Research article

Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space

  • Received: 21 November 2021 Revised: 04 January 2022 Accepted: 13 January 2022 Published: 25 January 2022
  • MSC : 35E15, 35Q53

  • In this paper, we study the initial value problem of Hirota-Satsuma system:

    {utα(uxxx+6uux)=2βvvx, xR, t0,vt+vxxx+3uvx=0,xR, t0,u(0,x)=ϕ(x),v(0,x)=ψ(x),xR,

    where αR, βR; u=u(x,t), v=v(x,t) are real functions. Aided by Fourier restrict norm method, we show that s>18 initial value problem (0.1) is locally well-posed in Hs(R)×Hs+1(R) which improved the results of [7].

    Citation: Xiangqing Zhao, Zhiwei Lv. Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space[J]. AIMS Mathematics, 2022, 7(4): 6702-6710. doi: 10.3934/math.2022374

    Related Papers:

    [1] Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583
    [2] Xiaochun Sun, Yulian Wu, Gaoting Xu . Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385
    [3] Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549
    [4] William O. Bray, Ellen Hunter . Wave equations & energy. AIMS Mathematics, 2019, 4(3): 463-481. doi: 10.3934/math.2019.3.463
    [5] Phuong Nguyen Duc, Ahmet Ocak Akdemir, Van Tien Nguyen, Anh Tuan Nguyen . Remarks on parabolic equation with the conformable variable derivative in Hilbert scales. AIMS Mathematics, 2022, 7(11): 20020-20042. doi: 10.3934/math.20221095
    [6] Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li . Long-time asymptotics for the generalized Sasa-Satsuma equation. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475
    [7] Said Mesloub, Faten Aldosari . Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Mathematics, 2021, 6(9): 9786-9812. doi: 10.3934/math.2021569
    [8] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [9] Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726
    [10] Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793
  • In this paper, we study the initial value problem of Hirota-Satsuma system:

    {utα(uxxx+6uux)=2βvvx, xR, t0,vt+vxxx+3uvx=0,xR, t0,u(0,x)=ϕ(x),v(0,x)=ψ(x),xR,

    where αR, βR; u=u(x,t), v=v(x,t) are real functions. Aided by Fourier restrict norm method, we show that s>18 initial value problem (0.1) is locally well-posed in Hs(R)×Hs+1(R) which improved the results of [7].



    Hirota-Satsuma system coupled by two KdV equations:

    {utα(uxxx+6uux)=2βvvx,xR,t0,vt+vxxx+3uvx=0,xR,t0,

    (where αR, βR; u=u(x,t), v=v(x,t) are real functions) was introduced by Hirota, Satsuma in [1] to describe the interactions of two long waves with different dispersion relations, also was derived by Hirota R, Ohta Y in [2] as a reduction of a special hierarchy of coupled bilinear equations.

    The main progress of soliton solutions of Hirota-Satsuma system is as follows: In 2000, Tam and Ma in [3] considered some particular special expansions in the direct method to derive the one- and three-cKdV soliton solutions with a profile different in form to the classical solitons. In 2003, Hu and Liu in [4] derived generalized M-solitons solutions of the Grammian type by means of a Darboux transformation. In 2020, Prado and Cisneros-Ake in [5] carried out a systematic analysis of multi-soliton solution based on the direct method to fully describe its N+M interacting multisoliton solutions holding a typical hyperbolic profile (For more detail, see [6]).

    The progress of well-posedness of Hirota-Satsuma system can be summarized as: In 1994, Feng proved in [7] that Hirota-Satsuma system posed on the whole line is locally well-posed Hs(R)×Hs(R), if s>2. In 2005, Angulo showed in [8] that Hirota-Satsuma system posed on periodic domain is locally well-posed in Hsperiodic(0,L)×Hsperiodic(0,L), for s0, when α=1 and globally well-posed in Hsperiodic(0,L)×Hsperiodic(0,L) for s1, when α1, 0. In 2007, Panthee, Silva verified in [9] that Hirota-Satsuma system posed on periodic domain is locally well-posed in Hsperiodic(0,L)×H1+speriodic(0,L), for s12 and global well-posed in Hsperiodic(0,L)×Hs+1periodic(0,L) for s314 when α=1.

    In this paper, we will study the initial value problem of Hirota-Satsuma system:

    {utα(uxxx+6uux)=2βvvx, xR, t0,vt+vxxx+3uvx=0, xR, t0,u(0,x)=ϕ(x),v(0,x)=ψ(x), xR. (1.1)

    As shown in [9] that asymmetrical product space Hs(R)×Hs+1(R) is more suitable to Hirota-Satsuma system than the symmetrical product space Hs(R)×Hs(R) since the asymmetry of nonlinear term uvx.

    Definition 1.1. Let sR, bR, Bourgain space Xs,b associated with t±α3x is defined to be the closure of the Schwartz space S(R2) under the norm:

    uXs,b=(1+|ξ|)s(1+|ταξ3|)bFu(ξ,τ)L2ξL2τ,

    where =(1+||), Fu=ˆu(ξ,τ) denote as Fourier transformation of u with respect to t and x.

    Obviously, when s1s2, b1b2, uXs1,b1uXs2,b2.

    The main result is:

    Theorem 1.2. Let s>18. Then for any initial data (ϕ,ψ)Hs(R)×H1+s(R), there exists T=T((ϕ,ψ)Hs×H1+s), such that there is unique solution of initial value problem (1.1) on [0, T).

    Conservative of mass

    12[u2+23βv2]dx,

    conservative of energy

    [1+α2u2x+βv2x(1+α)u3βuv2]dx

    and local well-posedness (Theorem 1.2) imply that: For α=1 and β>0, initial value problem (1.1) is globally well-posed in Hs(R)×H1+s(R) if s0.

    The following sections are arranged as follows: Bilinear estimate will be established in Section 2 which is the core of the Fourier restriction norm method; Locally well-posedness will be proved in Section 3 by Banch's fixed point theorem; We give some remarks in Section 4 to point out some simple facts about the Hirota-Satsuma system.

    In the following, without lose of generalization, we assume that α=1, β=1.

    Ds denote the s-order derivative defined by:

    F(Dsf)(ξ)=|ξ|sFf(ξ),fS(R).

    Lemma 2.1. Denote ˆFρ(ξ,τ)=f(ξ,τ)(1+|τξ3|)ρ, then

    (1) If ρ>12, then

    χ(ξ)FρL2xLtCfL2ξL2τ, (2.1)

    where χC0 satisfying: When |ξ|1, χ(ξ)=1; when |ξ|>2 then χ(ξ)=0.

    (2) If ρ>38, 0θ18, then

    DθxFρL4xL4tCfL2ξL2τ. (2.2)

    (3) If ρ>512, then

    FρL4xL6tCfL2ξL2τ. (2.3)

    (4) If ρ>θ2, where θ[0,1], then

    DθxFρL21θxL2tCfL2ξL2τ. (2.4)

    (5) If ρ>13, then

    D14xFρL4xL3tCfL2ξL2τ. (2.5)

    Proof. (2.1)–(2.5) are Lemmas 2.3–2.7 in [10].

    Lemma 2.2. Assume f, f1, f2 are Schwartz functions, then

    ¯ˆf(ξ,τ)^f1(ξ1,τ1)^f2(ξ2,τ2)dδ=R×R¯ff1f2(x,t)dxdt,

    where dδ=ξ=ξ1+ξ2,τ=τ1+τ2dξ1dξ2dτ1dτ2.

    Let Z be Abelian addition group with invariable measure dξ. For integer k2, we denote Γk(Z) as the hyperplane:

    Γk(Z)={(ξ1,ξ2,,ξk)Zk,ξ1+ξ2++ξk=0}.

    Define [k,Z]-multiplier as function m:Γk(Z)C. If m is [k,Z]-multiplier, define m[k,Z] the norm of [k,Z]-multiplier as the infimum of C such that

    |Γk(Z)m(ξ)kj=1fj|Ckj=1fjL2(Z).

    Lemma 2.3. If m(ξ) and M(ξ)both are [k,Z]-multipliers, and ξΓk(Z), |m(ξ)||M(ξ)|, then

    m[k,Z]M[k,Z].

    Proof. See [11] for the detail.

    Proposition 2.4. If s18, 12<b<916, then b>12, we have

    (xu1)u2X1+s,b1Cu1X1+s,bu2Xs,b (2.6)

    and

    x(u1u2)Xs,b1Cu1Xs,bu2Xs,b. (2.7)

    Proof. It is enough to prove (2.6). Since the proof of (2.7) is just a minor modification of that of (2.6). Besides, it is enough to show the case of s0. Since when s>0, we have:

    ξsξ1sξ2s.

    This inequality and the results of s=0 implies the result of s>0.

    By Plancherel Theorem, in order to prove (2.6), it is enough to prove

    I=Γ3(R×R)ξ1+s¯f(ξ,τ)σ1b|ξ1|f1(ξ1,τ1)ξ11+sσ1bf2(ξ2,τ2)ξ2sσ2bdδ=Γ3(R×R)ξ1+s|ξ1|σ1bξ11+sσ1bξ2sσ2b¯f(ξ,τ)f1(ξ1,τ1)f2(ξ2,τ2)dδCξ1+s|ξ1|σ1bξ11+sσ1bξ2sσ2b[3,R×R]fL2ξL2τΠ2j=1fjL2ξL2τ,

    where ˉfL2(R2) and ˉf0;

    f1=ξ11+sσ1b^u1(ξ1,τ1);f2=ξ2sσ2b^u2(ξ2,τ2);ξ=ξ1+ξ2,τ=τ1+τ2;σ=τξ3,σ1=τ1ξ31;σ2=τ2ξ32.

    By the definition of [k,Z]-multiplier, if

    ξ1+s|ξ1|σ1bξ11+sσ1bξ2sσ2b[3,R×R]C,

    then (2.6) holds.

    By symmetry, it is enough to consider |ξ1||ξ2|. Let r=s, then 18>r0.

    Denote ˆFρ(ξ,τ)=ˉf(ξ,τ)(1+|τξ3|)ρ, ˆFjρ(ξ,τ)=fj(ξ,τ)(1+|τξ3|)ρ, j=1,2.

    Case 1. |ξ|2.

    Subcase 1.1. |ξ1|1. We have |ξ2|=|ξξ1||ξ|+|ξ1|3, thus,

    I=Γ3(R×R)χ|ξ|2¯f(ξ,τ)ξr1σ1bχ|ξ1|1|ξ1|ξ1r1f1(ξ1,τ1)σ1bχ|ξ2|3ξ2rf2(ξ2,τ2)σ2bdδCΓ3(R×R)¯f(ξ,τ)σ1bf1(ξ1,τ1)σ1bf2(ξ2,τ2)σ2bdδC¯F1bF1bF2b(x,t)dxdtCF1bL2xL2tF1bL4xL4tF2bL4xL4tCfL2ξL2τf1L2ξL2τf2L2ξL2τ.

    We applied (2.2) of Lemma 2.1 and Lemma 2.2 here.

    Subcase 1.2. |ξ1|1. By symmetrical assumption, |ξ2|1. For r18, we have

    I=Γ3(R×R)χ|ξ|2¯f(ξ,τ)ξr1σ1bχ|ξ1|1|ξ1|ξ1r1f1(ξ1,τ1)σ1bχ|ξ2|1ξ2rf2(ξ2,τ2)σ2bdδCΓ3(R×R)¯f(ξ,τ)σ1bχ|ξ1|1|ξ1|rf1(ξ1,τ1)σ1bχ|ξ2|1|ξ2|rf2(ξ2,τ2)σ2bdδCΓ3(R×R)¯f(ξ,τ)σ1b|ξ1|18f1(ξ1,τ1)σ1b|ξ2|18f2(ξ2,τ2)σ2bdδ=C¯F1bD18xF1bD18xF2b(x,t)dxdtCF1bL2xL2tD18xF1bL4xL4tD18xF2bL4xL4tCfL2ξL2τf1L2ξL2τf2L2ξL2τ.

    We applied (2.2) of 2.1 and Lemma 2.2 here.

    Case 2. |ξ|2.

    Case 2.1. |ξ1|1. We have |ξ2|=|ξξ1||ξ||ξ1|1, thus

    I=Γ3(R×R)χ|ξ|2¯f(ξ,τ)ξr1σ1bχ|ξ1|1|ξ1|ξ1r1f1(ξ1,τ1)σ1bχ|ξ2|1ξ2rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|1r¯f(ξ,τ)σ1bχ|ξ1|1f1(ξ1,τ1)σ1bχ|ξ2|1|ξ2|rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|1r¯f(ξ,τ)σ1bχ|ξ1|1f1(ξ1,τ1)σ1bχ|ξ2|1|ξ2|rf2(ξ2,τ2)σ2bdδCD1rx¯F1bχ|ξ1|1F1bDrxF2b(x,t)dxdtCD1rxF1bL2rxL2tχ|ξ1|1F1bL2xLtDrxF2bL11rxL2tCfL2ξL2τf1L2ξL2τf2L2ξL2τ.

    Here (2.1) and (2.4) of Lemma 2.1 and Lemma 2.2 are used. Besides, b<916 is also required.

    Case 2.2. |ξ1|1. By symmetrical assumption, 1|ξ1||ξ2|.

    Since (τ1ξ31)+(τ2ξ32)(τξ3)=3ξξ1ξ2, at lease one of the following 3 cases will occur:

    (a)|τξ3||ξ||ξ1||ξ2|,(b)|τ1ξ31||ξ||ξ1||ξ2|,(c)|τ2ξ32||ξ||ξ1||ξ2|.

    By this fact, we divide Case 2.2 into 3 different subcases as follows:

    Case 2.2.1. When (a) occurs. If r+b118 and rb>12, then

    I=Γ3(R×R)χ|ξ|2¯f(ξ,τ)ξr1σ1bχ|ξ1|1|ξ1|ξ1r1f1(ξ1,τ1)σ1bχ|ξ2|1ξ2rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|1r¯f(ξ,τ)(|ξ||ξ1||ξ2|)1bχ|ξ1|1|ξ1|rf1(ξ1,τ1)σ1bχ|ξ2|1|ξ2|rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|br¯f(ξ,τ)χ|ξ1|1|ξ1|r+b1f1(ξ1,τ1)σ1bχ|ξ2|1|ξ2|r+b1f2(ξ2,τ2)σ2bdδCΓ3(R×R)¯f(ξ,τ)|ξ1|18f1(ξ1,τ1)σ1b|ξ2|18f2(ξ2,τ2)σ2bdδ=C¯F0D18xF1bD18xF2b(x,t)dxdtCF0L2xL2tD18xF1bL4xL4tD18xF2bL4xL4tCfL2ξL2τf1L2ξL2τf2L2ξL2τ.

    Here (2.2) of Lemma 2.1 and Lemma 2.2 are used.

    The above results implies that if r+b118 and rb>12, then

    ξ1r1|ξ1|ξ2rσ1bξr1σ1bσ2b[3,R×R]C. (2.8)

    By Lemma 2.3, when r18, (2.8) still holds. Indeed, since ξ=ξ1+ξ2, we have ξξ1ξ2. If r1r2, then

    m=ξ1r11|ξ1|ξ2r1σ1bξr11σ1bσ2b=ξ1r1ξ2r1ξr1ξ11|ξ1|σ1bξ1σ1bσ2bξ2r2ξ2r2ξr2ξ11|ξ1|σ1bξ1σ1bσ2b=ξ1r21|ξ1|ξ2r2σ1bξr21σ1bσ2b=M.

    Case 2.2.2. When (b) occurs. If r+b1, 0<rb116, we have

    I=Γ3(R×R)χ|ξ|2¯f(ξ,τ)ξr1σ1bχ|ξ1|1|ξ1|ξ1r1f1(ξ1,τ1)σ1bχ|ξ2|1ξ2rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|1r¯f(ξ,τ)σ1bχ|ξ1|1|ξ1|rf1(ξ1,τ1)(|ξ||ξ1||ξ2|)bχ|ξ2|1|ξ2|rf2(ξ2,τ2)σ2bdδCΓ3(R×R)χ|ξ|2|ξ|1br¯f(ξ,τ)σ1bχ|ξ1|1|ξ1|rbf1(ξ1,τ1)χ|ξ2|1|ξ2|rbf2(ξ2,τ2)σ2bdδCΓ3(R×R)¯f(ξ,τ)σ1bf1(ξ1,τ1)|ξ2|2(rb)f2(ξ2,τ2)σ2bdδ=C¯F1bF10D18xF2b(x,t)dxdtCF1bL4xL4tF10L2xL2tD18xF2bL4xL4tCfL2ξL2τf1L2ξL2τf2L2ξL2τ,

    where (2.2) of Lemma 2.1 and Lemma 2.2 is used here. Besides, it is required that b<58.

    When r18, the results is implied by Lemma 2.3.

    Case 2.2.3. When (c) occurs. The proof is similar to Case 2.2.2, we omit the detail.

    Take θC0(R) such that: When t[12,12], θ1 and supp θ(1,1). Denote θδ(t)=θ(tδ). Let U(t) (tR) denote fundamental solution operator of the Airy equation: vt±vxxx=0:

    U(t)φ=ei(xξtξ3)ˆφ(ξ)dξ,φHs(R),sR.

    Lemma 3.1. Let sR, 12<b<b1, 0<δ1, then

    θδ(t)U(t)u0Xs,bCδ(12b)2u0Hs, (3.1)
    θδ(t)t0U(ts)F(s)dsXs,bCδ(12b)2FXs,b1, (3.2)
    θδ(t)FXs,b1CδbbFXs,b1. (3.3)

    Proof. See [10].

    In the following, we will give the

    Proof of Theorem 1.1:

    Proof. For s18, let (ϕ,ψ)Hs×H1+s and (ϕ,ψ)Hs×H1+sϕHs+ψH1+s=r. Define

    Br={(u,v)Xs,b×X1+s,b:(u,v)Xs,b×X1+s,b2Cr},

    then Br is Banach space, whose norm is

    (u,v)Xs,b×X1+s,buXs,b+vX1+s,b.

    For (u,v)Br, define the mapping

    {Φϕ[u,v]=θ1(t)U(t)ϕθ1(t)t0U(ts)θδ(t)[6uux2βvvx](s)ds,Ψψ[u,v]=θ1(t)U(t)ψθ1(t)t0U(ts)θδ(t)[3uvx](s)ds.

    We will prove that Φ×Ψ(ϕ,ψ)[u,v] map Br into Br.

    By (3.1)–(3.3) in Lemma 3.1 and bi-linear estimate (2.7), there exists b, b satisfying 12<b<b916 such that

    Φϕ[u,v]Xs,bθ1(t)U(t)ϕXs,b+θ1(t)t0U(ts)θδ(t)[6uux2βvvx](s)dsXs,bCϕHs+Cθδ(t)uuxXs,b1+Cθδ(t)vvxXs,b1CϕHs+CδbbuuxXs,b1+CδbbvvxXs,b1CϕHs+Cδbbu2Xs,b+Cδbbv2Xs,bCϕHs+Cδbbu2Xs,b+Cδbbv2X1+s,b. (3.4)

    Similarly, by (3.1)–(3.3) of Lemma 3.1 and bilinear estimate (2.6), we have

    Ψψ[u,v]X1+s,bθ1(t)U(t)ψX1+s,b+θ1(t)t0U(ts)θδ(t)[3uvx](s)dsX1+s,bCψH1+s+Cθδ(t)uvxX1+s,b1CψH1+s+CδbbuvxX1+s,b1CψH1+s+CδbbuXs,bvX1+s,bCψH1+s+Cδbbu2Xs,b+δbbv2X1+s,b. (3.5)

    Thus, by the estimates (3.4) and (3.5), we have

    Φ×Ψ(ϕ,ψ)[u,v]Xs,b×X1+s,bCϕHs+CψH1+s+Cδbbu2Xs,b+Cδbbv2X1+s,bC(ϕ,ψ)Hs×H1+s+Cδbb[u2Xs,b+v2X1+s,b]C(ϕ,ψ)Hs×H1+s+Cδbb(u,v)2Xs,b×X1+s,b.

    Thus, when taking δ<[(2C)2r]1bb, Φ×Ψ(ϕ,ψ)[u,v] mapping Br into Br.

    Similar to (3.4) and (3.5), for δ determined above, we have

    Φ×Ψ(ϕ,ψ)[u1,v1]Φ×Ψ(ϕ,ψ)[u2,v2]Xs,b×X1+s,b<12(u,v)Xs,b×X1+s,b.

    Thus, Φ×Ψ(ϕ,ψ)[u,v] is contract mapping.

    Finally, by Banach theorem, t (0<t1), in the ball Br, the mapping Φ×Ψ(ϕ,ψ)[u,v] have unique fixed point (u,v) satisfying

    {u=U(t)ϕt0U(ts)[6uux2βvvx](s)ds,v=U(t)ψt0U(ts)[3uvx](s)ds.

    Remark 4.1. Although, the main result in this paper covered the results of [7], it must be not the sharp results when compare it with [9].

    Remark 4.2. When compare it with [9], we conjecture that the initial value problem of Hirota-Satsuma system maybe locally well-posed in Hs(R)×Hs+1(R), for any s>34. We'll investigate this question in the future.

    Remark 4.3. We are interested in well-posedness of initial boundary value problem of the Hirota-Satsum system, especially well-posedness with low regularity datum. We'll show the results in elsewhere.

    This work is financially supported by the Natural Science Foundation of Zhejiang Province (No. LY18A010024, No. Y19A050005) and National Natural Science Foundation of China (No. 12075208).

    The authors declare that they have no conflicts of interest.



    [1] R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407–408. https://doi.org/10.1016/0375-9601(81)90423-0 doi: 10.1016/0375-9601(81)90423-0
    [2] R. Hirota, Y. Ohta, Hierarchies of coupled soliton equations. I, J. Phys. Soc. Japan, 60 (1991), 798–809. https://doi.org/10.1143/JPSJ.60.798 doi: 10.1143/JPSJ.60.798
    [3] H. W. Tam, W. X. Ma, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, J. Phys. Soc. Japan, 69 (2000), 45–52. https://doi.org/10.1143/JPSJ.69.45 doi: 10.1143/JPSJ.69.45
    [4] H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos Solitons Fract., 17 (2003), 921–928. https://doi.org/10.1016/S0960-0779(02)00309-0 doi: 10.1016/S0960-0779(02)00309-0
    [5] H. Prado, A. Cisneros-Ake, The direct method for multisolitons and two-hump solitons in the Hirota-Satsuma system, Phys. Lett. A, 384 (2020), 126471. https://doi.org/10.1016/j.physleta.2020.126471 doi: 10.1016/j.physleta.2020.126471
    [6] H. Prado, A. Cisneros-Ake, Alternative solitons in the Hirota-Satsuma system via the direct method, Partial Differ. Equ. Appl. Math., 3 (2021), 100020. https://doi.org/10.1016/j.padiff.2020.100020 doi: 10.1016/j.padiff.2020.100020
    [7] X. S. Feng, Global well-posedness of the initial value problem for the Hirota-Satsum system, Manuscripta Math., 84 (1994), 361–378. https://doi.org/10.1007/BF02567462 doi: 10.1007/BF02567462
    [8] J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differ. Integr. Equ., 18 (2005), 611–645.
    [9] M. Panthee, J. D. Silva, Well-posedness for the Cauchy problem associated to the Hirota-Satsuma equation: Periodic case, J. Math. Anal. Appl., 326 (2007), 800–821. https://doi.org/10.1016/j.jmaa.2006.03.010 doi: 10.1016/j.jmaa.2006.03.010
    [10] C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3
    [11] T. Tao, Multilinear weighted convolution of L2 functions and applications to nonlinear dispersive equations, Am. J. Math., 123 (2001), 839–908. https://doi.org/10.1353/ajm.2001.0035 doi: 10.1353/ajm.2001.0035
  • This article has been cited by:

    1. Haiyan Lu, Dimitri Mugnai, Well-Posedness of a Hirota–Satsuma System Posed on a Half Line, 2023, 2023, 2314-4785, 1, 10.1155/2023/6211563
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1861) PDF downloads(64) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog