This paper is concerned with a class of nonhomogeneous generalized Kadomtsev-Petviashvili equations
$ \bigg\{ \begin{array}{rl} & u_t + (|u|^{p-2}u)_x + u_{xxx} +h_x(x-\tau t, y) +\beta \nabla_y v = 0, \\ & v_x = \nabla_y u.\end{array} $
By proving a local Palais-Smale condition, we manage to prove the existence of solitary waves with the help of a variational characterization on the smallest positive constant of an anisotropic Sobolev inequality (Huang and Rocha, J. Inequal. Appl., 2018,163). The novelty is to give an explicit estimate on the sufficient condition of $ h $ to get the existence of solitary waves.
Citation: Lirong Huang. A local Palais-Smale condition and existence of solitary waves for a class of nonhomogeneous generalized Kadomtsev-Petviashvili equations[J]. AIMS Mathematics, 2023, 8(6): 14180-14187. doi: 10.3934/math.2023725
This paper is concerned with a class of nonhomogeneous generalized Kadomtsev-Petviashvili equations
$ \bigg\{ \begin{array}{rl} & u_t + (|u|^{p-2}u)_x + u_{xxx} +h_x(x-\tau t, y) +\beta \nabla_y v = 0, \\ & v_x = \nabla_y u.\end{array} $
By proving a local Palais-Smale condition, we manage to prove the existence of solitary waves with the help of a variational characterization on the smallest positive constant of an anisotropic Sobolev inequality (Huang and Rocha, J. Inequal. Appl., 2018,163). The novelty is to give an explicit estimate on the sufficient condition of $ h $ to get the existence of solitary waves.
[1] | B. Kadomtsev, V. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics. Doklady, 15 (1970), 539–541. |
[2] | D. David, D. Levi, P. Winternitz, Integrable nonlinear equations for water waves in straits of varying depth and width, Stud. Appl. Math., 76 (1987), 133–168. https://doi.org/10.1002/sapm1987762133 doi: 10.1002/sapm1987762133 |
[3] | D. David, D. Levi, P. Winternitz, Solitons in shallow seas of variable depth and in marine straits, Stud. Appl. Math., 80 (1989), 1–23. https://doi.org/10.1002/sapm19898011 doi: 10.1002/sapm19898011 |
[4] | F. Güngör, P. Winternitz, Generalized Kadomtsev-Petviashvili equation with an infinite-dimensional symmetry algebra, J. Math. Anal. Appl., 276 (2002), 314–328. https://doi.org/10.1016/S0022-247X(02)00445-6 doi: 10.1016/S0022-247X(02)00445-6 |
[5] | B. Tian, Y. T. Gao, Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra, Appl. Math. Comput., 84 (1997), 125–130. https://doi.org/10.1016/S0096-3003(96)00115-4 doi: 10.1016/S0096-3003(96)00115-4 |
[6] | Y. Zhang, Y. Xu, K. Ma, New type of a generalized variable coefficient Kadomtsev-Petviashvili equation with self-consistent sources and its Grammian-type solutions, Commun. Nonlinear Sci., 37 (2016), 77–89. https://doi.org/10.1016/j.cnsns.2016.01.008 doi: 10.1016/j.cnsns.2016.01.008 |
[7] | A. De Bouard, J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 14 (1997), 211–236. https://doi.org/10.1016/S0294-1449(97)80145-X doi: 10.1016/S0294-1449(97)80145-X |
[8] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dyn., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8 |
[9] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new $(3+1)$-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simulat., 187 (2021), 505–519. https://doi.org/10.1016/j.matcom.2021.03.012 doi: 10.1016/j.matcom.2021.03.012 |
[10] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids, Phys. Lett. A, 413 (2021), 127585. https://doi.org/10.1016/j.physleta.2021.127585 doi: 10.1016/j.physleta.2021.127585 |
[11] | Y. L. Ma, B. Q. Li, Rogue wave solutions, soliton and rogue wave mixed solution for a generalized $(3+1)$-dimensional Kadomtsev-Petviashvili equation in fluids, Mod. Phys. Lett. B, 32 (2018), 1850358. |
[12] | Y. L. Ma, B. Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Mathematics, 5 (2020), 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080 |
[13] | Z. Q. Wang, M. Willem, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Topol. Method. Nonl. An., 7 (1996), 261–270. https://doi.org/10.12775/TMNA.1996.012 doi: 10.12775/TMNA.1996.012 |
[14] | B. Xuan, Nontrivial solitary waves of GKP equation in multi-dimensional spaces, Revista Colombiana de Matematicas, 37 (2003), 11–23. https://doi.org/10.15446/recolma doi: 10.15446/recolma |
[15] | C. O. Alves, O. H. Miyagaki, Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation, J. Math. Phys., 58 (2017), 081503. https://doi.org/10.1063/1.4997014 doi: 10.1063/1.4997014 |
[16] | X. M. He, W. M. Zou, Nontrivial solitary waves to the generalized Kadomtsev-Petviashvili equations, Appl. Math. Comput., 197 (2008), 858–863. https://doi.org/10.1016/j.amc.2007.08.061 doi: 10.1016/j.amc.2007.08.061 |
[17] | Z. P. Liang, J. B. Su, Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation, Acta Math. Sci., 32 (2012), 1149–1156. https://doi.org/10.1016/S0252-9602(12)60087-3 doi: 10.1016/S0252-9602(12)60087-3 |
[18] | W. M. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35–39. https://doi.org/10.1016/S0893-9659(01)00089-1 doi: 10.1016/S0893-9659(01)00089-1 |
[19] | M. Marin, A. R. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type $III$ for Cosserat media, J. Taibah Univ. Sci., 16 (2022), 1264–1274. https://doi.org/10.1080/16583655.2022.2160290 doi: 10.1080/16583655.2022.2160290 |
[20] | I. Ali, A. R. Seadawy, S. T. R. Rizvi, M. Younis, K. Ali, Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model, Int. J. Mod. Phys. B, 34 (2020), 2050283. https://doi.org/10.1142/S0217979220502835 doi: 10.1142/S0217979220502835 |
[21] | A. R. Seadawy, N. Cheemaa, Some new families of spiky solitary waves of one-dimensional higher-order KdV equation with power law nonlinearity in plasma physics, Indian J. Phys., 94 (2020), 117–126. https://doi.org/10.1007/s12648-019-01442-6 doi: 10.1007/s12648-019-01442-6 |
[22] | A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl., 67 (2014), 172–180. https://doi.org/10.1016/j.camwa.2013.11.001 doi: 10.1016/j.camwa.2013.11.001 |
[23] | S. T. R. Rizvi, A. R. Seadawy, F. Ashraf, M. Younis, H. Iqbal, D. Baleanu, Lump and interaction solutions of a geophysical Korteweg-de Vries equation, Results Phys., 19 (2020), 103661. https://doi.org/10.1016/j.rinp.2020.103661 doi: 10.1016/j.rinp.2020.103661 |
[24] | J. Wang, K. Shehzad, A. R. Seadawy, M. Arshad, F. Asmat, Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability, J. Taibah Univ. Sci., 17 (2023), 2163872. https://doi.org/10.1080/16583655.2022.2163872 doi: 10.1080/16583655.2022.2163872 |
[25] | O. V. Besov, V. P. Il'in, S. M. Nikolski, Integral representations of functions and imbedding theorems, New York: Wiley, 1978. |
[26] | L. Huang, E. Rocha, On a class of N-dimensional anisotropic Sobolev inequalities, J. Inequal. Appl., 2018 (2018), 163. https://doi.org/10.1186/s13660-018-1754-3 doi: 10.1186/s13660-018-1754-3 |
[27] | Y. Liu, X. P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Commun. Math. Phys., 183 (1997), 253–266. https://doi.org/10.1007/BF02506406 doi: 10.1007/BF02506406 |
[28] | H. Brezis, E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3 |