In this paper, we study the initial value problem of Hirota-Satsuma system:
$ \begin{equation} \notag \left\{ \begin{array}{ll} u_t-\alpha(u_{xxx}+6uu_x) = 2\beta vv_x, & \ x\in {\mathbb{R}}, \ t\ge 0, \\ v_t+v_{xxx}+3uv_x = 0, & x\in {\mathbb{R}}, \ t\ge 0, \\ u(0, x) = \phi(x), \; \; v(0, x) = \psi(x), & x\in {\mathbb{R}}, \end{array} \right. \end{equation} $
where $ \alpha\in {\mathbb{R}} $, $ \beta\in {\mathbb{R}} $; $ u = u(x, t) $, $ v = v(x, t) $ are real functions. Aided by Fourier restrict norm method, we show that $ \forall s > -\frac 18 $ initial value problem (0.1) is locally well-posed in $ H^s({\mathbb{R}})\times H^{s+1}({\mathbb{R}}) $ which improved the results of [
Citation: Xiangqing Zhao, Zhiwei Lv. Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space[J]. AIMS Mathematics, 2022, 7(4): 6702-6710. doi: 10.3934/math.2022374
In this paper, we study the initial value problem of Hirota-Satsuma system:
$ \begin{equation} \notag \left\{ \begin{array}{ll} u_t-\alpha(u_{xxx}+6uu_x) = 2\beta vv_x, & \ x\in {\mathbb{R}}, \ t\ge 0, \\ v_t+v_{xxx}+3uv_x = 0, & x\in {\mathbb{R}}, \ t\ge 0, \\ u(0, x) = \phi(x), \; \; v(0, x) = \psi(x), & x\in {\mathbb{R}}, \end{array} \right. \end{equation} $
where $ \alpha\in {\mathbb{R}} $, $ \beta\in {\mathbb{R}} $; $ u = u(x, t) $, $ v = v(x, t) $ are real functions. Aided by Fourier restrict norm method, we show that $ \forall s > -\frac 18 $ initial value problem (0.1) is locally well-posed in $ H^s({\mathbb{R}})\times H^{s+1}({\mathbb{R}}) $ which improved the results of [
[1] | R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407–408. https://doi.org/10.1016/0375-9601(81)90423-0 doi: 10.1016/0375-9601(81)90423-0 |
[2] | R. Hirota, Y. Ohta, Hierarchies of coupled soliton equations. I, J. Phys. Soc. Japan, 60 (1991), 798–809. https://doi.org/10.1143/JPSJ.60.798 doi: 10.1143/JPSJ.60.798 |
[3] | H. W. Tam, W. X. Ma, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, J. Phys. Soc. Japan, 69 (2000), 45–52. https://doi.org/10.1143/JPSJ.69.45 doi: 10.1143/JPSJ.69.45 |
[4] | H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos Solitons Fract., 17 (2003), 921–928. https://doi.org/10.1016/S0960-0779(02)00309-0 doi: 10.1016/S0960-0779(02)00309-0 |
[5] | H. Prado, A. Cisneros-Ake, The direct method for multisolitons and two-hump solitons in the Hirota-Satsuma system, Phys. Lett. A, 384 (2020), 126471. https://doi.org/10.1016/j.physleta.2020.126471 doi: 10.1016/j.physleta.2020.126471 |
[6] | H. Prado, A. Cisneros-Ake, Alternative solitons in the Hirota-Satsuma system via the direct method, Partial Differ. Equ. Appl. Math., 3 (2021), 100020. https://doi.org/10.1016/j.padiff.2020.100020 doi: 10.1016/j.padiff.2020.100020 |
[7] | X. S. Feng, Global well-posedness of the initial value problem for the Hirota-Satsum system, Manuscripta Math., 84 (1994), 361–378. https://doi.org/10.1007/BF02567462 doi: 10.1007/BF02567462 |
[8] | J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differ. Integr. Equ., 18 (2005), 611–645. |
[9] | M. Panthee, J. D. Silva, Well-posedness for the Cauchy problem associated to the Hirota-Satsuma equation: Periodic case, J. Math. Anal. Appl., 326 (2007), 800–821. https://doi.org/10.1016/j.jmaa.2006.03.010 doi: 10.1016/j.jmaa.2006.03.010 |
[10] | C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3 |
[11] | T. Tao, Multilinear weighted convolution of $L^2$ functions and applications to nonlinear dispersive equations, Am. J. Math., 123 (2001), 839–908. https://doi.org/10.1353/ajm.2001.0035 doi: 10.1353/ajm.2001.0035 |