In this paper, we consider the symmetric interior penalty Galerkin (SIPG) method which is one of Discontinuous Galerkin Methods for the Dirichlet optimal control problems governed by linear advection-diffusion-reaction equation on a convex polygonal domain and the difficulties which we faced while solving this problem numerically. Since standard Galerkin methods have failed when the boundary layers have occurred and advection diffusion has dominated, these difficulties can occur in the cases of higher order elements and non smooth Dirichlet data in using standard finite elements. We find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and the advection diffusion reaction equations.After converting the continuous problem to an optimization problem, we solve it by "discretize-then-optimize" approach. In final, we estimate the optimal priori error estimates in suitable norms of the solutions and then support the result and the features of the method with numerical examples on the different kinds of domain.
Citation: Cagnur Corekli. The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions[J]. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375
In this paper, we consider the symmetric interior penalty Galerkin (SIPG) method which is one of Discontinuous Galerkin Methods for the Dirichlet optimal control problems governed by linear advection-diffusion-reaction equation on a convex polygonal domain and the difficulties which we faced while solving this problem numerically. Since standard Galerkin methods have failed when the boundary layers have occurred and advection diffusion has dominated, these difficulties can occur in the cases of higher order elements and non smooth Dirichlet data in using standard finite elements. We find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and the advection diffusion reaction equations.After converting the continuous problem to an optimization problem, we solve it by "discretize-then-optimize" approach. In final, we estimate the optimal priori error estimates in suitable norms of the solutions and then support the result and the features of the method with numerical examples on the different kinds of domain.
[1] | J. Zhu, Q. C. Zeng, A mathematical formulation for optimal control of air pollution, Sci. China Ser. D, 46 (2003), 994–1002. https://doi.org/10.1007/BF02959394 doi: 10.1007/BF02959394 |
[2] | C. R. A. Martinez, M. E. Vazquez-Mendez, Theoretical and numerical analysis of an optimal control problem related to wastewater treatment, SIAM J. Control. Optim., 38 (2000), 1534–1553. https://doi.org/10.1137/S0363012998345640 doi: 10.1137/S0363012998345640 |
[3] | Y. Bazilevs, T. J. R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. Fluids, 36 (2007), 12–26. https://doi.org/10.1016/j.compfluid.2005.07.012 doi: 10.1016/j.compfluid.2005.07.012 |
[4] | T. J. R. Hughes, L. P. Franca, G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least squares methods for advecive-diffusive systems, Comput. Method. Appl. M., 73 (1989), 173–189. https://doi.org/10.1016/0045-7825(89)90111-4 doi: 10.1016/0045-7825(89)90111-4 |
[5] | J. Guzmán, Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems, J. Numer. Math., 14 (2006), 41–56. https://doi.org/10.1515/156939506776382157 doi: 10.1515/156939506776382157 |
[6] | S. May, R. Rannacher, B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM J. Control Optim., 51 (2013), 2585–2611. https://doi.org/10.1137/080735734 doi: 10.1137/080735734 |
[7] | B. Ayuso, L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), 1391–1420. https://doi.org/10.1137/080719583 doi: 10.1137/080719583 |
[8] | D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Discontinuous Galerkin methods for elliptic problems, In: Discontinuous Galerkin methods, Berlin: Springer, 2000. https://doi.org/10.1007/978-3-642-59721-3_5 |
[9] | K. Deckelnick, A. Günther, M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains, SIAM J. Control Optim., 48 (2009), 2798–2819. https://doi.org/10.1137/080735369 doi: 10.1137/080735369 |
[10] | D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput., 53 (2012), 483–511. https://doi.org/10.1007/s10915-012-9582-y doi: 10.1007/s10915-012-9582-y |
[11] | J. Freund, R. Stenberg, On weakly imposed boundary conditions for second order problems, In: Finite elements in fluids, Venice, 1995,327–336. |
[12] | F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Meth. Part. D. E., 16 (2000), 365–378. https://doi.org/10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y doi: 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y |
[13] | P. Neittaanmaki, J. Sprekels, D. Tiba, Optimization of elliptic systems: Theory and applications, Springer Science & Business Media, 2006. |
[14] | Z. J. Zhou, N. N. Yan, A survey of numerical methods for convection-diffusion optimal control problems, J. Numer. Math., 22 (2014), 61–85. https://doi.org/10.1515/jnum-2014-0003 doi: 10.1515/jnum-2014-0003 |
[15] | S. S. Collis, M. Heinkenschloss, Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems, CAAM TR02–01, 2002. |
[16] | A. N. Brooks, T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Method. Appl. M., 32 (1982), 199–259. https://doi.org/10.1016/0045-7825(82)90071-8 doi: 10.1016/0045-7825(82)90071-8 |
[17] | G. Chen, J. R. Singler, Y. Zhang, An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs, SIAM J. Numer. Anal., 57 (2019), 1919–1946. https://doi.org/10.1137/18M1208708 doi: 10.1137/18M1208708 |
