In this paper, we study the initial value problem of Hirota-Satsuma system:
{ut−α(uxxx+6uux)=2βvvx, x∈R, t≥0,vt+vxxx+3uvx=0,x∈R, t≥0,u(0,x)=ϕ(x),v(0,x)=ψ(x),x∈R,
where α∈R, β∈R; u=u(x,t), v=v(x,t) are real functions. Aided by Fourier restrict norm method, we show that ∀s>−18 initial value problem (0.1) is locally well-posed in Hs(R)×Hs+1(R) which improved the results of [
Citation: Xiangqing Zhao, Zhiwei Lv. Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space[J]. AIMS Mathematics, 2022, 7(4): 6702-6710. doi: 10.3934/math.2022374
[1] | Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583 |
[2] | Xiaochun Sun, Yulian Wu, Gaoting Xu . Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385 |
[3] | Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549 |
[4] | William O. Bray, Ellen Hunter . Wave equations & energy. AIMS Mathematics, 2019, 4(3): 463-481. doi: 10.3934/math.2019.3.463 |
[5] | Phuong Nguyen Duc, Ahmet Ocak Akdemir, Van Tien Nguyen, Anh Tuan Nguyen . Remarks on parabolic equation with the conformable variable derivative in Hilbert scales. AIMS Mathematics, 2022, 7(11): 20020-20042. doi: 10.3934/math.20221095 |
[6] | Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li . Long-time asymptotics for the generalized Sasa-Satsuma equation. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475 |
[7] | Said Mesloub, Faten Aldosari . Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Mathematics, 2021, 6(9): 9786-9812. doi: 10.3934/math.2021569 |
[8] | Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917 |
[9] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[10] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
In this paper, we study the initial value problem of Hirota-Satsuma system:
{ut−α(uxxx+6uux)=2βvvx, x∈R, t≥0,vt+vxxx+3uvx=0,x∈R, t≥0,u(0,x)=ϕ(x),v(0,x)=ψ(x),x∈R,
where α∈R, β∈R; u=u(x,t), v=v(x,t) are real functions. Aided by Fourier restrict norm method, we show that ∀s>−18 initial value problem (0.1) is locally well-posed in Hs(R)×Hs+1(R) which improved the results of [
Hirota-Satsuma system coupled by two KdV equations:
{ut−α(uxxx+6uux)=2βvvx,x∈R,t≥0,vt+vxxx+3uvx=0,x∈R,t≥0, |
(where α∈R, β∈R; u=u(x,t), v=v(x,t) are real functions) was introduced by Hirota, Satsuma in [1] to describe the interactions of two long waves with different dispersion relations, also was derived by Hirota R, Ohta Y in [2] as a reduction of a special hierarchy of coupled bilinear equations.
The main progress of soliton solutions of Hirota-Satsuma system is as follows: In 2000, Tam and Ma in [3] considered some particular special expansions in the direct method to derive the one- and three-cKdV soliton solutions with a profile different in form to the classical solitons. In 2003, Hu and Liu in [4] derived generalized M-solitons solutions of the Grammian type by means of a Darboux transformation. In 2020, Prado and Cisneros-Ake in [5] carried out a systematic analysis of multi-soliton solution based on the direct method to fully describe its N+M interacting multisoliton solutions holding a typical hyperbolic profile (For more detail, see [6]).
The progress of well-posedness of Hirota-Satsuma system can be summarized as: In 1994, Feng proved in [7] that Hirota-Satsuma system posed on the whole line is locally well-posed Hs(R)×Hs(R), if s>2. In 2005, Angulo showed in [8] that Hirota-Satsuma system posed on periodic domain is locally well-posed in Hsperiodic(0,L)×Hsperiodic(0,L), for s≥0, when α=−1 and globally well-posed in Hsperiodic(0,L)×Hsperiodic(0,L) for s≥1, when α≠−1, 0. In 2007, Panthee, Silva verified in [9] that Hirota-Satsuma system posed on periodic domain is locally well-posed in Hsperiodic(0,L)×H1+speriodic(0,L), for s≥−12 and global well-posed in Hsperiodic(0,L)×Hs+1periodic(0,L) for s≥−314 when α=−1.
In this paper, we will study the initial value problem of Hirota-Satsuma system:
{ut−α(uxxx+6uux)=2βvvx, x∈R, t≥0,vt+vxxx+3uvx=0, x∈R, t≥0,u(0,x)=ϕ(x),v(0,x)=ψ(x), x∈R. | (1.1) |
As shown in [9] that asymmetrical product space Hs(R)×Hs+1(R) is more suitable to Hirota-Satsuma system than the symmetrical product space Hs(R)×Hs(R) since the asymmetry of nonlinear term uvx.
Definition 1.1. Let s∈R, b∈R, Bourgain space Xs,b associated with ∂t±α∂3x is defined to be the closure of the Schwartz space S(R2) under the norm:
‖u‖Xs,b=‖(1+|ξ|)s(1+|τ∓αξ3|)bFu(ξ,τ)‖L2ξL2τ, |
where ⟨⋅⟩=(1+|⋅|), Fu=ˆu(ξ,τ) denote as Fourier transformation of u with respect to t and x.
Obviously, when s1≤s2, b1≤b2, ‖u‖Xs1,b1≤‖u‖Xs2,b2.
The main result is:
Theorem 1.2. Let s>−18. Then for any initial data (ϕ,ψ)∈Hs(R)×H1+s(R), there exists T=T(‖(ϕ,ψ)‖Hs×H1+s), such that there is unique solution of initial value problem (1.1) on [0, T).
Conservative of mass
12∫[u2+23βv2]dx, |
conservative of energy
∫[1+α2u2x+βv2x−(1+α)u3−βuv2]dx |
and local well-posedness (Theorem 1.2) imply that: For α=−1 and β>0, initial value problem (1.1) is globally well-posed in Hs(R)×H1+s(R) if s≥0.
The following sections are arranged as follows: Bilinear estimate will be established in Section 2 which is the core of the Fourier restriction norm method; Locally well-posedness will be proved in Section 3 by Banch's fixed point theorem; We give some remarks in Section 4 to point out some simple facts about the Hirota-Satsuma system.
In the following, without lose of generalization, we assume that α=−1, β=1.
Ds denote the s-order derivative defined by:
F(Dsf)(ξ)=|ξ|sFf(ξ),∀f∈S(R). |
Lemma 2.1. Denote ˆFρ(ξ,τ)=f(ξ,τ)(1+|τ−ξ3|)ρ, then
(1) If ρ>12, then
‖χ(ξ)Fρ‖L2xL∞t≤C‖f‖L2ξL2τ, | (2.1) |
where χ∈C∞0 satisfying: When |ξ|≤1, χ(ξ)=1; when |ξ|>2 then χ(ξ)=0.
(2) If ρ>38, 0≤θ≤18, then
‖DθxFρ‖L4xL4t≤C‖f‖L2ξL2τ. | (2.2) |
(3) If ρ>512, then
‖Fρ‖L4xL6t≤C‖f‖L2ξL2τ. | (2.3) |
(4) If ρ>θ2, where θ∈[0,1], then
‖DθxFρ‖L21−θxL2t≤C‖f‖L2ξL2τ. | (2.4) |
(5) If ρ>13, then
‖D14xFρ‖L4xL3t≤C‖f‖L2ξL2τ. | (2.5) |
Proof. (2.1)–(2.5) are Lemmas 2.3–2.7 in [10].
Lemma 2.2. Assume f, f1, f2 are Schwartz functions, then
∫∗¯ˆf(ξ,τ)^f1(ξ1,τ1)^f2(ξ2,τ2)dδ=∫R×R¯ff1f2(x,t)dxdt, |
where ∫∗dδ=∫ξ=ξ1+ξ2,τ=τ1+τ2dξ1dξ2dτ1dτ2.
Let Z be Abelian addition group with invariable measure dξ. For integer k≥2, we denote Γk(Z) as the hyperplane:
Γk(Z)={(ξ1,ξ2,⋯,ξk)∈Zk,ξ1+ξ2+⋯+ξk=0}. |
Define [k,Z]-multiplier as function m:Γk(Z)↦C. If m is [k,Z]-multiplier, define ‖m‖[k,Z] the norm of [k,Z]-multiplier as the infimum of C such that
|∫Γk(Z)m(ξ)k∏j=1fj|≤Ck∏j=1‖fj‖L2(Z). |
Lemma 2.3. If m(ξ) and M(ξ)both are [k,Z]-multipliers, and ∀ξ∈Γk(Z), |m(ξ)|≤|M(ξ)|, then
‖m‖[k,Z]≤‖M‖[k,Z]. |
Proof. See [11] for the detail.
Proposition 2.4. If s≥−18, 12<b<916, then ∀b′>12, we have
‖(∂xu1)u2‖X1+s,b−1≤C‖u1‖X1+s,b′‖u2‖Xs,b′ | (2.6) |
and
‖∂x(u1u2)‖Xs,b−1≤C‖u1‖Xs,b′‖u2‖Xs,b′. | (2.7) |
Proof. It is enough to prove (2.6). Since the proof of (2.7) is just a minor modification of that of (2.6). Besides, it is enough to show the case of s≤0. Since when s>0, we have:
⟨ξ⟩s≤⟨ξ1⟩s⟨ξ2⟩s. |
This inequality and the results of s=0 implies the result of s>0.
By Plancherel Theorem, in order to prove (2.6), it is enough to prove
I=∫Γ3(R×R)⟨ξ⟩1+s¯f(ξ,τ)⟨σ⟩1−b|ξ1|f1(ξ1,τ1)⟨ξ1⟩1+s⟨σ1⟩b′f2(ξ2,τ2)⟨ξ2⟩s⟨σ2⟩b′dδ=∫Γ3(R×R)⟨ξ⟩1+s|ξ1|⟨σ⟩1−b⟨ξ1⟩1+s⟨σ1⟩b′⟨ξ2⟩s⟨σ2⟩b′¯f(ξ,τ)f1(ξ1,τ1)f2(ξ2,τ2)dδ≤C‖⟨ξ⟩1+s|ξ1|⟨σ⟩1−b⟨ξ1⟩1+s⟨σ1⟩b′⟨ξ2⟩s⟨σ2⟩b′‖[3,R×R]‖f‖L2ξL2τΠ2j=1‖fj‖L2ξL2τ, |
where ˉf∈L2(R2) and ˉf≥0;
f1=⟨ξ1⟩1+s⟨σ1⟩b′^u1(ξ1,τ1);f2=⟨ξ2⟩s⟨σ2⟩b′^u2(ξ2,τ2);ξ=ξ1+ξ2,τ=τ1+τ2;σ=τ−ξ3,σ1=τ1−ξ31;σ2=τ2−ξ32. |
By the definition of [k,Z]-multiplier, if
‖⟨ξ⟩1+s|ξ1|⟨σ⟩1−b⟨ξ1⟩1+s⟨σ1⟩b′⟨ξ2⟩s⟨σ2⟩b′‖[3,R×R]≤C, |
then (2.6) holds.
By symmetry, it is enough to consider |ξ1|≤|ξ2|. Let r=−s, then 18>r≥0.
Denote ˆFρ(ξ,τ)=ˉf(ξ,τ)(1+|τ−ξ3|)ρ, ˆFjρ(ξ,τ)=fj(ξ,τ)(1+|τ−ξ3|)ρ, j=1,2.
Case 1. |ξ|≤2.
Subcase 1.1. |ξ1|≤1. We have |ξ2|=|ξ−ξ1|≤|ξ|+|ξ1|≤3, thus,
I=∫Γ3(R×R)χ|ξ|≤2¯f(ξ,τ)⟨ξ⟩r−1⟨σ⟩1−bχ|ξ1|≤1|ξ1|⟨ξ1⟩r−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≤3⟨ξ2⟩rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)¯f(ξ,τ)⟨σ⟩1−bf1(ξ1,τ1)⟨σ1⟩b′f2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫¯F1−b⋅F1b′⋅F2b′(x,t)dxdt≤C‖F1−b‖L2xL2t‖F1b′‖L4xL4t‖F2b′‖L4xL4t≤C‖f‖L2ξL2τ‖f1‖L2ξL2τ‖f2‖L2ξL2τ. |
We applied (2.2) of Lemma 2.1 and Lemma 2.2 here.
Subcase 1.2. |ξ1|≥1. By symmetrical assumption, |ξ2|≥1. For r≤18, we have
I=∫Γ3(R×R)χ|ξ|≤2¯f(ξ,τ)⟨ξ⟩r−1⟨σ⟩1−bχ|ξ1|≥1|ξ1|⟨ξ1⟩r−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1⟨ξ2⟩rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)¯f(ξ,τ)⟨σ⟩1−bχ|ξ1|≥1|ξ1|rf1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1|ξ2|rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)¯f(ξ,τ)⟨σ⟩1−b|ξ1|18f1(ξ1,τ1)⟨σ1⟩b′|ξ2|18f2(ξ2,τ2)⟨σ2⟩b′dδ=C∫¯F1−b⋅D18xF1b′⋅D18xF2b′(x,t)dxdt≤C‖F1−b‖L2xL2t‖D18xF1b′‖L4xL4t‖D18xF2b′‖L4xL4t≤C‖f‖L2ξL2τ‖f1‖L2ξL2τ‖f2‖L2ξL2τ. |
We applied (2.2) of 2.1 and Lemma 2.2 here.
Case 2. |ξ|≥2.
Case 2.1. |ξ1|≤1. We have |ξ2|=|ξ−ξ1|≥|ξ|−|ξ1|≥1, thus
I=∫Γ3(R×R)χ|ξ|≥2¯f(ξ,τ)⟨ξ⟩r−1⟨σ⟩1−bχ|ξ1|≤1|ξ1|⟨ξ1⟩r−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1⟨ξ2⟩rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|1−r¯f(ξ,τ)⟨σ⟩1−bχ|ξ1|≤1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1|ξ2|rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|1−r¯f(ξ,τ)⟨σ⟩1−bχ|ξ1|≤1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1|ξ2|rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫D1−rx¯F1−b⋅χ|ξ1|≤1F1b′⋅DrxF2b′(x,t)dxdt≤C‖D1−rxF1−b‖L2rxL2t‖χ|ξ1|≤1F1b′‖L2xL∞t‖DrxF2b′‖L11−rxL2t≤C‖f‖L2ξL2τ‖f1‖L2ξL2τ‖f2‖L2ξL2τ. |
Here (2.1) and (2.4) of Lemma 2.1 and Lemma 2.2 are used. Besides, b<916 is also required.
Case 2.2. |ξ1|≥1. By symmetrical assumption, 1≤|ξ1|≤|ξ2|.
Since (τ1−ξ31)+(τ2−ξ32)−(τ−ξ3)=3ξξ1ξ2, at lease one of the following 3 cases will occur:
(a)|τ−ξ3|≥|ξ||ξ1||ξ2|,(b)|τ1−ξ31|≥|ξ||ξ1||ξ2|,(c)|τ2−ξ32|≥|ξ||ξ1||ξ2|. |
By this fact, we divide Case 2.2 into 3 different subcases as follows:
Case 2.2.1. When (a) occurs. If r+b−1≤18 and r≥b>12, then
I=∫Γ3(R×R)χ|ξ|≥2¯f(ξ,τ)⟨ξ⟩r−1⟨σ⟩1−bχ|ξ1|≥1|ξ1|⟨ξ1⟩r−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1⟨ξ2⟩rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|1−r¯f(ξ,τ)(|ξ||ξ1||ξ2|)1−bχ|ξ1|≥1|ξ1|rf1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1|ξ2|rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|b−r¯f(ξ,τ)χ|ξ1|≥1|ξ1|r+b−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1|ξ2|r+b−1f2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)¯f(ξ,τ)|ξ1|18f1(ξ1,τ1)⟨σ1⟩b′|ξ2|18f2(ξ2,τ2)⟨σ2⟩b′dδ=C∫¯F0⋅D18xF1b′⋅D18xF2b′(x,t)dxdt≤C‖F0‖L2xL2t‖D18xF1b′‖L4xL4t‖D18xF2b′‖L4xL4t≤C‖f‖L2ξL2τ‖f1‖L2ξL2τ‖f2‖L2ξL2τ. |
Here (2.2) of Lemma 2.1 and Lemma 2.2 are used.
The above results implies that if r+b−1≤18 and r≥b>12, then
‖⟨ξ1⟩r−1|ξ1|⟨ξ2⟩r⟨σ⟩1−b⟨ξ⟩r−1⟨σ1⟩b′⟨σ2⟩b′‖[3,R×R]≤C. | (2.8) |
By Lemma 2.3, when r≤18, (2.8) still holds. Indeed, since ξ=ξ1+ξ2, we have ⟨ξ⟩≤⟨ξ1⟩⟨ξ2⟩. If r1≤r2, then
m=⟨ξ1⟩r1−1|ξ1|⟨ξ2⟩r1⟨σ⟩1−b⟨ξ⟩r1−1⟨σ1⟩b′⟨σ2⟩b′=⟨ξ1⟩r1⟨ξ2⟩r1⟨ξ⟩r1⟨ξ1⟩−1|ξ1|⟨σ⟩1−b⟨ξ⟩−1⟨σ1⟩b′⟨σ2⟩b′≤⟨ξ2⟩r2⟨ξ2⟩r2⟨ξ⟩r2⟨ξ1⟩−1|ξ1|⟨σ⟩1−b⟨ξ⟩−1⟨σ1⟩b′⟨σ2⟩b′=⟨ξ1⟩r2−1|ξ1|⟨ξ2⟩r2⟨σ⟩1−b⟨ξ⟩r2−1⟨σ1⟩b′⟨σ2⟩b′=M. |
Case 2.2.2. When (b) occurs. If r+b′≥1, 0<r−b′≤116, we have
I=∫Γ3(R×R)χ|ξ|≥2¯f(ξ,τ)⟨ξ⟩r−1⟨σ⟩1−bχ|ξ1|≥1|ξ1|⟨ξ1⟩r−1f1(ξ1,τ1)⟨σ1⟩b′χ|ξ2|≥1⟨ξ2⟩rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|1−r¯f(ξ,τ)⟨σ⟩1−bχ|ξ1|≥1|ξ1|rf1(ξ1,τ1)(|ξ||ξ1||ξ2|)b′χ|ξ2|≥1|ξ2|rf2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)χ|ξ|≥2|ξ|1−b′−r¯f(ξ,τ)⟨σ⟩1−b⋅χ|ξ1|≥1|ξ1|r−b′f1(ξ1,τ1)⋅χ|ξ2|≥1|ξ2|r−b′f2(ξ2,τ2)⟨σ2⟩b′dδ≤C∫Γ3(R×R)¯f(ξ,τ)⟨σ⟩1−b⋅f1(ξ1,τ1)⋅|ξ2|2(r−b′)f2(ξ2,τ2)⟨σ2⟩b′dδ=C∫¯F1−b⋅F10⋅D18xF2b′(x,t)dxdt≤C‖F1−b‖L4xL4t‖F10‖L2xL2t‖D18xF2b′‖L4xL4t≤C‖f‖L2ξL2τ‖f1‖L2ξL2τ‖f2‖L2ξL2τ, |
where (2.2) of Lemma 2.1 and Lemma 2.2 is used here. Besides, it is required that b<58.
When r≤18, the results is implied by Lemma 2.3.
Case 2.2.3. When (c) occurs. The proof is similar to Case 2.2.2, we omit the detail.
Take θ∈C∞0(R) such that: When t∈[−12,12], θ≡1 and supp θ⊆(−1,1). Denote θδ(t)=θ(tδ). Let U(t) (t∈R) denote fundamental solution operator of the Airy equation: vt±vxxx=0:
U(t)φ=∫∞−∞ei(xξ∓tξ3)ˆφ(ξ)dξ,∀φ∈Hs(R),s∈R. |
Lemma 3.1. Let s∈R, 12<b<b′≤1, 0<δ≤1, then
‖θδ(t)U(t)u0‖Xs,b≤Cδ(1−2b)2‖u0‖Hs, | (3.1) |
‖θδ(t)∫t0U(t−s)F(s)ds‖Xs,b≤Cδ(1−2b)2‖F‖Xs,b−1, | (3.2) |
‖θδ(t)F‖Xs,b−1≤Cδb′−b‖F‖Xs,b′−1. | (3.3) |
Proof. See [10].
