This paper investigates the existence of positive mild solutions and controllability for fractional differential evolution equations of order $ \gamma \in (1, 2) $ with nonlocal conditions in Banach spaces. Our approach is based on Schauder's fixed point theorem, Krasnoselskii's fixed point theorem, and the Arzelà-Ascoli theorem. Finally, we include an example to verify our theoretical results.
Citation: Sadam Hussain, Muhammad Sarwar, Kottakkaran Sooppy Nisar, Kamal Shah. Controllability of fractional differential evolution equation of order $ \gamma \in (1, 2) $ with nonlocal conditions[J]. AIMS Mathematics, 2023, 8(6): 14188-14206. doi: 10.3934/math.2023726
This paper investigates the existence of positive mild solutions and controllability for fractional differential evolution equations of order $ \gamma \in (1, 2) $ with nonlocal conditions in Banach spaces. Our approach is based on Schauder's fixed point theorem, Krasnoselskii's fixed point theorem, and the Arzelà-Ascoli theorem. Finally, we include an example to verify our theoretical results.
[1] | R. Gul, M. Sarwar, K. Shah, T. Abdeljawad, F. Jarad, Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Funct. Space., 2020 (2020), 4714032. https://doi.org/10.1155/2020/4714032 doi: 10.1155/2020/4714032 |
[2] | M. B.Zada, M.Sarwar, C. Tunc, Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations, J. Fixed Point Theory Appl., 20, (2018), 25. https://doi.org/10.1007/s11784-018-0510-0 doi: 10.1007/s11784-018-0510-0 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[4] | Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2016. |
[5] | K. B. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974. |
[6] | I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999. |
[7] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U |
[8] | G. M. Mophou, G. M. N'Guerekata, Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315–322. https://doi.org/10.1007/s00233-008-9117-x doi: 10.1007/s00233-008-9117-x |
[9] | X. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractonal differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. math Appl., 64 (2012), 2100–2110. https://doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006 |
[10] | X. Wang, X. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Adv. Differ. Equ., 2015 (2015), 159. https://doi.org/10.1186/s13662-015-0461-3 doi: 10.1186/s13662-015-0461-3 |
[11] | K. Balachandran, R. Sakthivel, Existence of solutions of neutral functional integrodifferential equation in Banach spaces, Proc. Indian Acad. Sci. Math. Sci., 109 (1999), 325–332. https://doi.org/10.1007/BF02843536 doi: 10.1007/BF02843536 |
[12] | G. Arthi, K. Balachandran, Controllabibity of damped second-order neutral integro-differential systems with nonlocal conditions, J. Control Theorey Appl., 11 (2013), 186–192. |
[13] | M. M. Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order $1 < r < 2$ via measure of noncompactness, Chaos Soliton. Fract., 139 (2020), 110299. https://doi.org/10.1016/j.chaos.2020.110299 doi: 10.1016/j.chaos.2020.110299 |
[14] | J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12 (2011), 3642–3653. https://doi.org/10.1016/j.nonrwa.2011.06.021 doi: 10.1016/j.nonrwa.2011.06.021 |
[15] | Z. Liu, B. Zeng, Existence and controllability for fractional evolution inclusions of Clarke's subdifferential type, Appl. Math. Comput., 257 (2015), 178–189. https://doi.org/10.1016/j.amc.2014.12.057 doi: 10.1016/j.amc.2014.12.057 |
[16] | S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981–6989. https://doi.org/10.1016/j.amc.2011.01.107 doi: 10.1016/j.amc.2011.01.107 |
[17] | N. I. Mahmudov, S. Zorlu, Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions, Bound. Value Probl., 2013 (2013), 118. https://doi.org/10.1186/1687-2770-2013-118 doi: 10.1186/1687-2770-2013-118 |
[18] | L. Gorniewicz, S. K. Ntouyas, D. O'Regan, Existence and controllability results for first and second order functioal semilinear differential inclusions with nonlocal conditions, Numer. Funct. Anal. Optim., 28 (2007), 53–82. https://doi.org/10.1080/01630560600883093 doi: 10.1080/01630560600883093 |
[19] | Y. Guo, X. B. Shu, F. Xu, C. Yang, HJB equation for optimal control system with random impulses, Optimization, 2022 (2022), 1–25. https://doi.org/10.1080/02331934.2022.2154607 doi: 10.1080/02331934.2022.2154607 |
[20] | D. Chendrayan, U. Ramalingam, V. Vijaykumar, A. Shukla, K. S. Nisar, New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalitities of order $r \in (1, 2)$, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106891. https://doi.org/10.1016/j.cnsns.2022.106891 doi: 10.1016/j.cnsns.2022.106891 |
[21] | M. M. Raja, A. Shukla, J. J. Nieto, V. Vijaykumar, K. S. Nisar, A note on the existence and controllability results for fractional integhro differential inclusions of order $r \in (1, 2]$, Qual. Theory Dyn. Syst., 21 (2022), 150. https://doi.org/10.1007/s12346-022-00681-z doi: 10.1007/s12346-022-00681-z |
[22] | D. Chendrayan, V. Vijaykumar, U. Ramalingam, A. Shukla, K. S. Nisar, Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order $1 < r < 2, $ Int. J. Nonlinear Sci. Numer., 2022. https://doi.org/10.1515/ijnsns-2021-0479 doi: 10.1515/ijnsns-2021-0479 |
[23] | U. Arora, V. Vijaykumar, A. Shukla, M. Sajid, K. S. Nisar, A discussion on controllability of nonlocal fractional semilinear equations of order $1 < r < 2$ with monotonic nonlinearity, J. King Saud. Univ. Sci., 34 (2022), 102295. https://doi.org/10.1016/j.jksus.2022.102295 doi: 10.1016/j.jksus.2022.102295 |
[24] | M. Mohan Raja, V. Vijaykumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1 < r < 2$ with sectorial operators, J. Comput. Appl. Math. 415 (2022), 114492. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492 |
[25] | Y. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijaykumar, Results on controllability for Sobolev type fractional differential equations of order $1 < r < 2$ with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568 |
[26] | L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Reemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. https://doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057 |
[27] | G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Hybrid control scheme for projective lag synchronization of riemann-liouville sense fractional order memristive bam neuralnetworks with mixed delays, Mathematics, 7 (2019), 759. https://doi.org/10.3390/math7080759 doi: 10.3390/math7080759 |
[28] | T. Abdeljawad, J. Alzabut, On Riemann-Liouville fractional q -difference equations and their application to retarded logistic type model, Math. Method. Appl. Sci., 41 (2018), 8953–8962. https://doi.org/10.1002/mma.4743 doi: 10.1002/mma.4743 |
[29] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Boston: Academic Press, 1988. |
[30] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 2012. |
[31] | E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[32] | J. W. Hanneken, D. M. Vaught, B. N. Narahari Achar, Enumeration of the real zeros of the Mittag-Leffler function E$\alpha$(z) $1 < \alpha < 2$, Adv. Fract. Calc. Theor. Dev. Appl., 2007 (2007), 15–26. |
[33] | E. Hernández, R. Sakthivel, S. T. Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differ. Equ., 2008 (2008), 28. |
[34] | Z. Denton, P. W. Ng, A. S. Vastsala, Quasi linearization method via lower and upper solutions for Riemann-Liouville fractional differential equations, Nonlinear Dyn. Syst. Theory, 11 (2011), 239–251. |
[35] |
P. Bénilan, Equations |