[18] | G. Chen, G. Fu, J. R. Singler, Y. Zhang, A class of embedded DG methods for Dirichlet boundary control of convection diffusion PDEs, J. Sci. Comput., 81 (2019), 623–648. https://doi.org/10.1007/s10915-019-01043-9 doi: 10.1007/s10915-019-01043-9 |
[19] | W. Gong, W. Hu, M. Mateos, J. Singler, X. Zhang, Y. Zhang, A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity, SIAM J. Numer. Anal., 56 (2018), 2262–2287. https://doi.org/10.1137/17M1152103 doi: 10.1137/17M1152103 |
[20] | W. Hu, M. Mateos, J. R. Singler, Y. Zhang, A new HDG method for Dirichlet boundary control of convection diffusion PDEs I: High regularity, 2018, arXiv: 1801.01461. |
[21] | W. Hu, J. Shen, J. R. Singler, Y. Zhang, X. Zheng, A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs, Numer. Math., 144 (2020), 375–411. https://doi.org/10.1007/s00211-019-01090-2 doi: 10.1007/s00211-019-01090-2 |
[22] | Z. Zhou, X. Yu, N. Yan, Local discontinuous Galerkin approximation of convection-dominated diffusion optimal control problems with control constraints, Numer. Meth. Part. D. E., 30 (2014), 339–360. https://doi.org/10.1002/num.21815 doi: 10.1002/num.21815 |
[23] | E. M. Cliff, M. Heinkenschloss, A. Shenoy, An optimal control problem for flows with discontinuities, J. Optimiz. Theory App., 94 (1997), 273–309. https://doi.org/10.1023/A:1022616327742 doi: 10.1023/A:1022616327742 |
[24] | P. Benner, H. Yücel, A local discontinuous Galerkin method for Dirichlet boundary control problems, 2017. https://doi.org/10.13140/RG.2.2.16362.52164 |
[25] | E. Burman, P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Method. Appl. M., 193 (2004), 1437–1453. https://doi.org/10.1016/j.cma.2003.12.032 doi: 10.1016/j.cma.2003.12.032 |
[26] | R. Becker, B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106 (2007), 349–367. http://dx.doi.org/10.1007/s00211-007-0067-0 doi: 10.1007/s00211-007-0067-0 |
[27] | B. Cockburn, On discontinuous Galerkin methods for convection–dominated problems, In: Advanced numerical approximation of nonlinear hyperbolic equations, Berlin: Springer, 1998. http://dx.doi.org/10.1007/BFb0096353 |
[28] | D. Leykekhman, M. Heinkenschloss, Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal., 50 (2012), 2012–2038. https://doi.org/10.1137/110826953 doi: 10.1137/110826953 |
[29] | L. Dedé, A. Quarteroni, Optimal control and numerical adaptivity for advection-diffusion equations, ESAIM Math. Model. Num., 39 (2005), 1019–1040. https://doi.org/10.1051/m2an:2005044 doi: 10.1051/m2an:2005044 |
[30] | M. Heinkenschloss, D. Leykekhman, Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal., 47 (2010), 4607–4638. https://doi.org/10.1137/090759902 doi: 10.1137/090759902 |
[31] | E. Casas, J. P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control. Optim., 45 (2006), 1586–1611. https://doi.org/10.1137/050626600 doi: 10.1137/050626600 |
[32] | L. C. Evans, Partial differential equations, Graduate studies in mathematics, 1998. |
[33] | P. Grisvard, Elliptic problems in nonsmooth domains, Bost: Pitman Publishing Inc., 1985. |
[34] | J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, New York: Springer-Verlag, 1972. |
[35] | F. Tröltzsch, Optimal control of partial differential equations: Theory, methods, and applications, American Mathematical Soc., 2010. |
[36] | T. Apel, M. Mateos, J. Pfefferer, A. Rsch, On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains, SIAM J. Control Optim., 53 (2015), 3620–3641. https://doi.org/10.1137/140994186 doi: 10.1137/140994186 |
[37] | Y. Epshteyn, B. Rivière, Estimation of penalty parameters for symmetric interior penalty galerkin methods, J. Comput. Appl. Math., 206 (2007), 843–872. https://doi.org/10.1016/j.cam.2006.08.029 doi: 10.1016/j.cam.2006.08.029 |
[38] | D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742–760. https://doi.org/10.1137/0719052 doi: 10.1137/0719052 |
[39] | T. Akman, H. Yücel, B. Karasözen, A priori error analysis of the upwind symmetric interior penalty galerkin (sipg) method for the optimal control problems governed by unsteady convection diffusion equations, Comput. Optim. Appl., 57 (2014), 703–729. https://doi.org/10.1007/s10589-013-9601-4 doi: 10.1007/s10589-013-9601-4 |
[40] | A. Cangiani, J. Chapman, E. H. Georgoulis, M. Jensen, On local super-penalization of interior penalty discontinuous galerkin methods, 2012, arXiv: 1205.5672. |
[41] | A. Y. Chernyshenko, M. A. Olshanskii, Non-degenerate Eulerian finite element method for solving pdes on surfaces, Russ. J. Numer. Anal. M., 28 (2013), 101–124. https://doi.org/10.1515/rnam-2013-0007 doi: 10.1515/rnam-2013-0007 |
[42] | M. A. Olshanskii, A. Reusken, Trace finite element methods for PDEs on surfaces, In: Geometrically unfitted finite element methods and applications, Springer, 2017. https://doi.org/10.1007/978-3-319-71431-8_7 |
[43] | P. G. Ciarlet, The finite element method for elliptic problems, Society for Industrial and Applied Mathematics, 2002. |
[44] | A. Quarteroni, S. Quarteroni, Numerical models for differential problems, Milan: Springer, 2009. |
[45] | Y. Epshteyn, B. Riviere, Symmetric interior penalty Galerkin method for elliptic problems, 2012. |
[46] | M. Mateos, I. Neitzel, Dirichlet control of elliptic state constrained problems, Comput. Optim. Appl., 63 (2016), 825–853. https://doi.org/10.1007/s10589-015-9784-y doi: 10.1007/s10589-015-9784-y |
[47] | T. Apel, M. Mateos, J. Pfefferer, A. Rösch, Error estimates for Dirichlet control problems in polygonal domains: quasi-uniform meshes, Math. Control Relat. F., 8 (2018), 217–245. https://doi.org/10.3934/mcrf.2018010 doi: 10.3934/mcrf.2018010 |