In the following, we will give the
Proof of Theorem 1.1:
Proof. For s≥−18, let (ϕ,ψ)∈Hs×H1+s and ‖(ϕ,ψ)‖Hs×H1+s≡‖ϕ‖Hs+‖ψ‖H1+s=r. Define
Br={(u,v)∈Xs,b×X1+s,b:‖(u,v)‖Xs,b×X1+s,b≤2Cr}, |
then Br is Banach space, whose norm is
‖(u,v)‖Xs,b×X1+s,b≡‖u‖Xs,b+‖v‖X1+s,b. |
For (u,v)∈Br, define the mapping
{Φϕ[u,v]=θ1(t)U(t)ϕ−θ1(t)∫t0U(t−s)θδ(t)[6uux−2βvvx](s)ds,Ψψ[u,v]=θ1(t)U(t)ψ−θ1(t)∫t0U(t−s)θδ(t)[3uvx](s)ds. |
We will prove that Φ×Ψ(ϕ,ψ)[u,v] map Br into Br.
By (3.1)–(3.3) in Lemma 3.1 and bi-linear estimate (2.7), there exists b, b′ satisfying 12<b<b′≤916 such that
‖Φϕ[u,v]‖Xs,b≤‖θ1(t)U(t)ϕ‖Xs,b+‖θ1(t)∫t0U(t−s)θδ(t)[6uux−2βvvx](s)ds‖Xs,b≤C‖ϕ‖Hs+C‖θδ(t)uux‖Xs,b−1+C‖θδ(t)vvx‖Xs,b−1≤C‖ϕ‖Hs+Cδb′−b‖uux‖Xs,b′−1+Cδb′−b‖vvx‖Xs,b′−1≤C‖ϕ‖Hs+Cδb′−b‖u‖2Xs,b+Cδb′−b‖v‖2Xs,b≤C‖ϕ‖Hs+Cδb′−b‖u‖2Xs,b+Cδb′−b‖v‖2X1+s,b. | (3.4) |
Similarly, by (3.1)–(3.3) of Lemma 3.1 and bilinear estimate (2.6), we have
‖Ψψ[u,v]‖X1+s,b≤‖θ1(t)U(t)ψ‖X1+s,b+‖θ1(t)∫t0U(t−s)θδ(t)[3uvx](s)ds‖X1+s,b≤C‖ψ‖H1+s+C‖θδ(t)uvx‖X1+s,b−1≤C‖ψ‖H1+s+Cδb′−b‖uvx‖X1+s,b′−1≤C‖ψ‖H1+s+Cδb′−b‖u‖Xs,b‖v‖X1+s,b≤C‖ψ‖H1+s+Cδb′−b‖u‖2Xs,b+δb′−b‖v‖2X1+s,b. | (3.5) |
Thus, by the estimates (3.4) and (3.5), we have
‖Φ×Ψ(ϕ,ψ)[u,v]‖Xs,b×X1+s,b≤C‖ϕ‖Hs+C‖ψ‖H1+s+Cδb′−b‖u‖2Xs,b+Cδb′−b‖v‖2X1+s,b≤C‖(ϕ,ψ)‖Hs×H1+s+Cδb′−b[‖u‖2Xs,b+‖v‖2X1+s,b]≤C‖(ϕ,ψ)‖Hs×H1+s+Cδb′−b‖(u,v)‖2Xs,b×X1+s,b. |
Thus, when taking δ<[(2C)2r]1b−b′, Φ×Ψ(ϕ,ψ)[u,v] mapping Br into Br.
Similar to (3.4) and (3.5), for δ determined above, we have
‖Φ×Ψ(ϕ,ψ)[u1,v1]−Φ×Ψ(ϕ,ψ)[u2,v2]‖Xs,b×X1+s,b<12‖(u,v)‖Xs,b×X1+s,b. |
Thus, Φ×Ψ(ϕ,ψ)[u,v] is contract mapping.
Finally, by Banach theorem, ∀t (0<t≤1), in the ball Br, the mapping Φ×Ψ(ϕ,ψ)[u,v] have unique fixed point (u,v) satisfying
{u=U(t)ϕ−∫t0U(t−s)[6uux−2βvvx](s)ds,v=U(t)ψ−∫t0U(t−s)[3uvx](s)ds. |
Remark 4.1. Although, the main result in this paper covered the results of [7], it must be not the sharp results when compare it with [9].
Remark 4.2. When compare it with [9], we conjecture that the initial value problem of Hirota-Satsuma system maybe locally well-posed in Hs(R)×Hs+1(R), for any s>−34. We'll investigate this question in the future.
Remark 4.3. We are interested in well-posedness of initial boundary value problem of the Hirota-Satsum system, especially well-posedness with low regularity datum. We'll show the results in elsewhere.
This work is financially supported by the Natural Science Foundation of Zhejiang Province (No. LY18A010024, No. Y19A050005) and National Natural Science Foundation of China (No. 12075208).
The authors declare that they have no conflicts of interest.
[1] |
R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407–408. https://doi.org/10.1016/0375-9601(81)90423-0 doi: 10.1016/0375-9601(81)90423-0
![]() |
[2] |
R. Hirota, Y. Ohta, Hierarchies of coupled soliton equations. I, J. Phys. Soc. Japan, 60 (1991), 798–809. https://doi.org/10.1143/JPSJ.60.798 doi: 10.1143/JPSJ.60.798
![]() |
[3] |
H. W. Tam, W. X. Ma, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, J. Phys. Soc. Japan, 69 (2000), 45–52. https://doi.org/10.1143/JPSJ.69.45 doi: 10.1143/JPSJ.69.45
![]() |
[4] |
H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos Solitons Fract., 17 (2003), 921–928. https://doi.org/10.1016/S0960-0779(02)00309-0 doi: 10.1016/S0960-0779(02)00309-0
![]() |
[5] |
H. Prado, A. Cisneros-Ake, The direct method for multisolitons and two-hump solitons in the Hirota-Satsuma system, Phys. Lett. A, 384 (2020), 126471. https://doi.org/10.1016/j.physleta.2020.126471 doi: 10.1016/j.physleta.2020.126471
![]() |
[6] |
H. Prado, A. Cisneros-Ake, Alternative solitons in the Hirota-Satsuma system via the direct method, Partial Differ. Equ. Appl. Math., 3 (2021), 100020. https://doi.org/10.1016/j.padiff.2020.100020 doi: 10.1016/j.padiff.2020.100020
![]() |
[7] |
X. S. Feng, Global well-posedness of the initial value problem for the Hirota-Satsum system, Manuscripta Math., 84 (1994), 361–378. https://doi.org/10.1007/BF02567462 doi: 10.1007/BF02567462
![]() |
[8] | J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differ. Integr. Equ., 18 (2005), 611–645. |
[9] |
M. Panthee, J. D. Silva, Well-posedness for the Cauchy problem associated to the Hirota-Satsuma equation: Periodic case, J. Math. Anal. Appl., 326 (2007), 800–821. https://doi.org/10.1016/j.jmaa.2006.03.010 doi: 10.1016/j.jmaa.2006.03.010
![]() |
[10] |
C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3
![]() |
[11] |
T. Tao, Multilinear weighted convolution of L2 functions and applications to nonlinear dispersive equations, Am. J. Math., 123 (2001), 839–908. https://doi.org/10.1353/ajm.2001.0035 doi: 10.1353/ajm.2001.0035
![]() |
1. | Haiyan Lu, Dimitri Mugnai, Well-Posedness of a Hirota–Satsuma System Posed on a Half Line, 2023, 2023, 2314-4785, 1, 10.1155/2023/6211563 |