Research article

Property $ \bar{A} $ of third-order noncanonical functional differential equations with positive and negative terms

  • Correction on: AIMS Mathematics 9: 8803–8804.
  • Received: 03 January 2023 Revised: 28 February 2023 Accepted: 14 March 2023 Published: 17 April 2023
  • MSC : 34C10, 34K11

  • In this article, we have derived a new method to study the oscillatory and asymptotic properties for third-order noncanonical functional differential equations with both positive and negative terms of the form

    $ \begin{equation*} (p_2 (t)(p_1 (t) x'(t) )')'+a(t)g(x(\tau(t)))-b(t)h(x(\sigma(t)) = 0 \end{equation*} $

    Firstly, we have converted the above equation of noncanonical type into the canonical type using the strongly noncanonical operator and obtained some new conditions for Property $ \bar{A} $. We furnished illustrative examples to validate our main result.

    Citation: S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh. Property $ \bar{A} $ of third-order noncanonical functional differential equations with positive and negative terms[J]. AIMS Mathematics, 2023, 8(6): 14167-14179. doi: 10.3934/math.2023724

    Related Papers:

  • In this article, we have derived a new method to study the oscillatory and asymptotic properties for third-order noncanonical functional differential equations with both positive and negative terms of the form

    $ \begin{equation*} (p_2 (t)(p_1 (t) x'(t) )')'+a(t)g(x(\tau(t)))-b(t)h(x(\sigma(t)) = 0 \end{equation*} $

    Firstly, we have converted the above equation of noncanonical type into the canonical type using the strongly noncanonical operator and obtained some new conditions for Property $ \bar{A} $. We furnished illustrative examples to validate our main result.



    加载中


    [1] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwan. J. Math., 17 (2013), 545–558. https://doi.org/10.11650/tjm.17.2013.2095 doi: 10.11650/tjm.17.2013.2095
    [2] R. P. Agarwal, S. R. Grace, D. O' Regan, Oscillation theory for difference and functional differential equations, Dordrecht: Kluwer Academic, 2000.
    [3] M. Altanji, G. N. Chhatria, S. S. Santra, A. Scapellato, Oscillation criteria for sublinear and superlinear first-order difference equations of neutral type with several delays, AIMS Math., 7 (2022), 17670–17684. https://doi.org/10.3934/math.2022973 doi: 10.3934/math.2022973
    [4] A. Ahmad, M. Farman, P. A. Naik, N. Zafar, A. Akgul, M. U. Saleem, Modeling and numerical investigation of fractional‐order bovine babesiosis disease, Numer. Meth. Part. Diff. Equ., 37(2020), 1946–1964. https://doi.org/10.1002/num.22632 doi: 10.1002/num.22632
    [5] J. Alzabut, S. R. Grace, S. S. Santra, G. N. Chhatria, Asymptotic and oscillatory behaviour of third order non-linear differential equations with canonical operator and mixed neutral terms, Qual. Theory Dyn. Syst., 22 (2023), 15. https://doi.org/10.1007/s12346-022-00715-6 doi: 10.1007/s12346-022-00715-6
    [6] B. Baculikova, J. Dzurina, Property A of differential equations with positive and negative term, Electron J. Qual. Theory Differ. Equ., 27 (2017), 1–7. https://doi.org/10.14232/ejqtde.2017.1.27 doi: 10.14232/ejqtde.2017.1.27
    [7] B. Baculikova, J. Dzurina, Oscillation of functional trinomial differential equations with positive and negative term, Appl. Math. Comput., 295 (2017), 47–52. https://doi.org/10.1016/j.amc.2016.10.003 doi: 10.1016/j.amc.2016.10.003
    [8] B. Baculikova, Asymptotic properties of noncanonical third order differential equations, Math. Slovaca, 69 (2019), 1341–1350. https://doi.org/10.1515/ms-2017-0312 doi: 10.1515/ms-2017-0312
    [9] B. Baculikova, J. Dzurina, Oscillation and property B for third-order differential equation with advanced arguments, Electron J. Differ. Equ., 2016 (2016), 1–10.
    [10] G. E. Chatzarakis, S. R. Grace, I. Jadlovska, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ., 2017 (2017), 330. https://doi.org/10.1186/s13662-017-1384-y doi: 10.1186/s13662-017-1384-y
    [11] G. E. Chatzarakis, J. Dzurina, I. Jadlovska, Oscillation and asymptotic properties of third-order quasilinear delay differential equations, J. Inequ. Appl., 2019 (2019), 23. https://doi.org/10.1186/s13660-019-1967-0 doi: 10.1186/s13660-019-1967-0
    [12] J. Dzurina, I. Jadlovska, Oscillation of third-order differential equations with noncanonical operators, Appl. Math. Comput., 336 (2018), 394–402. https://doi.org/10.1016/j.amc.2018.04.043 doi: 10.1016/j.amc.2018.04.043
    [13] J. Dzurina, B. Baculikova, I. Jadlovska, Integral oscillation criteria for third-order differential equations with delay argument, Int. J. Pure Appl. Math., 108 (2016), 169–183. https://doi.org/10.12732/ijpam.v108i1.15 doi: 10.12732/ijpam.v108i1.15
    [14] J. Dzurina, I. Jadlovska, Oscillation of n-th order strongly noncanonical delay differential equations, Appl. Math. Lett., 115 (2021), 106940. https://doi.org/10.1016/j.aml.2020.106940 doi: 10.1016/j.aml.2020.106940
    [15] J. Dzurina, I. Jadlovska, Asymptotic behavior of third-order functional differential equations with a negative middle term, Adv. Differ. Equ., 2017 (2017), 71. https://doi.org/10.1186/s13662-017-1127-0 doi: 10.1186/s13662-017-1127-0
    [16] J. Dzurina, B. Baculikova, Oscillation of trinomial differential equations with positive and negative terms, Electron. J. Qual. Theory Differ. Equ., 43 (2014), 1–8.
    [17] M. B. Ghori, P. A. Naik, J. Zu, Z Eskandari, M. U. D. Naik, Global dynamics and bifurcation analysis of a fractional‐order SEIR epidemic model with saturation incidence rate, Math. Method. Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
    [18] S. R. Grace, I. Jadlovska, A. Zafer, On oscillation of third-order noncanonical delay differential equations, App.Math. Comput., 362 (2019), 124530. https://doi.org/10.1016/j.amc.2019.06.044 doi: 10.1016/j.amc.2019.06.044
    [19] I. Jadlovska, G. E. Chatzarakis, J. Dzurina, S. R. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 9 (2021), 1675. https://doi.org/10.3390/math9141675 doi: 10.3390/math9141675
    [20] R. Koplatadze, G. Kvinkadze, I. P. Stavroulakis, Properties A and B of n-th order linear differential equations with deviating argument, Georgian Math. J., 6 (1999), 553–566. https://doi.org/10.1515/GMJ.1999.553 doi: 10.1515/GMJ.1999.553
    [21] I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Berlin: Springer, 2012.
    [22] P. A. Naik, J. Zu, M. U. D. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics, Int. J. Biomath., 14 (2021), 2150046. https://doi.org/10.1142/S1793524521500467 doi: 10.1142/S1793524521500467
    [23] P. A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19 (2022), 52–84.
    [24] P. A. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 795. https://doi.org/10.1140/epjp/s13360-020-00819-5 doi: 10.1140/epjp/s13360-020-00819-5
    [25] S. H. Saker, Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaa, 56 (2006), 433–450.
    [26] K. Saranya, V. Piramanantham, E. Thandapani, Oscillation results for third-order semi-canonical quasilinear delay differential equations, Nonatuom. Dyn. Syst., 8 (2021), 228–238. https://doi.org/10.1515/msds-2020-0135 doi: 10.1515/msds-2020-0135
    [27] K. Saranya, V. Piramanantham, E. Thandapani, E. Tune, Asymptotic behavior of semi-canonical third-order nonlinear functional differential equations, Paleshine J. Math., 11 (2022), 433–442.
    [28] S. S. Santra, A. Scapellato, Some conditions for the oscillation of second-order differential equations with several mixed delays, J. Fixed Point Theory Appl., 24 (2022), 18. https://doi.org/10.1007/s11784-021-00925-6 doi: 10.1007/s11784-021-00925-6
    [29] A. Palanisamy, J. Alzabut, V. Muthulakshmi, S. S. Santra, K. Nonlaopon, Oscillation results for a fractional partial differential system with damping and forcing terms, AIMS Math., 8 (2023), 4261–4279. https://doi.org/10.3934/math.2023212 doi: 10.3934/math.2023212
    [30] S. S. Santra, J. Kavitha, V. Sadhasivam, D. Baleanu, Oscillation criteria for a class of half-linear neutral conformable differential equations, J. Math. Comput. Sci., 30 (2023), 204–212.
    [31] O. Bazighifan, M. A. Ragusa, Nonlinear equations of fouthr-order with p-Laplacian like operators: oscillation, methods and applications, Proc. Amer. Math. Soc., 150 (2022), 1009–1020.
    [32] A. R. Hayotov, S. Jeon, C. O. Lee, K. M. Shadimetov, Optimal quadrature formulas for non-periodic functions in sobolev space and its application to CT image reconstruction, Filomat, 35 (2021), 4177–4195.
    [33] D. D. Yang, C. Z. Bai, On the oscillation criteria for fourth-order p-Laplacian differential equations with middle term, J. Funct. Space., 2021 (2021), 5597947. https://doi.org/10.1155/2021/5597947 doi: 10.1155/2021/5597947
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1067) PDF downloads(51) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog