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Abstract: In this article, we have derived a new method to study the oscillatory and asymptotic
properties for third-order noncanonical functional differential equations with both positive and negative
terms of the form

(P2(D)(p1(X' (1)) + a(H)g(x(7(1))) — bDh(x(o (1)) = 0

Firstly, we have converted the above equation of noncanonical type into the canonical type using
the strongly noncanonical operator and obtained some new conditions for Property A. We furnished
illustrative examples to validate our main result.
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1. Introduction

In this paper, we are concerned with the third-order differential equation with a positive and negative
term

(P2D)(p1(OX' (1)) + a()g(x(7(1))) — bBh(x(o(1)) = 0 (E)
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where t > 1, > 0 and we need the following assumptions for our work in the sequel.

(H1) py(1), pa(2), a(t), b(t) € C([ty, o0)) are positive and continuous functions for all ¢ > 7,;

(H2) g(u), h(u) € C(R), ug(u) > 0,uh(u) > 0 for u # 0, h is bounded, g is nondecreasing;

(H3) —g(—uv) = g(uv) = g(u)g(v) for uv > 0;

(H4) 1(t),0() € C([ty,o0)) are continuous functions such that 7(r) < ¢, lim,, 7(#) = oo and
lim,_,, 07(t) = o0;

(H5) the noncanonical case of (E), that is

< 1 SO |
d oo and d 0.
fm P7s f % <

By a solution of (E), we mean a function x(¢) with derivatives p(#)x’(?), (p1(¢#)x’(t))’ continuous
on [t,,0), T, > ty, which satisfies (E) on [t,, o). We consider only those solutions x(#) of (E) which
satisfy sup{|x(#)| : t > T} > O forany T > T,. A solution x of (E) is said to be oscillatory if it is neither
eventually positive nor eventually negative, and it is said to be nonoscillatory otherwise. The equation
itself is termed oscillatory if all its solutions oscillate.

In the generalization of the Kiguradze lemma [21], the fixed sign of the highest derivative is used to
derive the structure of probable nonoscillatory solutions. Since (E) contains both positive and negative
terms, we cannot fix the sign of the third-order quasi-derivative for an eventually positive solution.
Therefore, the authors studied the oscillatory properties of (E) when either a(t) = 0 or b(¢) = 0; see,
for example [6-16, 18-20,25,26,31-33] and the references cited therein.

Recently, there have been several highly interesting results relating to the oscillatory properties
of differential equations [3,27-33]. Also some applications related to biomathematics can be found
in [4,17,22-24]. However, third-order differential equations get less attention from researchers
compared to second-order differential equations. Now, we recall some studies related to the content of
this paper.

In [1] Agarwal et al. obtained some new oscillation criteria for the third-order non-linear differential
equation of the form

(P2O(p1(X @) + a@xP(x(1)) = 0

<1 <1
f dt < oo, f dt = o0
w D2(b) w P10
00 1 00
f dt < oo, f ! dt < 0.
to p2(t) o pl(t)

In [5] Alzabut et al. produced several results for the asymptotic and oscillatory behaviour of third
order differential equations

(P2(DG" (D) + a(O)F (2(0) + b(1)x (0°(1)) = 0

under

and

1

aﬁ(s)

under fl ; ds = oo where y(t) = x(t) + P(t)x"(w(t)) — q(t)x"(w(2)).
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In [6], Baculicova and Dzurina considered the equation (E) and they derived new techniques for
studying the oscillatory and asymptotic properties of (E) by property A by considering the canonical

case o o
f dt = f dt = 0.
1o p2(t) fo pl(t)

In [26], Saranya et al. developed new technique to study the oscillation criteria for the third order
quasi-linear delay differential equation

(P2(D(Pr X ()Y + a@)¥ (7(1) = 0

>~ ] < 1
f dt < oo, f dt = oo,
w P20 fo )

1
Py
In [27], Saranya et al. attained new criteria for the oscillatory and asymptotic behavior of the
solution of the equation

under

(P2O(P1(OX @)Y + a®FF(x(1)) = 0

| |
f dt = f dt < oo,
0w P20 0w P

In [30], Santra et al. studied the oscillatory behavior of half-linear neutral conformable differential
equations

under the semi-canonical type

Tag(m(r)(Taz(m(r)Tmx(t)))ﬂ) + a0 (1) = 0,1 > 1y

where x(1) = y(t) + p(t)x(6(¢)) under the canonical case

| |
f ——dy,t = f ——d,t = oo.
o pl(t) 1o \

p; (@)
However, most of the research work is done under the canonical case

> ] SO |
f dt = f dt = 0o
w P10 0w P20

as the investigation of the oscillatory properties of the canonical equation is much easier than the
noncanonical case. Therefore, in this paper, we aim to investigate the oscillatory properties of solutions
of (E) in noncanonical form, which is under (H5) using the canonical representation of a strongly
noncanonical operator. Thus all the results are new in this paper and complement to those results
arrived in [1, 2,21, 26]. Furthermore, we assume that

[ buwydu d{ dt < .

H6) [~
( )fto pi(®) " pa(d) ¢

Instead of the above condition, one can easily show that the effect of the negative term is reduced and
allows us to study property A. Property A refers to the condition under which every nonoscillatory
x() _
Q@)
This paper is organized as follows. In Section 2, we present some basic notations and lemmas. We

present the main result for the equation (E) in Section 3. In Section 4, we illustrate few examples for
our main result.

I o 1

solution x(7) of (E) satisfies lim,_,,
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2. Preliminaries

In this section, initially we provide some lemmas to easily verify the conditions for property A
of (E).
To simplify our notation, let us denote

S S 00
Q = dec, Q = de, Q@) = dc,
1) f @) e B0 f @)% 20 f ™

Y 109 _ pi(0Q() N ZI0H0)
Q.(1) = ft mdé 121 m(1) = o0 m(f) = a0
| Qi(1) f’ 1 (1)
= d = s = d =
e f n0” a0 P07 ), no® " e
and
() = QZ@d( forall 1 > 1, > 1.
51 771({)
Lemma 2.1. Assume that (H1) — (H6) hold, and x(t) is an eventually positive solution of (E) then, the
function N N N
z(t) = x(t) + f ! f ! f b(x) h(x(o(x)))dx du dl (2.1
. i) Je p(w) Jy

is a positive solution of the equation
L(z) + a(n)g(x(7(1))) = 0 (E1)

where 1(z) = (p2(0)(p1 (D' (1))’

Proof. 1t follows from (H6) and the boundedness of h(u) that the definition of function z(¢) defined
by (2.1) is well defined for all t > T, > t,. We write that z(r) > x(¢), Z'(t) < x'(¢) and

(P2(D(Pr(DZ'(®)) + a()g(x(t(1)) = 0
which completes the proof. O

Lemma 2.2. Let (H1) — (H6) hold, and the strongly noncanonical operator

L) = (p2(0(p1()x' (1))’

has the following unique canonical representation

1 NOA(¢ D) [ 2(D) \'VY
L) = (O O 0 Yy 02
Q.()\ Q@) Q.(1) \Q(r)
Proof. The proof can be found in Theorem 3.2 of [8] and is hence omitted.
By Lemma 2.2, (E;) can be written in the equivalent canonical form as
(mo(m@(22))) + Q.wawgtcxon =0
Up) m Q( t) * 8 = Y.
t
Setting u(t) = %, we immediately obtain the follows results (see [8]). O
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Lemma 2.3. Let (H1) — (H6) hold, and the strongly noncanonical differential equation (E,) can be
written as the equivalent canonical equation

(OO () + Q.(a(t)g(x((1))) = 0. (E>)
3. Main Result

Corollary 3.1. Let (H1) — (H6) hold, and the strongly noncanonical equation (E) has an eventually
positive solution if and only if the canonical equation (E,) has an eventually positive solution.
Corollary 3.1 significantly simplifies the examination of (E) since for (E,) we deal with only two
classes of eventually positive solutions existing of four classes of eventually positive solutions. Thus,
u(t) satisfies either

u(0) > 0, m O (1) < 0, (OO (1)) > 0, (2 (O)(m (O’ @)') < 0
and in this case we say u € S or
(@) >0, qiOp' () > 0, m(D)( @O @) > 0, (O (D' (1)) < 0

and for this property, we denote that u € S ,.
Theorem 3.2. Assume that (H1) — (H6) hold, and for all t| > t, large enough

w | o | e
Q. du d dv = +00 3.1
fn m(v)fv m(()fg () alu) du dg dv =+ G-
and .
f Q. (1) at) g(Q((t)))dt = +co. (3.2)
If
(1)
}LQSUP Oit (t))f Q.(0) a(Dg(O(T(0))) QD) d¢ (3.3)
o)
Q. d Q. d
v f( .0 a0 8OOV + 5(0:(x()) f © @) o o e
> lim supL
e g(u)”
then (E) holds property A.

Proof. Let x(t) be an eventually positive solution of (E) on [T, ), T, > t,. Then the function z()
defined on 2.1 satisfies (E;) with z(t) > x(¢) > 0 and 7/(¥) < x'(t) forall t > t; > T,. Setting

u) = (t) we see that u(r) > 0 satisfies the equation (E5) and therefore it satisfies u € Sooru € S,
for all # > ¢#,. First assume that u € S,. Using the fact that n,(¢)(n;(1)u’(¢)) 1s decreasing, we have
mOp' @) = f (OO Q) Té)dé > Mm@ (1)) Qa2(0). (3.4)
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m (DK’ (1)

It follows from (3.4) that
O»(1)

is decreasing. Then

"m©) ( 2(0) ) 0x() 11(1) ( HORY

d )
. 00\ ¢z Q(r)) o)

X1) > f Y(Qde > 0" 00

t ’
Setting the last estimate into (E5), we see that w(f) = nl(t)(é(( ))) is a positive solution of the differential

lit
inequality Q(T(t)w ) ) »
Q>7(1) B

is decreasing and n,(t)w’(¢) > 0. By integrating (3.5), we get

0(x(0)
dld
w(t) > f m( ) f (Da @)g( s (r({))) Zdu

0(r({)
= Q* d d
fn () f ({)a(g“)g( o Dw(r(g’))) Cdu

! 1 00
v [ e [ a0 S5 v
f m (l/t) t

(0w @) + Qg

(3.5)

and we have that i)

(1)

0>70)
_ f Q*@a(z)g(gggw<r<§>>)d§
0((0)
010

+ 0(7) f Q*(Z)a(f)g( W(T(é)))d§~

Hence,

Q(t(2)
0,7(0)

+ 0,0 [ Qu0ag(

(1)

W(T(()))Qz(()dé“

0(r(0)
0>7()
o)
0>7(0)

7(1)
W(r (D) = f 0.y

w(r(@))d;

+ 0(x(1) f 9*<4>a<§)g( w(r(@))d{.

In view of (H3) and given that w(z) is non-decreasing and

is non-increasing, we have

O (1)

w(z (1)
Q,7(1)

+ 0a(r(og(

7(1)
) f QD8O () 0L (3.6)

w(T (1)
0r7(1)

+ 0u(r()gw(x (D) f 0.0y

w(r(e) 2 g

) f Q. (Da(0)g(Q(())de
7(1)

0((0)
0, (4)) ¢
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t
Therefore, letting u = w(T(®) , we obtain
O>(7(0)
u 1 4

Q. d 3.7
26 > o) J, (Da(D)g(Q(T(£)a2(H)dL (3.7

N f( QD)L

+ 6000 [ 000 25 e
and condition (3.2) implies that (o) — 0 al t - oo. Indeed, if we assume w(?) — L > 0, then
O (¢ O (1

w(z)
Qa(1)

> L and substituting in (3.5), we have

0> (0w ()" + Qu(Da®)g(LO(T(1))).

Integrating from ¢, to oo yields

m(t)w' (1) = g(L) f Q.(Da)g(Q(7({))dl

which contradicts (3.2). Taking lim sup in (3.7) contradicts (3.3).
Now assume that u(t) € Sy. Since u(¢) is positive and decreasing, there exists lim,_,., u(t) = 2/ > 0.
It follows from (2.1) that
tim 20 _ jim X0 _
oo Q1) 100 Q1)

x(7(1)) : :
>1>0, tually. Int t E 1d
QG eventually. Intergrating (E») yields

21.

If we assume that [ > 0O, then

m OO (1) > f Q.(Da§)g(x(1(£)))dd

t

> g(]) f Q.(Da({)g(Cx(1({)))d{.

Integrating from ¢ to co and then from #, fo co, we get

> g(l Q, dudl d
u(ty) = g(h) . m(V)fv 772(5)[; (u) a(u) du d{ dv

which contradicts (3.1). O

Corollary 3.3. Let (H1) — (H6) and (3.1) hold, and for all t, large enough
f Q.()a(t)Q(1(t))dt = 0. (3.8)
1
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I

7(1)

Q.(Da)Q(T(0))Q2()ds + f Q.(Da)Q(r(D)d (3.9)

(1)
o))
Q. 1
+ 0,(x(1) f a0 4} >

i 1
“fiil’p{Qz(m)) .

then (E) holds property A.
Theorem 3.4. Let (H1) — (H6) and (3.1) hold, and

(20
ftl 2()f @t 0.7 (g»){ ' (5.10)

for all t| large enough. If

imsun {e( 55

+ s

7(1)
) f Q.(Da(d)g(O(T(D)))V2()dS (3.11)

1 '
Q. d
@) fm (Da) QN

” 0(1({)) .
+8Qu(r(0) [ Qa0 2 2N} > timsup
i | QQas{ e e > limsup e

then (E) holds the property A.
Proof. Let the positive solution of (E) be x(#) and proceed as in Theorem 3.2; we verified that u(¢)
belongs to either Sy or S,. If u(r) € S,, then w(r) = n (1) (¢) satisfies (3.7). The condition (3.10)
imply, w(t) — oo as t — oo. If not, then w(f) — M as t — oo. Integrating (3.5), we get
o(7(4)
0,7(0)

mOw (1) > f 0.y

Integrating once more, we have

Y 0t ()
Q.
wz [ [ a0d 55 G ne

.
> gt [~ [ Q.00 B e

which contradicts with (3.10) and we conclude that w(f) — oo as t — oo. Therefore, by setting
v = w(t(1)), we get

W(T(é)))d§~

v (1)
ok g( o (t))) f Q.(N)a()g(Q((0))02)dL

+ a0

1
0:((1))
+ 0x(1(1) f Q*@)a(@(

) f( OO0

0((0)
0.t (;))) ¢

Taking lim sup on both sides contradicts (3.11).
o

Next, if u(t) € S, then proceeding by the proof of Theorem 3.2, we verify that lim,_,., m

AIMS Mathematics Volume 8, Issue 6, 14167-14179.
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Remark 3.5. Theorems 3.2 and 3.4 are applicable for
g(s) = Is|"sgn s
withO<a<l&a>1.

Remark 3.6. The integral criteria (3.3) and (3.11) of Theorems 3.2 and 3.4 provide better results than
the one term integral criteria that are usually used.

4. Example

Example 4.1. Consider the equation

b
EEX DY) + %x(%) - arctan(x(@(1)) = 0,1 > | 4.1
witha > 0 and b > 0.

1 t
?’T(t) = E’ nl(t) =

m(t) = %, 0:1(t) = 0,(t) = 2t, Q(t) = 2>, g(u) = u and h(u) = arctan(u). The condition (3.1) becomes

ou [ [ [ s o=

Therefore, condition (3.1) holds. The condition (3.8) becomes

a 1
2 -dr=
4]1 P

Therefore, condition (3.8) holds. The condition (3.9) becomes

L

hmsup{ f2 f ds+tf —ds
t—00

By integrating the above equation and applying the limits, we get

1
The condition (H6) holds. Moreover Q(r) = Q,(¢) = ;,Q(t) = Q.0 =

a a a
I L 1
Hfli“p{z 2 "3 % }>

and

11
(5 Zlog2)>1

1 1
Therefore, condition (3.8) holds if a(i + 7 log 2) > 1. Therefore by Corollary 3.3, any nonoscillatory

solution x(#) of (4.1) satisfies
lim £ x(¢) = 0

—o0

provided that

11
L 2) S 1.
(2 4%

The results were also applicable when 7(¢) = t.
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14176

Example 4.2. Consider the equation
2032 7 N/ a b
(X)) + ?x(t) -2 arctan(x(o(#))) = 0,1 > 1 4.2)

witha > 0 and b > 0.

Clearly the condition (3.1) holds and (3.9) becomes

imsun {3, [ (g )(S)esnens [ () Sheras 2 [ ()55 ) =1
that is,
linliup fds+atf —ds

Integrating, we get

1
lim sup a{2 - ;} > 1

—00

which implies

NS

a >

1
Therefore, the condition (3.9) holds if a > 5 Hence, any nonoscillatory solution x(¢) of (4.2) satisfies

lim #x(7) = 0

1—00
) 1
provided that a > 3

5. Summary

In this paper, we looked at the oscillatory and asymptotic properties of third-order differential
equations with positive and negative terms in the noncanonical case. Because the noncanonical case is
hard, we turned (E) into a canonical representation by using a strongly noncanonical operator that
only works with two classes of eventually positive solutions out of four classes of eventually positive
solutions. This paper has better results than the ones that are already out there. The main results are
illustrated through the examples.
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