Research article

A multigrid discretization scheme of discontinuous Galerkin method for the Steklov-Lamé eigenproblem

  • Received: 06 January 2023 Revised: 01 April 2023 Accepted: 03 April 2023 Published: 17 April 2023
  • MSC : 65N25, 65N30

  • In this paper, for the Steklov-Lamé eigenvalue problem, we propose a multigrid discretization scheme of discontinuous Galerkin method based on the shifted-inverse iteration. Based on the existing a priori error estimates, we give the error estimates for the proposed scheme and prove that the resulting approximations can achieve the optimal convergence order when the mesh sizes fit into some relationships. Finally, we combine the multigrid scheme and adaptive procedure to present some numerical examples which indicate that our scheme are locking-free and efficient for computing Steklov-Lamé eigenvalues.

    Citation: Liangkun Xu, Hai Bi. A multigrid discretization scheme of discontinuous Galerkin method for the Steklov-Lamé eigenproblem[J]. AIMS Mathematics, 2023, 8(6): 14207-14231. doi: 10.3934/math.2023727

    Related Papers:

  • In this paper, for the Steklov-Lamé eigenvalue problem, we propose a multigrid discretization scheme of discontinuous Galerkin method based on the shifted-inverse iteration. Based on the existing a priori error estimates, we give the error estimates for the proposed scheme and prove that the resulting approximations can achieve the optimal convergence order when the mesh sizes fit into some relationships. Finally, we combine the multigrid scheme and adaptive procedure to present some numerical examples which indicate that our scheme are locking-free and efficient for computing Steklov-Lamé eigenvalues.



    加载中


    [1] A. Girouard, I. Polterovich, Spectral geometry of the Steklov problem, J. Spectr. Theory, 7 (2017), 321–360. https://doi.org/10.4171/JST/164 doi: 10.4171/JST/164
    [2] M. Levitin, P. Monk, V. Selgas, Impedance eigenvalues in linear elasticity, SIAM J. Appl. Math., 81 (2021), 2433–2456. https://doi.org/10.1137/21M1412955 doi: 10.1137/21M1412955
    [3] F. Magoul$\grave{e}$s, F. X. Roux, L. Series, Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity, Comput. Methods Appl. Mech. Eng., 195 (2006), 3742–3759. https://doi.org/10.1016/j.cma.2005.01.022 doi: 10.1016/j.cma.2005.01.022
    [4] F. Magoul$\grave{e}$s, F. X. Roux, L. Series, Algebraic Dirichlet-to-Neumann mapping for linear elasticity problems with extreme contrasts in the coefficients, Appl. Math. Model., 30 (2006), 702–713. https://doi.org/10.1016/j.apm.2005.07.008 doi: 10.1016/j.apm.2005.07.008
    [5] S. Domínguez, Steklov eigenvalues for the Lamé operator in linear elasticity, J. Comput. Appl. Math., 394 (2021), 113558. http://doi.org/10.1016/J.CAM.2021.113558 doi: 10.1016/J.CAM.2021.113558
    [6] Y. Li, H. Bi, A locking-free discontinuous Galerkin method for linear elastic Steklov eigenvalue problem, Appl. Numer. Math., 188 (2023), 21–41. https://doi.org/10.1016/j.apnum.2023.02.018 doi: 10.1016/j.apnum.2023.02.018
    [7] I. Babu$\check{s}$ka, M. Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math., 62 (1992), 439–463. http://doi.org/10.1007/bf01396238 doi: 10.1007/bf01396238
    [8] I. Babu$\check{s}$ka, M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal., 29 (1992), 1261–1293. http://doi.org/10.1137/0729075 doi: 10.1137/0729075
    [9] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials, Numer. Math., 41 (1983), 39–53. https://doi.org/10.1007/BF01396304 doi: 10.1007/BF01396304
    [10] D. N. Arnold, F. Brezzi, J. Douglas, PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math., 1 (1984), 347–367. http://doi.org/10.1007/bf03167064 doi: 10.1007/bf03167064
    [11] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math., 53 (1988), 513–538. https://doi.org/10.1007/bf01397550 doi: 10.1007/bf01397550
    [12] L. Franca, R. Stenberg, Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM J. Numer. Anal., 28 (1991), 1680–1697. http://www.jstor.org/stable/2157955
    [13] R. S. Falk, Nonconforming finite element methods for the equations of linear elasticity, Math. Comput., 57 (1991), 529–550. http://doi.org/10.1090/s0025-5718-1991-1094947-6 doi: 10.1090/s0025-5718-1991-1094947-6
    [14] S. C. Brenner, L. Y. Sung, Linear finite element methods for planar linear elasticity, Math. Comput., 59 (1992), 321–338. http://doi.org/10.1090/s0025-5718-1992-1140646-2 doi: 10.1090/s0025-5718-1992-1140646-2
    [15] T. P. Wihler, Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer. Anal., 24 (2004), 45–75. https://doi.org/10.1093/imanum/24.1.45 doi: 10.1093/imanum/24.1.45
    [16] T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems, Math. Comput., 75 (2006), 1087–1102. https://doi.org/10.2307/4100266 doi: 10.2307/4100266
    [17] T. Steiner, P. Wriggers, S. Loehnert, A discontinuous Galerkin finite element method for linear elasticity using a mixed integration scheme to circumvent shear-locking, PAMM, 16 (2016), 769–770. https://doi.org/10.1002/pamm.201610373 doi: 10.1002/pamm.201610373
    [18] J. Xu, A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70 (1999), 17–25. https://doi.org/10.2307/2698923 doi: 10.2307/2698923
    [19] J. Xu, A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta. Math. Appl. Sin., 18 (2002), 185–200. https://doi.org/10.1007/s102550200018 doi: 10.1007/s102550200018
    [20] Y. Yang, H. Bi, Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49 (2011), 1602–1624. https://doi.org/10.1137/100810241 doi: 10.1137/100810241
    [21] Q. Li, Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), 129–139. https://doi.org/10.1007/s12190-010-0392-9 doi: 10.1007/s12190-010-0392-9
    [22] H. Bi, Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), 9669–9678. http://doi.org/10.1016/j.amc.2011.04.051 doi: 10.1016/j.amc.2011.04.051
    [23] M. Xie, F. Xu, M. Yue, A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering, ESAIM Math. Model. Numer. Anal., 55 (2021), 1779–1802. https://doi.org/10.1051/m2an/2021039 doi: 10.1051/m2an/2021039
    [24] M. Yue, F. Xu, M. Xie, A multilevel Newton's method for the Steklov eigenvalue problem, Adv. Comput. Math., 48 (2022), 33. https://doi.org/10.1007/s10444-022-09934-6 doi: 10.1007/s10444-022-09934-6
    [25] A. Andreev, R. Lazarov, M. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182 (2005), 333–349. http://doi.org/10.1016/j.cam.2004.12.015 doi: 10.1016/j.cam.2004.12.015
    [26] C. S. Chien, B. W. Jeng, A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27 (2006), 1287–1304. http://doi.org/10.1137/030602447 doi: 10.1137/030602447
    [27] X. Dai, A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46 (2008), 295–324. http://doi.org/10.1137/06067780x doi: 10.1137/06067780x
    [28] H. Chen, S. Jia, H. Xie, Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems, Appl. Math., 54 (2009), 237–250. http://doi.org/10.1007/s10492-009-0015-7 doi: 10.1007/s10492-009-0015-7
    [29] H. Xie, X. Yin, Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem, Adv. Comput. Math., 41 (2015), 799–812. https://doi.org/10.1007/s10444-014-9386-8 doi: 10.1007/s10444-014-9386-8
    [30] J. Chen, Y. Xu, J. Zou, An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements, J. Comput. Phys., 229 (2010), 2649–2658. http://doi.org/10.1016/j.jcp.2009.12.013 doi: 10.1016/j.jcp.2009.12.013
    [31] M. R. Racheva, A. B. Andreev, Superconvergence postprocessing for eigenvalues, Comp. Methods Appl. Math., 2 (2002), 171–185. https://doi.org/10.2478/cmam-2002-0011 doi: 10.2478/cmam-2002-0011
    [32] Y. Yang, H. Bi, J. Han, Y. Yu, The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37 (2015), A2583–A2606. https://doi.org/10.1137/140992011 doi: 10.1137/140992011
    [33] P. Hansbo, M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method, Comput. Methods Appl. Mech. Eng., 191 (2002), 1895–1908. http://doi.org/10.1016/s0045-7825(01)00358-9 doi: 10.1016/s0045-7825(01)00358-9
    [34] I. Babu$\check{s}$ka, J. E. Osborn, Eigenvalue Problems, In: Finite Element Methods (Part I), North-Holand: Elsevier Science Publishers, 641–787, 1991.
    [35] L. Chen, An Integrated Finite Element Method Package in MATLAB, California: University of California at Irvine, 2009.
    [36] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Philadelphia: SIAM, 1997.
    [37] P. Hansbo, M. G. Larson, Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem, Comput. Methods Appl. Mech. Engrg., 200 (2011), 3026–3030. http://doi.org/10.1016/j.cma.2011.06.008 doi: 10.1016/j.cma.2011.06.008
    [38] W. D$\ddot{o}$rfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106–1124. http://doi.org/10.2307/2158497 doi: 10.2307/2158497
    [39] J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Comput., 16 (1995), 210–227. https://doi.org/10.1137/0916014 doi: 10.1137/0916014
    [40] P. Morin, R. H. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466–488. https://doi.org/10.2307/3062065 doi: 10.2307/3062065
    [41] X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313–355. http://doi.org/10.1007/s00211-008-0169-3 doi: 10.1007/s00211-008-0169-3
    [42] T. Liu, Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation, J. Comput. Appl. Math., 413 (2022), 114393. https://doi.org/10.1016/j.cam.2022.114393 doi: 10.1016/j.cam.2022.114393
    [43] F. Xu, Y. Guo, Q. Huang, H. Ma, An efficient multigrid method for semilinear interface problems, Appl. Numer. Math., 179 (2022), 238–254. https://doi.org/10.1016/j.apnum.2022.05.003 doi: 10.1016/j.apnum.2022.05.003
    [44] F. Xu, M. Xie, M. Yue, Multigrid method for nonlinear eigenvalue problems based on Newton iteration, J. Sci. Comput., 94 (2023), 42. https://doi.org/10.1007/s10915-022-02070-9 doi: 10.1007/s10915-022-02070-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1148) PDF downloads(38) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog