12.011 doi: 10.1016/j.jde.2019.12.011
    [23] C. Zhao, Y. Li, G. Łukaszewicz, Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids, Z. Angew. Math. Phys., 71 (2020), 1–24. https://doi.org/10.1007/s00033-020-01368-8 doi: 10.1007/s00033-020-01368-8
    [24] C. Zhao, Y. Li, Y. Sang, Using trajectory attractor to construct trajectory statistical solutions for 3D incompressible micropolar flows, Z. Angew. Math. Mech., 100 (2020), e201800197. https://doi.org/10.1002/zamm.201800197 doi: 10.1002/zamm.201800197
    [25] C. Zhao, Z. Song, T. Caraballo, Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981. https://doi.org/10.1016/j.aml.2019.07.012 doi: 10.1016/j.aml.2019.07.012
    [26] C. Zhao, Y. Li, Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal.-RWA, 53 (2020), 103077. https://doi.org/10.1016/j.nonrwa.2019.103077 doi: 10.1016/j.nonrwa.2019.103077
    [27] C. Zhao, T. Caraballo, G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differ. Equations, 281 (2021), 1–32. https://doi.org/10.1016/j.jde.2021.01.039 doi: 10.1016/j.jde.2021.01.039
    [28] C. Zhao, H. Jiang, T. Caraballo, Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices, Appl. Math. Comput., 404 (2021), 126103. https://doi.org/10.1016/j.amc.2021.126103 doi: 10.1016/j.amc.2021.126103
    [29] C. Zhao, J. Wang, T. Caraballo, Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations, J. Differ. Equations, 317 (2022), 474–494. https://doi.org/10.1016/j.jde.2022.02.007 doi: 10.1016/j.jde.2022.02.007
    [30] Z. Zhu, C. Zhao, Pullback attractor and invariant measures for the three-dimensional regularized MHD equations, Discrete Cont. Dyn. Syst., 38 (2018), 1461–1477. https://doi.org/10.3934/dcds.2018060 doi: 10.3934/dcds.2018060
    [31] Z. Zhu, Y. Sang, C. Zhao, Pullback attractor and invariant measures for the discrete Zakharov equations, J. Appl. Anal. Comput., 9 (2019), 2333–2357. https://doi.org/10.11948/20190091 doi: 10.11948/20190091
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1324) PDF downloads(71) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog