We study the small initial data Cauchy problem for the three-dimensional Boussinesq equations with the Coriolis force in variable exponent Fourier-Besov spaces. Using the Fourier localization argument and Littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data (u0,θ0) belonging to the critical variable exponent Fourier-Besov spaces F˙B2−3p(⋅)p(⋅),q.
Citation: Xiaochun Sun, Yulian Wu, Gaoting Xu. Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces[J]. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385
[1] | Chenchen Lu, Lin Chen, Shaoyong Lai . Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059 |
[2] | Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810 |
[3] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[4] | Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583 |
[5] | Ebner Pineda, Luz Rodriguez, Wilfredo Urbina . Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388 |
[6] | Bauyrzhan Derbissaly, Makhmud Sadybekov . Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488 |
[7] | Phuong Nguyen Duc, Ahmet Ocak Akdemir, Van Tien Nguyen, Anh Tuan Nguyen . Remarks on parabolic equation with the conformable variable derivative in Hilbert scales. AIMS Mathematics, 2022, 7(11): 20020-20042. doi: 10.3934/math.20221095 |
[8] | Zheng Dou, Kexin Luo . Global weak solutions of nonlinear rotation-Camassa-Holm model. AIMS Mathematics, 2023, 8(7): 15285-15298. doi: 10.3934/math.2023781 |
[9] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[10] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the $ n $-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
We study the small initial data Cauchy problem for the three-dimensional Boussinesq equations with the Coriolis force in variable exponent Fourier-Besov spaces. Using the Fourier localization argument and Littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data (u0,θ0) belonging to the critical variable exponent Fourier-Besov spaces F˙B2−3p(⋅)p(⋅),q.
In this paper, we consider the three-dimensional Boussinesq equations with the Coriolis force:
{∂tu−νΔu+Ωe3×u+(u⋅∇)u+∇P=gθe3,inR3×(0,∞),∂tθ−μΔθ+(u⋅∇)θ=0,inR3×(0,∞),divu=0,inR3×(0,∞),u(x,0)=u0,θ(x,0)=θ0,inR3, | (1.1) |
where u=(u1,u2,u3) denotes the velocity field of the fluid, θ is the fluctuation, P is the the pressure. The positive constants ν, μ and g are the kinetic viscosity, the thermal diffusivity and the gravity, respectively. Ω∈R is the Coriolis parameter, which denotes twice the speed of rotation around the vertical unit vector e3=(0,0,1). The term gθe3 represents buoyancy force using the Boussinesq approximation, which consists in neglecting the density dependence in all the terms but the one involving the gravity. The parameters ν and μ do not play any important role and we set ν=μ=1 throughout the rest of this paper. Sun, Liu and Yang [31] proved that the three-dimensional Boussinesq equations with Coriolis force possessed a unique global solution in Besov space. Koba, Mahalov and Yoneda [37] obtained the global well-posedness to the rotating Boussinesq equations for (u0,θ0)∈˙H12(R3)∩˙H1(R3) when the the Prandtl number P=1. Charve and Ngo [10] proved the global well-posedness to the rotating Boussinesq equations with the fading, anisotropic viscosities. For more detailed explanation, we refer to [6,9,12,27,30,32].
When Ω=0, (1.1) reduces to the classical Boussinesq equations. The global well-posedness result for three-dimensional Navier-Stokes-Boussinesq system with axisymmetric initial data has been studied by many researchers, which can be referred to [2] and [20]. We also refer to [13,14,23,29] for details on these results.
When Ω≠0, but θ≡0, (1.1) reduces to the Navier-Stokes equations with the Coriolis force. Fang, Han and Hieber [16] proved the uniqueness of the global mild solution to the rotating Navier-Stokes equations with only horizontal dissipation in Fourier-Besov space F˙B2−3pp,r(R3) for p∈[2,∞],r∈[1,∞). Hieber and Shibata [19] proved that the well-posedness of the Navier-Stokes equations with the Coriolis force. In addition, they also obtained the Navier-Stokes equations possess a unique global mild solution for arbitrary speed of rotation provided that the initial data u0 is small enough in H12σ(R3). We refer to [4,5,6,7,17,21,22,24,25,33,35] for details.
When Ω=0, and θ≡0, (1.1) reduces to the classical Navier-Stokes equations. Sun and Liu [34] demonstrated uniqueness of the weak solution to the fractional anisotropic Navier-Stokes system with only horizontal dissipation. Bourgain and Pavlovic [8] proved the three-dimensional Navier-Stokes equations is ill-posed in ˙B−1,∞∞(R3). Ru and Abidin [28] obtained the global well-posedness for the fractional Navier-Stokes equations in variable exponent Fourier-Besov spaces F˙B4−2α−3p(⋅)p(⋅),q(R3). There are many studies on the classical Navier-Stokes equations, which we can refer to [1,26,36] and the references therein.
There are many differences between variable exponent Fourier-Besov spaces and Fourier-Besov Spaces. Some classical theories such as Young's inequality and the multiplier theorem do not hold in variable exponent Fourier-Besov spaces. Because of this, it is difficult to consider the well-posedness of equations on such spaces. In this paper, we mainly use the properties introduced in Sections 2 and 3, and combine with the Banach's contraction mapping principle to consider the global well-posedness of the Boussinesq equations with the Coriolis force in variable exponent frequency spaces F˙Bs(⋅)p(⋅),q(R3). The major results are as follows.
Theorem 1.1. Let p(⋅)∈Clog(R3)∩P0(R3), 2≤p(⋅)≤6, 1≤q,ρ≤∞, and there exist a sufficiently small ϵ>0, such that
‖u0‖F˙B2−3p(⋅)p(⋅),q+‖θ0‖F˙B2−3p(⋅)p(⋅),q<ϵ |
for Ω∈R. Then problem (1.1) has a unique global solution
(u,θ)∈˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)∩˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q). |
Moreover, let p(⋅)∈Clog(R3)∩P0(R3), s1(⋅)∈Clog(R3), and s1(⋅)=2ρ+2−3p1(⋅), if there exist a constant c>0 such that 2≤p1(⋅)≤c≤p(⋅), then the above solution is still satisfied
(u,θ)∈C(0,∞;F˙B2−3p(⋅)p(⋅),q)∩˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q). |
Remark 1.1. The Fourier-Besov space F˙B2−3p(⋅)p(⋅),q is critical for Eq (1.1). In fact, if u(t,x) is the solution of Eq (1.1), then
uλ(t,x)=λu(λ2t,λx) |
is also a solution of the same equation and
‖u0(0,x)‖F˙B2−3p(⋅)p(⋅),q∼‖uλ(0,x)‖F˙B2−3p(⋅)p(⋅),q. |
Remark 1.2. From the structure of variable exponent Fourier-Besov space, we can find that this kind of space is quite different from variable exponent Besov space. Comparing with variable exponent Besov space, this kind of space is more favorable for us to consider the boundedness of semigroup operators and the estimation of nonlinear terms. This kind of space has been applied to dynamic systems, image processing and partial differential equations. However, due to the special structure of this kind of space, it is limited in the local and global well-posedness of some equations.
In Section 1, we mainly introduce some backgrounds and major results. We recall the known basic facts about Littlewood-Paley theory and function spaces in Section 2. In Section 3, we establish the linear estimates of the semigroup {TΩ(t)}t>0 and we are devoted to the proof of Theorem 1.1 in Section 4.
S(Rn) denotes the space of smooth rapidly decreasing functions on Rn. S′(Rn) denotes the topological dual space of the S(Rn), also be called temperate distribution. For any f∈X, there exists a constant c>0 such that ‖f‖a≤c‖f‖b, then it is written as ‖⋅‖a≲‖⋅‖b. We first recall the homogeneous Littlewood-Paley decomposition [18].
Let (χ,φ) be a couple of smooth functions with values in [0,1], χ is supported in the ball B(0,34)={ξ∈R3||ξ|≤34}, φ is supported in the shell C(0,34,83)={ξ∈R3|34≤|ξ|≤83}. We use φj(ξ) to denote φ(2−jξ) and
∑j∈Zφj(ξ)=1,∀ξ∈R3∖{0}. |
The localization operators are defined by
˙Δju=φj(D)u=23j∫R3ψ(2jy)u(x−y)dy,∀j∈Z, |
˙Sju=χ(2−jD)u=23j∫R3h(2jy)u(x−y)dy,∀j∈Z, |
where ψ=F−1φ and h=F−1χ.
From the definition above there hold that
˙Δk˙Δju=0,if|j−k|≥2, |
˙Δk(˙Sj−1u˙Δju)=0,if|j−k|≥5. |
If u∈S′h, there holds that
˙Sju=∑i≤j−1˙Δiu. |
Let P0(Rn) be the set of all measure functions p(⋅):Rn→(0,∞] such that p−=essinfx∈Rnp(x), p+=esssupx∈Rnp(x). For p∈P0(Rn), let Lp(⋅)(Rn) be the set of all measurable functions f on Rn such that for some λ>0,
‖f‖Lp(⋅):=inf{λ>0:ϱp(⋅)(f/λ)≤1}=inf{λ>0:∫Rn(|f(x)|λ)p(x)dx≤1}. |
We postulate the following standard conditions to ensure that the Hardy-Maximal operator M is bounded on Lp(⋅)(Rn):
1) p is said to satisfy the Locally log-Hölder's continuous condition if there exists a positive constant Clog(p) such that |p(x)−p(y)|≤Clog(p)log(e+|x−y|−1), (for all x,y∈Rn,x≠y).
2) p is said to satisfy the Globally log-Hölder's continuous condition if there exists a positive constant Clog(p) and p∞, such that |p(x)−p∞|≤Clog(p)log(e+|x|), (for all x∈Rn).
We use Clog(Rn) as the set of all real valued functions p:Rn→R satisfying 1) and 2).
Let p(⋅),q(⋅)∈P0(Rn), we use lq(⋅)(Lp(⋅)) to denote the space consisting of all sequences {fj}j∈Z of measurable functions on Rn such that
‖{fj}j∈Z‖lq(⋅)(Lp(⋅)):=inf{μ>0,ϱlq(⋅)(Lp(⋅))({fjμ}j∈Z)≤1}≤∞, |
where
ϱlq(⋅)(Lp(⋅))({fj}j∈Z)=∑j∈Zinf{λ>0:∫Rn(|fj(x)|λ1q(x))p(x)dx≤1}. |
Since we assume that q+<∞, ϱlq(⋅)(Lp(⋅))({fj}j∈Z)=∑j∈Z‖|fj|q(⋅)‖Lp(⋅)q(⋅) holds.
Definition 2.1. [3] Let p(⋅),q(⋅)∈Clog(Rn)∩P0(Rn) and s(⋅)∈Clog(Rn). The homogeneous Besov space with variable exponents ˙Bs(⋅)p(⋅),q(⋅) is the collection of f∈S′(Rn) such that
˙Bs(⋅)p(⋅),q(⋅)={f∈S′:‖f‖˙Bs(⋅)p(⋅),q(⋅)<∞}, |
‖f‖˙Bs(⋅)p(⋅),q(⋅):=‖{2js(⋅)Δjf}j∈Z‖ϱlq(⋅)(Lp(⋅))<∞, |
where S′ denote the dual of S(Rn)={f∈S(Rn):(Dαˆf)(0)=0,∀α}.
For T>0 and ρ∈[1,∞], we denote by Lρ(0,T;˙Bs(⋅)p(⋅),r) the set of all tempered distribution u satisfying
‖u‖Lρ(0,T;˙Bs(⋅)p(⋅),r):=‖(∞∑j=0‖2js(⋅)Δju‖rLp(⋅))1r‖LρT<∞. |
The mixed ˜Lρ(0,T;˙Bs(⋅)p(⋅),r) is the set of all tempered distribution u satisfying
‖u‖˜Lρ(0,T;˙Bs(⋅)p(⋅),r):=(∑j∈Z‖2js(⋅)Δju‖rLρTLp(⋅))1r<∞. |
For simplicity, we denote
LρT˙Bs(⋅)p(⋅),r:=Lρ(0,T;˙Bs(⋅)p(⋅),r)and˜LρT˙Bs(⋅)p(⋅),r:=˜Lρ(0,T;˙Bs(⋅)p(⋅),r). |
By virtue of the Minkowski's inequality, we have
‖u‖˜Lρ(0,T;˙Bs(⋅)p(⋅),r)≤‖u‖Lρ(0,T;˙Bs(⋅)p(⋅),r)ifρ≤r, |
‖u‖Lρ(0,T;˙Bs(⋅)p(⋅),r)≤‖u‖˜Lρ(0,T;˙Bs(⋅)p(⋅),r)ifr≤ρ. |
To obtain the global well-posedness of the small initial data Cauchy problem for the three-dimensional Boussinesq equations with the Coriolis force in variable exponent Fourier-Besov spaces, we need to introduce the following spaces.
Definition 2.2. [28] [Homogeneous Fourier-Besov spaces with variable exponents] Let p(⋅),q(⋅)∈Clog(Rn)∩P0(Rn) and s(⋅)∈Clog(Rn). The homogeneous Fourier-Besov space with variable exponents F˙Bs(⋅)p(⋅),q(⋅) is the collection of f∈S′(Rn) such that
F˙Bs(⋅)p(⋅),q(⋅)={f∈S′:‖f‖F˙Bs(⋅)p(⋅),q(⋅)<∞}, |
‖f‖F˙Bs(⋅)p(⋅),q(⋅):=‖{2js(⋅)φjˆf}∞−∞‖lq(⋅)Lp(⋅)<∞. |
Similarly, we denote by Lρ(0,T;F˙Bs(⋅)p(⋅),r) the set of all tempered distribution u satisfying
‖u‖Lρ(0,T;F˙Bs(⋅)p(⋅),r):=‖(∞∑j=0‖2js(⋅)φjˆu‖rLp(⋅))1r‖LρT<∞. |
The mixed ˜Lρ(0,T;F˙Bs(⋅)p(⋅),r) is the set of all tempered distribution u satisfying
‖u‖˜Lρ(0,T;F˙Bs(⋅)p(⋅),r):=(∑j∈Z‖2js(⋅)φjˆu‖rLρTLp(⋅))1r<∞. |
Definition 2.3. [18] Let u,v∈S′h, the product uv has the homogeneous Bony decomposition as follows
uv=˙Tuv+˙Tvu+˙R(u,v), |
where
˙Tuv=∑j∈Z˙Sj−1u˙Δjv,˙Tvu=∑j∈Z˙Sj−1v˙Δju, |
˙R(u,v)=∑j∈Z˙Δju˜˙Δjv,˜˙Δjv=∑|j−k|≤1˙Δkv. |
Lemma 2.1. The following inclusions hold for the variable exponent function spaces.
(I) (Hölder inequality [11]) Given a measurable set A and exponent functions r(⋅),q(⋅)∈P0(A) define p(⋅)∈P0(A) by
1p(x)=1q(x)+1r(x). |
Then there exists a constant C such that for all f∈Lq(⋅)(A) and g∈Lr(⋅)(A), fg∈Lp(⋅)(A) and
‖fg‖p(⋅)≤C‖f‖q(⋅)‖g‖r(⋅). |
In particular, given A and p(⋅)∈P0(A), for all f∈Lp(⋅)(A) and g∈Lp′(⋅)(A), fg∈L1(A) and
∫A|f(x)g(x)|dx≤Cp(⋅)‖f‖p(⋅)‖g‖p′(⋅), |
where the function p′ is called the dual variable exponent of p and A∗,A1,A∞ are disjoint sets, i.e.,
1p(x)+1p′(x)=1,Cp(⋅)=(1p−−1p++1)‖χA∗‖∞+‖χA∞‖∞+‖χA1‖∞. |
(II) (Sobolev inequality [3]) Let p0,p1,q∈P0(Rn) and s0,s1∈L∞(Rn)∩Clog(Rn) with s0>s1. If 1q and
s0−np0=s1−np1 |
are locally log-Hölder continuous, then
˙Bs0(⋅)p0(⋅),q(⋅)↪˙Bs1(⋅)p1(⋅),q(⋅). |
(III) ([3]) Let p0,p1,q0,q1∈P0(Rn) and s0,s1∈L∞(Rn)∩Clog(Rn) with s0>s1. If 1q0,1q1 and
s0−np0=s1−np1+ε(x) |
are locally log-Hölder continuous and essinfx∈Rnε(x)>0, then
˙Bs0(⋅)p0(⋅),q0(⋅)↪˙Bs1(⋅)p1(⋅),q1(⋅). |
(IV) (Mollification inequality [15]) For p(⋅)∈Clog(Rn) and ψ∈L1(Rn), assume that Ψ(x)=supy∉B(0,|x|)|ψ(y)| is integrable. Then
‖f∗ψε‖Lp(⋅)(Rn)≤C‖f‖Lp(⋅)(Rn)‖Ψ‖L1(Rn) |
for all f∈Lp(⋅)(Rn), where ψε=1εnψ(1ε) and C depends only on n.
Lemma 2.2. [18] [Hausdorff-Young's inequality] Let f∈Lp(Rn), 1≤p≤2. Then ˆf∈Lp′(Rn) with 1p+1p′=1 and
‖ˆf‖Lp′≤‖f‖Lp. |
Lemma 2.3. [18] A constant C exists such that for all s∈R,
r1≤r2⇒‖u‖˙Bsp,r2≤C‖u‖˙Bsp,r1,p1≤p2⇒‖u‖˙Bs−n(1p1−1p2)p2,r≤C‖u‖˙Bsp1,r. |
Lemma 2.4. Let s>0, 1≤p,r≤∞, p1(⋅),p2(⋅)∈Clog(Rn)∩P0(Rn), and 1p=1p1(⋅)+1p2(⋅). Then
‖uv‖˙Bsp,r≲‖u‖˙B0p1(⋅),r‖v‖˙Bsp2(⋅),r+‖v‖˙B0p1(⋅),r‖u‖˙Bsp2(⋅),r. |
Proof. According to Definition 2.3, for fixed j≥0, we have
Δj(uv)=∑|k−j|≤4Δj(Sk−1uΔkv)+∑|k−j|≤4Δj(Sk−1vΔku)+∑k≥j−2Δj(Δku˜Δkv)=:I1+I2+I3. |
We will estimate each of the three above. Using Young's inequality and Hölder's inequality from the Lemma 2.1, we have
‖2jsΔj(Sk−1uΔkv)‖Lp≲‖Sk−1u‖Lp1(⋅)‖2jsΔkv‖Lp2(⋅), |
then
‖2jsI1‖Lp≲∑|k−j|≤4‖Sk−1u‖Lp1(⋅)‖2jsΔkv‖Lp2(⋅). |
Similarly, for I2 we have
‖2jsI2‖Lp≲∑|k−j|≤4‖Sk−1v‖Lp1(⋅)‖2jsΔku‖Lp2(⋅). |
Now, it remains to estimates I3. Using Young's inequality, we have
‖Δj(Δku˜Δkv)‖Lp≲‖Δku‖Lp1(⋅)‖˜Δkv‖Lp2(⋅). |
Hence,
‖2jsI3‖Lp≲∑k≥j−2‖2jsΔku‖Lp1(⋅)‖˜Δkv‖Lp2(⋅)=∑k≥j−22(j−k)s‖2ksΔku‖Lp1(⋅)‖˜Δkv‖Lp2(⋅). |
Taking the norm ‖⋅‖lr on both side of above inequality, there holds that
‖uv‖˙Bsp,r≲‖u‖˙B0p1(⋅),r‖v‖˙Bsp2(⋅),r+‖v‖˙B0p1(⋅),r‖u‖˙Bsp2(⋅),r. |
Lemma 2.5. Let s>0, 1≤p,r,ρ≤∞, p1(⋅),p2(⋅)∈Clog(Rn)∩P0(Rn), and 1p=1p1(⋅)+1p2(⋅), 1ρ=1ρ1+1ρ2. Then
‖uv‖˜LρT˙Bsp,r≲‖u‖˜Lρ1T˙B0p1(⋅),r‖v‖˜Lρ2T˙Bsp2(⋅),r+‖v‖˜Lρ1T˙B0p1(⋅),r‖u‖˜Lρ2T˙Bsp2(⋅),r. |
Proof. In the proof of the Lemma 2.4, replacing Lp(⋅) with LρTLp(⋅), we can get that the conclusion holds.
We establish the linear estimates of the semigroup {TΩ(t)}t>0 in this section, and see the specific introduction of the semigroup {TΩ(t)}t>0 in Section 4.
Lemma 3.1. Let p(⋅)∈Clog(R3)∩P0(R3), 2≤p(⋅)≤6, 2≤p1(⋅)≤c≤p(⋅), s1(⋅)=2ρ+2−3p1(⋅) and 1≤q,ρ≤∞. Then
‖TΩ(t)f‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖f‖F˙B2−3p(⋅)p(⋅),q |
for Ω∈R and f∈F˙B2−3p(⋅)p(⋅),q.
Proof. By Definition 2.2, we have
‖TΩ(t)f‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)=‖{‖2js1(⋅)φjF[TΩ(t)f]‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z). |
Since TΩ(t)f is bounded Fourier multiplier, we estimate by a positive constant. Using Lemma 2.1, we have
‖TΩ(t)f‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)=‖{‖2js1(⋅)φjF[TΩ(t)f]‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖{‖2js1(⋅)φje−t|⋅|2ˆf‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖{∑l=0,±1‖2j(2−3c)‖Lc‖2j(2ρ+3c−3p1(⋅))φj+le−t22(j+l)‖Lρ(0,∞;Lcp1(⋅)c−p1(⋅))}j∈Z‖lq(Z)≲‖f‖F˙B2−3p(⋅)p(⋅),q, |
where the second norm in the second line above is estimated as follows
‖2j(2ρ+3c−3p1(⋅))φj+le−t22(j+l)‖Lρ(0,∞;Lcp1(⋅)c−p1(⋅))=‖2j2ρe−t22(j+l)‖Lρ(0,∞)‖2j(3c−3p1(⋅))φj+l‖Lcp1(⋅)c−p1(⋅)=‖2j2ρe−t22(j+l)‖Lρ(0,∞)inf{λ>0:∫R3|2j(3c−3p1(x))φj+lλ|cp1(x)c−p1(x)dx≤1}≲inf{λ>0:∫R3|2j(3c−3p1(x))φj+lλ|cp1(x)c−p1(x)dx≤1}≲inf{λ>0:∫R3|φj+lλ|cp1(x)c−p1(x)2−3jdx≤1}≲inf{λ>0:∫R3|φlλ|cp1(2jx)c−p1(2jx)dx≤1}≲C. |
Lemma 3.2. Let p(⋅)∈Clog(R3)∩P0(R3), 2≤p(⋅)≤6, 2≤p1(⋅)≤c≤p(⋅), s1(⋅)=2ρ+2−3p1(⋅) and 1≤q,ρ≤∞. Then
‖∫t0TΩ(t−τ)Pfdτ‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖f‖F˙B2−3p(⋅)p(⋅),q |
for Ω∈R and f∈F˙B2−3p(⋅)p(⋅),q.
Proof. Using Lemmas 2.1 and 2.2 and Young' inequality, we obtain
‖∫t0TΩ(t−τ)Pfdτ‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)=‖{‖2js1(⋅)φjF[∫t0TΩ(t−τ)Pfdτ]‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖{‖∫t02js1(⋅)φje−(t−τ)|⋅|2ˆfdτ‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖f‖˜Lρ(0,∞;˙B2ρ+122,q), |
where the inner norm of the second line above is estimated as follows
‖∫t02js1(⋅)φje−(t−τ)|⋅|2ˆfdτ‖Lρ(0,∞;Lp1(⋅))≲‖∫t0‖2js1(⋅)φje−(t−τ)|⋅|2‖L2p1(⋅)2−p1(⋅)‖φjˆf‖L2dτ‖Lρ(0,∞)≲‖∫t0‖2j(s1(⋅)+1)φje−(t−τ)|⋅|2‖L2p1(⋅)2−p1(⋅)‖Δjf‖L2dτ‖Lρ(0,∞)≲‖∫t02j(2ρ+12)e−(t−τ)22j‖2−3j2−p1(⋅)2p1(⋅)φj‖L2p(⋅)2−p(⋅)‖Δjf‖L2dτ‖Lρ(0,∞)≲‖∫t02j(2ρ+12)e−(t−τ)22j‖Δjf‖L2dτ‖Lρ(0,∞)≲‖2j(2ρ+12)‖Δjf‖L2‖Lρ(0,∞)‖e−t22j‖L1(0,∞)≲‖2j(2ρ+12)‖Δjf‖L2‖Lρ(0,∞). |
In order to solve the Boussinesq equations with Coriolis force, we consider the following linear generalized problem
{∂tu−Δu+Ωe3×u+∇P=0,inR3×(0,∞),divu=0,inR3×(0,∞),u|t=0=u0,inR3. | (4.1) |
The solution of (4.1) can be given by the generalized Stokes-Coriolis semigroup TΩ(t), which has the following explicit expression
TΩ(t)u=F−1[cos(Ωξ3|ξ|t)e−t|ξ|2I+sin(Ωξ3|ξ|t)e−t|ξ|2R(ξ)]∗u=F−1[cos(Ωξ3|ξ|t)I+sin(Ωξ3|ξ|t)R(ξ)]∗(etΔu), |
where divergence free vector field u∈S(R3), I is the unit matrix in M3×3(R) and R(ξ) is skew-symmetric matrix defined by
R(ξ):=1|ξ|(0ξ3−ξ2ξ30ξ1ξ2−ξ10),ξ∈R3∖{0}. |
Hence, the solution of the Eq (1.1) can be rewritten as
{u(t)=TΩ(t)u0−∫t0TΩ(t−τ)P[(u⋅∇)u]dτ+∫t0TΩ(t−τ)Pgθe3dτ,θ(t)=etΔθ0−∫t0e(t−τ)Δ[(u⋅∇)θ]dτ. |
For the derivation of explicit form of TΩ(⋅), we refer to [4,17,19].
Proof of Theorem 1.1. Let M>0, δ>0 to be determined. Set
X={(u,θ):‖u‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)+‖θ‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)≤M,‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)+‖θ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)≤δ}, |
which is equipped with the metric
d((u,θ),(w,υ))=‖u−w‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)∩˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)+‖θ−υ‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)∩˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q). |
It is easy to see that (X,d) is a complete metric space. Next we consider the following mapping
Φ:(u,θ)→(TΩ(t)u0,etΔθ0)−(∫t0TΩ(t−τ)P[(u⋅∇)u]dτ,∫t0e(t−τ)Δ[(u⋅∇)θ]dτ)+(∫t0TΩ(t−τ)Pgθe3dτ,0), |
where P:=I−∇(−Δ)−1 denotes the Helmholtz projection onto the divergence free vector fields.
We shall prove there exist M,δ>0 such that Φ:(X,d)→(X,d) is a strict contraction mapping.
First, we establish that the estimate of (TΩ(t)u0,etΔθ0). According to Lemma 3.1, it follows that
‖TΩ(t)u0‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖u0‖F˙B2−3p(⋅)p(⋅),q, |
and we have
‖etΔθ0‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖θ0‖F˙B2−3p(⋅)p(⋅),q |
when Ω=0.
Similarly we can obtain
‖TΩ(t)u0‖˜Lρ(0,∞;˙B2ρ+122,q)≲‖u0‖F˙B2−3p(⋅)p(⋅),q,‖etΔθ0‖˜Lρ(0,∞;˙B2ρ+122,q)≲‖θ0‖F˙B2−3p(⋅)p(⋅),q. |
It is easy to show that the estimate for TΩ(t)u0 and etΔθ0 also hold for ρ=∞ and p1(⋅)=p(⋅), i.e.,
‖TΩ(t)u0‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)≲‖u0‖F˙B2−3p(⋅)p(⋅),q,‖TΩ(t)u0‖˜L∞(0,∞;˙B122,q)≲‖u0‖F˙B2−3p(⋅)p(⋅),q,‖etΔθ0‖˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)≲‖θ0‖F˙B2−3p(⋅)p(⋅),q,‖etΔθ0‖˜L∞(0,∞;˙B122,q)≲‖θ0‖F˙B2−3p(⋅)p(⋅),q. |
Next we show that the estimate of the remaining terms. Using Lemmas 2.1–2.3 and 2.5, we can show that
‖∫t0TΩ(t−τ)P[(u⋅∇)u]dτ‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)=‖{‖2js1(⋅)φjF[∫t0TΩ(t−τ)P[(u⋅∇)u]dτ]‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖{‖∫t02js1(⋅)φje−(t−τ)|⋅|2^[(u⋅∇)u]dτ‖Lρ(0,∞;Lp1(⋅))}j∈Z‖lq(Z)≲‖u‖˜Lρ(0,∞;˙B2ρ+122,q)‖u‖˜L∞(0,∞;˙B03,q)≲‖u‖˜Lρ(0,∞;˙B2ρ+122,q)‖u‖˜L∞(0,∞;˙B122,q), |
where the inner norm of the third line is estimated as follows
‖∫t02js1(⋅)φje−(t−τ)|⋅|2^[(u⋅∇)u]dτ‖Lρ(0,∞;Lp1(⋅))≲‖∫t0‖2j(s1(⋅)+1)φje−(t−τ)|⋅|2‖L6p1(⋅)6−p1(⋅)‖˙Δj(u⊗u)‖L65dτ‖Lρ(0,∞)≲‖∫t02j(2ρ+52)e−(t−τ)22j‖2−3j6−p1(⋅)6p1(⋅)φj‖L6p1(⋅)6−p1(⋅)‖˙Δj(u⊗u)‖L65dτ‖Lρ(0,∞)≲‖∫t02j(2ρ+52)e−(t−τ)22j‖˙Δj(u⊗u)‖L65dτ‖Lρ(0,∞)≲‖2j(2ρ+52)‖˙Δj(u⊗u)‖L65‖Lρ(0,∞)‖e−t22j‖L1(0,∞)≲‖2j(2ρ+12)‖˙Δj(u⊗u)‖L65‖Lρ(0,∞). |
Similarly, we can obtain
‖∫t0TΩ(t−τ)Pgθe3dτ‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖θ‖˜Lρ(0,∞;˙B2ρ+122,q),‖∫t0e(t−τ)Δ[(u⋅∇)θ]dτ‖˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)≲‖u‖˜Lρ(0,∞;˙B2ρ+122,q)‖θ‖˜L∞(0,∞;˙B122,q). |
In addition, we can also get
‖∫t0TΩ(t−τ)P[(u⋅∇)u]dτ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)=‖∫t0TΩ(t−τ)P[(u⋅∇)u]dτ‖˜Lρ(0,∞;F˙B2ρ+122,q)∩˜L∞(0,∞;F˙B122,q),≲‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖u‖˜L∞(0,∞;˙B122,q),‖∫t0TΩ(t−τ)Pgθe3dτ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)≲‖θ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q),‖∫t0e(t−τ)Δ[(u⋅Δ)θ]dτ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)≲‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖θ‖˜L∞(0,∞;˙B122,q). |
We finally prove that the existence and uniqueness.
Let Y=˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)⋂˜Lρ(0,∞;˙B2ρ+122,q)⋂˜L∞(0,∞;˙B122,q), then
‖Φ(u,θ)‖Y=‖Φ(u)‖Y+‖Φ(θ)‖Y≲‖u0‖F˙B2−3p(⋅)p(⋅),q+‖θ0‖F˙B2−3p(⋅)p(⋅),q+‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖u‖˜L∞(0,∞;˙B122,q)+‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖θ‖˜L∞(0,∞;˙B122,q)+‖θ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q). |
Denote δ=M=2(‖u0‖F˙B2−3p(⋅)p(⋅),q+‖θ0‖F˙B2−3p(⋅)p(⋅),q)<2Cϵ, if ϵ is small enough, then we have
‖Φ(u,θ)‖Y≤δ2+δ2=δ, |
and
d(Φ(u,θ),Φ(w,υ))≤12d((u,θ),(w,υ)). |
It follows from the Banach's contraction mapping principle that the rotating Boussinesq equation has a unique global solution and satisfies
(u,θ)∈˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q)∩˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q) |
when ϵ is small enough.
On the other hand, let
Z=˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)∩˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)∩˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q), |
then we have
‖Φ(u,θ)‖Z=‖Φ(u)‖Z+‖Φ(θ)‖Z≲‖u0‖F˙B2−3p(⋅)p(⋅),q⋂F˙B2−3p1(⋅)p1(⋅),q+‖θ0‖F˙B2−3p(⋅)p(⋅),q⋂F˙B2−3p1(⋅)p1(⋅),q+‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖u‖˜L∞(0,∞;˙B122,q)+‖u‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q)‖θ‖˜L∞(0,∞;˙B122,q)+‖θ‖˜Lρ(0,∞;˙B2ρ+122,q)∩˜L∞(0,∞;˙B122,q). |
Set δ=M=2(‖u0‖F˙B2−3p(⋅)p(⋅),q⋂F˙B2−3p1(⋅)p1(⋅),q+‖θ0‖F˙B2−3p(⋅)p(⋅),q⋂F˙B2−3p1(⋅)p1(⋅),q)<2Cϵ, if ϵ is small enough, then we have
‖Φ(u,θ)‖Z≤δ2+δ2=δ, |
and
d(Φ(u,θ),Φ(w,υ))≤12d((u,θ),(w,υ)). |
According to the Banach's contraction mapping principle, it follows that the rotating Boussinesq equations has a unique global solution and satisfies
(u,θ)∈˜Lρ(0,∞;F˙Bs1(⋅)p1(⋅),q)∩˜L∞(0,∞;F˙B2−3p(⋅)p(⋅),q) |
when ϵ is small enough.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank the anonymous referee and editor very much for their valuable comments and suggestions, which greatly help us improve the presentation of this article. This work was supported by the National Natural Science Foundation of China (11601434).
The authors declared that they have no conflict of interest.
[1] |
H. Abidi, G. Gui, P. Zhang, Well-posedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillatory initial velocity field, J. Math. Pure. Appl., 100 (2013), 166–203. https://doi.org/10.1016/j.matpur.2012.10.015 doi: 10.1016/j.matpur.2012.10.015
![]() |
[2] |
H. Abidi, T. Hmidi, S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Cont. Dyn-A, 29 (2011), 737–756. https://doi.org/10.3934/dcds.2011.29.737 doi: 10.3934/dcds.2011.29.737
![]() |
[3] |
A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. https://doi.org/10.1016/j.jfa.2009.09.012 doi: 10.1016/j.jfa.2009.09.012
![]() |
[4] |
A. Babin, A. Mahalov, B. Nicolaenko, Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal., 15 (1997), 103–150. https://doi.org/10.3233/ASY-1997-15201 doi: 10.3233/ASY-1997-15201
![]() |
[5] |
A. Babin, A. Mahalov, B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Appl. Math. Lett., 13 (2000), 51–57. https://doi.org/10.1016/S0893-9659(99)00208-6 doi: 10.1016/S0893-9659(99)00208-6
![]() |
[6] |
A. Babin, A. Mahalov, B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations, Math. Models Methods Appl. Sci., 9 (1999), 1089–1121. https://doi.org/10.1142/S021820259900049X doi: 10.1142/S021820259900049X
![]() |
[7] |
A. Babin, A. Mahalov, B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 50 (2001), 1–36. https://doi.org/10.1512/iumj.2001.50.2155 doi: 10.1512/iumj.2001.50.2155
![]() |
[8] |
J. Bourgain, N. Pavlović, 3Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233–2247. https://doi.org/10.1016/j.jfa.2008.07.008 doi: 10.1016/j.jfa.2008.07.008
![]() |
[9] |
F. Charve, Asymptotics and lower bound for the lifespan of solutions to the primitive equations, Acta Appl. Math., 158 (2018), 11–47. https://doi.org/10.1007/s10440-018-0172-3 doi: 10.1007/s10440-018-0172-3
![]() |
[10] |
F. Charve, V. S. Ngo, Global existence for the primitive equations with small anisotropic viscosity, Rev. Mat. Iberoam., 27 (2011), 1–38. https://doi.org/10.4171/RMI/629 doi: 10.4171/RMI/629
![]() |
[11] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Basel: Birkhäuser, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[12] | B. Cushman-Roisin, J. M. Beckers, Introduction to geophysical fluid dynamics: Physical and numerical aspects, Amsterdam: Elsevier/Academic Press, 2011. |
[13] |
R. Danchin, M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D, 237 (2018), 1444–1460. https://doi.org/10.1016/j.physd.2008.03.034 doi: 10.1016/j.physd.2008.03.034
![]() |
[14] |
R. Danchin, M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261–309. https://doi.org/10.24033/bsmf.2557 doi: 10.24033/bsmf.2557
![]() |
[15] | L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[16] |
D. Fang, B. Han, M. Hieber, Local and global existence results for the Navier-Stokes equations in the rotational framework, Commun. Pure Appl. Anal., 14 (2015), 609–622. https://doi.org/10.3934/cpaa.2015.14.609 doi: 10.3934/cpaa.2015.14.609
![]() |
[17] |
Y. Giga, K. Inui, A. Mahalov, J. Saal Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775–2791. https://doi.org/10.1512/iumj.2008.57.3795 doi: 10.1512/iumj.2008.57.3795
![]() |
[18] | L. Grafakos, Classical Fourier analysis, New York: Springer, 2010. https://doi.org/10.1007/978-1-4939-1194-3 |
[19] |
M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491. https://doi.org/10.1007/s00209-009-0525-8 doi: 10.1007/s00209-009-0525-8
![]() |
[20] |
T. Hmidi, F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27 (2010), 1227–1246. https://doi.org/10.1016/j.anihpc.2010.06.001 doi: 10.1016/j.anihpc.2010.06.001
![]() |
[21] |
T. Iwabuchi, R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357 (2013), 727–741. https://doi.org/10.1007/s00208-013-0923-4 doi: 10.1007/s00208-013-0923-4
![]() |
[22] |
T. Iwabuchi, R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321–1337. https://doi.org/10.1016/j.jfa.2014.05.022 doi: 10.1016/j.jfa.2014.05.022
![]() |
[23] |
G. Karch, N. Prioux, Self-similarity in viscous Boussinesq equations, Proc. Amer. Math. Soc., 136 (2008), 879–888. https://doi.org/10.1090/S0002-9939-07-09063-6 doi: 10.1090/S0002-9939-07-09063-6
![]() |
[24] |
Y. Koh, S. Lee, R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differ. Equ., 19 (2014), 857–878. https://doi.org/10.57262/ade/1404230126 doi: 10.57262/ade/1404230126
![]() |
[25] |
P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ., 250 (2011), 3859–3873. https://doi.org/10.1016/j.jde.2011.01.003 doi: 10.1016/j.jde.2011.01.003
![]() |
[26] |
H. Kozono, T. Ogawa, Y. Taniuchi, Navier-Stokes equations in the Besov space near L∞ and BMO, Kyushu J. Math., 57 (2003), 303–324. https://doi.org/10.2206/kyushujm.57.303 doi: 10.2206/kyushujm.57.303
![]() |
[27] | P. Joseph, Geophysical fluid dynamics, New York: Springer, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
[28] |
S. Ru, M. Z. Abidin, Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents, Comput. Math. Appl., 77 (2019), 1082–1090. https://doi.org/10.1016/j.camwa.2018.10.039 doi: 10.1016/j.camwa.2018.10.039
![]() |
[29] | S. Sulaiman, On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces, Asymptot. Anal., 77 (2012), 89–121. |
[30] |
J. Sun, S. Cui, Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces, Nonlinear Anal.-Real, 48 (2019), 445–465. https://doi.org/10.1016/j.nonrwa.2019.02.003 doi: 10.1016/j.nonrwa.2019.02.003
![]() |
[31] |
J. Sun, C. Liu, M. Yang, Global solutions to 3D rotating Boussinesq equations in Besov spaces, J. Dyn. Differ. Equ., 32 (2020), 589–603. https://doi.org/10.1007/s10884-019-09747-0 doi: 10.1007/s10884-019-09747-0
![]() |
[32] |
J. Sun, M. Yang, Global well-posedness for the viscous primitive equations of geophysics, Bound. Value Probl., 2016 (2016), 21. https://doi.org/10.1186/s13661-016-0526-6 doi: 10.1186/s13661-016-0526-6
![]() |
[33] |
J. Sun, M. Yang, S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), 1203–1229. https://doi.org/10.1007/s10231-016-0613-4 doi: 10.1007/s10231-016-0613-4
![]() |
[34] |
X. Sun, H. Liu, Uniqueness of the weak solution to the fractional anisotropic Navier-Stokes equations, Math. Methods Appl. Sci., 44 (2021), 253–264. https://doi.org/10.1002/mma.6727 doi: 10.1002/mma.6727
![]() |
[35] |
X. Sun, M. Liu, J. Zhang, Global well-posedness for the generalized Navier-Stokes-Coriolis equations with highly oscillating initial data, Math. Methods Appl. Sci., 46 (2023), 715–731. https://doi.org/10.1002/mma.8541 doi: 10.1002/mma.8541
![]() |
[36] |
X. Yu, Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces ˙B−(2β−1)∞,∞(Rn), Math. Methods Appl. Sci., 35 (2012), 676–683. https://doi.org/10.1002/mma.1582 doi: 10.1002/mma.1582
![]() |
[37] | H. Koba, A. Mahalov, T. Yoneda, Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects, Adv. Math. Sci. Appl., 22 (2012), 61–90. |
1. | 偌鸿 马, Global Well-Posednessfor the Boussinesq-CoriolisEquations in Variable ExponentFourier-Besov-Morrey Spaces, 2024, 14, 2160-7583, 682, 10.12677/PM.2024.142068 |