Research article

Controllability of fractional differential evolution equation of order $ \gamma \in (1, 2) $ with nonlocal conditions

  • Received: 09 January 2023 Revised: 06 March 2023 Accepted: 09 March 2023 Published: 17 April 2023
  • MSC : 34A08, 54H25, 47H10

  • This paper investigates the existence of positive mild solutions and controllability for fractional differential evolution equations of order $ \gamma \in (1, 2) $ with nonlocal conditions in Banach spaces. Our approach is based on Schauder's fixed point theorem, Krasnoselskii's fixed point theorem, and the Arzelà-Ascoli theorem. Finally, we include an example to verify our theoretical results.

    Citation: Sadam Hussain, Muhammad Sarwar, Kottakkaran Sooppy Nisar, Kamal Shah. Controllability of fractional differential evolution equation of order $ \gamma \in (1, 2) $ with nonlocal conditions[J]. AIMS Mathematics, 2023, 8(6): 14188-14206. doi: 10.3934/math.2023726

    Related Papers:

  • This paper investigates the existence of positive mild solutions and controllability for fractional differential evolution equations of order $ \gamma \in (1, 2) $ with nonlocal conditions in Banach spaces. Our approach is based on Schauder's fixed point theorem, Krasnoselskii's fixed point theorem, and the Arzelà-Ascoli theorem. Finally, we include an example to verify our theoretical results.



    加载中


    [1] R. Gul, M. Sarwar, K. Shah, T. Abdeljawad, F. Jarad, Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Funct. Space., 2020 (2020), 4714032. https://doi.org/10.1155/2020/4714032 doi: 10.1155/2020/4714032
    [2] M. B.Zada, M.Sarwar, C. Tunc, Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations, J. Fixed Point Theory Appl., 20, (2018), 25. https://doi.org/10.1007/s11784-018-0510-0 doi: 10.1007/s11784-018-0510-0
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [4] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2016.
    [5] K. B. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [6] I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999.
    [7] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U
    [8] G. M. Mophou, G. M. N'Guerekata, Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315–322. https://doi.org/10.1007/s00233-008-9117-x doi: 10.1007/s00233-008-9117-x
    [9] X. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractonal differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. math Appl., 64 (2012), 2100–2110. https://doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006
    [10] X. Wang, X. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Adv. Differ. Equ., 2015 (2015), 159. https://doi.org/10.1186/s13662-015-0461-3 doi: 10.1186/s13662-015-0461-3
    [11] K. Balachandran, R. Sakthivel, Existence of solutions of neutral functional integrodifferential equation in Banach spaces, Proc. Indian Acad. Sci. Math. Sci., 109 (1999), 325–332. https://doi.org/10.1007/BF02843536 doi: 10.1007/BF02843536
    [12] G. Arthi, K. Balachandran, Controllabibity of damped second-order neutral integro-differential systems with nonlocal conditions, J. Control Theorey Appl., 11 (2013), 186–192.
    [13] M. M. Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order $1 < r < 2$ via measure of noncompactness, Chaos Soliton. Fract., 139 (2020), 110299. https://doi.org/10.1016/j.chaos.2020.110299 doi: 10.1016/j.chaos.2020.110299
    [14] J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12 (2011), 3642–3653. https://doi.org/10.1016/j.nonrwa.2011.06.021 doi: 10.1016/j.nonrwa.2011.06.021
    [15] Z. Liu, B. Zeng, Existence and controllability for fractional evolution inclusions of Clarke's subdifferential type, Appl. Math. Comput., 257 (2015), 178–189. https://doi.org/10.1016/j.amc.2014.12.057 doi: 10.1016/j.amc.2014.12.057
    [16] S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981–6989. https://doi.org/10.1016/j.amc.2011.01.107 doi: 10.1016/j.amc.2011.01.107
    [17] N. I. Mahmudov, S. Zorlu, Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions, Bound. Value Probl., 2013 (2013), 118. https://doi.org/10.1186/1687-2770-2013-118 doi: 10.1186/1687-2770-2013-118
    [18] L. Gorniewicz, S. K. Ntouyas, D. O'Regan, Existence and controllability results for first and second order functioal semilinear differential inclusions with nonlocal conditions, Numer. Funct. Anal. Optim., 28 (2007), 53–82. https://doi.org/10.1080/01630560600883093 doi: 10.1080/01630560600883093
    [19] Y. Guo, X. B. Shu, F. Xu, C. Yang, HJB equation for optimal control system with random impulses, Optimization, 2022 (2022), 1–25. https://doi.org/10.1080/02331934.2022.2154607 doi: 10.1080/02331934.2022.2154607
    [20] D. Chendrayan, U. Ramalingam, V. Vijaykumar, A. Shukla, K. S. Nisar, New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalitities of order $r \in (1, 2)$, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106891. https://doi.org/10.1016/j.cnsns.2022.106891 doi: 10.1016/j.cnsns.2022.106891
    [21] M. M. Raja, A. Shukla, J. J. Nieto, V. Vijaykumar, K. S. Nisar, A note on the existence and controllability results for fractional integhro differential inclusions of order $r \in (1, 2]$, Qual. Theory Dyn. Syst., 21 (2022), 150. https://doi.org/10.1007/s12346-022-00681-z doi: 10.1007/s12346-022-00681-z
    [22] D. Chendrayan, V. Vijaykumar, U. Ramalingam, A. Shukla, K. S. Nisar, Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order $1 < r < 2, $ Int. J. Nonlinear Sci. Numer., 2022. https://doi.org/10.1515/ijnsns-2021-0479 doi: 10.1515/ijnsns-2021-0479
    [23] U. Arora, V. Vijaykumar, A. Shukla, M. Sajid, K. S. Nisar, A discussion on controllability of nonlocal fractional semilinear equations of order $1 < r < 2$ with monotonic nonlinearity, J. King Saud. Univ. Sci., 34 (2022), 102295. https://doi.org/10.1016/j.jksus.2022.102295 doi: 10.1016/j.jksus.2022.102295
    [24] M. Mohan Raja, V. Vijaykumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1 < r < 2$ with sectorial operators, J. Comput. Appl. Math. 415 (2022), 114492. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492
    [25] Y. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijaykumar, Results on controllability for Sobolev type fractional differential equations of order $1 < r < 2$ with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568
    [26] L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Reemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. https://doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057
    [27] G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Hybrid control scheme for projective lag synchronization of riemann-liouville sense fractional order memristive bam neuralnetworks with mixed delays, Mathematics, 7 (2019), 759. https://doi.org/10.3390/math7080759 doi: 10.3390/math7080759
    [28] T. Abdeljawad, J. Alzabut, On Riemann-Liouville fractional q -difference equations and their application to retarded logistic type model, Math. Method. Appl. Sci., 41 (2018), 8953–8962. https://doi.org/10.1002/mma.4743 doi: 10.1002/mma.4743
    [29] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Boston: Academic Press, 1988.
    [30] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 2012.
    [31] E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D thesis, Eindhoven University of Technology, 2001.
    [32] J. W. Hanneken, D. M. Vaught, B. N. Narahari Achar, Enumeration of the real zeros of the Mittag-Leffler function E$\alpha$(z) $1 < \alpha < 2$, Adv. Fract. Calc. Theor. Dev. Appl., 2007 (2007), 15–26.
    [33] E. Hernández, R. Sakthivel, S. T. Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differ. Equ., 2008 (2008), 28.
    [34] Z. Denton, P. W. Ng, A. S. Vastsala, Quasi linearization method via lower and upper solutions for Riemann-Liouville fractional differential equations, Nonlinear Dyn. Syst. Theory, 11 (2011), 239–251.
    [35] P. Bénilan, Equations dans un espace de Banach quelconque et appications, These, Publications Math. Orsay, Univ. Paris-Sud., 1972.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(948) PDF downloads(69) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog