Research article

Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces

  • Received: 07 August 2023 Revised: 07 September 2023 Accepted: 13 September 2023 Published: 25 September 2023
  • MSC : 35A01, 35Q35, 35Q86, 76U05

  • We study the small initial data Cauchy problem for the three-dimensional Boussinesq equations with the Coriolis force in variable exponent Fourier-Besov spaces. Using the Fourier localization argument and Littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data $ (u_0, \theta_0) $ belonging to the critical variable exponent Fourier-Besov spaces $ \mathcal{F}\mathcal{\dot{B}}_{p(\cdot), q}^{2-\frac{3}{p(\cdot)}} $.

    Citation: Xiaochun Sun, Yulian Wu, Gaoting Xu. Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces[J]. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385

    Related Papers:

  • We study the small initial data Cauchy problem for the three-dimensional Boussinesq equations with the Coriolis force in variable exponent Fourier-Besov spaces. Using the Fourier localization argument and Littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data $ (u_0, \theta_0) $ belonging to the critical variable exponent Fourier-Besov spaces $ \mathcal{F}\mathcal{\dot{B}}_{p(\cdot), q}^{2-\frac{3}{p(\cdot)}} $.



    加载中


    [1] H. Abidi, G. Gui, P. Zhang, Well-posedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillatory initial velocity field, J. Math. Pure. Appl., 100 (2013), 166–203. https://doi.org/10.1016/j.matpur.2012.10.015 doi: 10.1016/j.matpur.2012.10.015
    [2] H. Abidi, T. Hmidi, S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Cont. Dyn-A, 29 (2011), 737–756. https://doi.org/10.3934/dcds.2011.29.737 doi: 10.3934/dcds.2011.29.737
    [3] A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. https://doi.org/10.1016/j.jfa.2009.09.012 doi: 10.1016/j.jfa.2009.09.012
    [4] A. Babin, A. Mahalov, B. Nicolaenko, Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal., 15 (1997), 103–150. https://doi.org/10.3233/ASY-1997-15201 doi: 10.3233/ASY-1997-15201
    [5] A. Babin, A. Mahalov, B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Appl. Math. Lett., 13 (2000), 51–57. https://doi.org/10.1016/S0893-9659(99)00208-6 doi: 10.1016/S0893-9659(99)00208-6
    [6] A. Babin, A. Mahalov, B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations, Math. Models Methods Appl. Sci., 9 (1999), 1089–1121. https://doi.org/10.1142/S021820259900049X doi: 10.1142/S021820259900049X
    [7] A. Babin, A. Mahalov, B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 50 (2001), 1–36. https://doi.org/10.1512/iumj.2001.50.2155 doi: 10.1512/iumj.2001.50.2155
    [8] J. Bourgain, N. Pavlović, 3Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233–2247. https://doi.org/10.1016/j.jfa.2008.07.008 doi: 10.1016/j.jfa.2008.07.008
    [9] F. Charve, Asymptotics and lower bound for the lifespan of solutions to the primitive equations, Acta Appl. Math., 158 (2018), 11–47. https://doi.org/10.1007/s10440-018-0172-3 doi: 10.1007/s10440-018-0172-3
    [10] F. Charve, V. S. Ngo, Global existence for the primitive equations with small anisotropic viscosity, Rev. Mat. Iberoam., 27 (2011), 1–38. https://doi.org/10.4171/RMI/629 doi: 10.4171/RMI/629
    [11] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Basel: Birkhäuser, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [12] B. Cushman-Roisin, J. M. Beckers, Introduction to geophysical fluid dynamics: Physical and numerical aspects, Amsterdam: Elsevier/Academic Press, 2011.
    [13] R. Danchin, M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D, 237 (2018), 1444–1460. https://doi.org/10.1016/j.physd.2008.03.034 doi: 10.1016/j.physd.2008.03.034
    [14] R. Danchin, M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261–309. https://doi.org/10.24033/bsmf.2557 doi: 10.24033/bsmf.2557
    [15] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [16] D. Fang, B. Han, M. Hieber, Local and global existence results for the Navier-Stokes equations in the rotational framework, Commun. Pure Appl. Anal., 14 (2015), 609–622. https://doi.org/10.3934/cpaa.2015.14.609 doi: 10.3934/cpaa.2015.14.609
    [17] Y. Giga, K. Inui, A. Mahalov, J. Saal Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775–2791. https://doi.org/10.1512/iumj.2008.57.3795 doi: 10.1512/iumj.2008.57.3795
    [18] L. Grafakos, Classical Fourier analysis, New York: Springer, 2010. https://doi.org/10.1007/978-1-4939-1194-3
    [19] M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491. https://doi.org/10.1007/s00209-009-0525-8 doi: 10.1007/s00209-009-0525-8
    [20] T. Hmidi, F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27 (2010), 1227–1246. https://doi.org/10.1016/j.anihpc.2010.06.001 doi: 10.1016/j.anihpc.2010.06.001
    [21] T. Iwabuchi, R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357 (2013), 727–741. https://doi.org/10.1007/s00208-013-0923-4 doi: 10.1007/s00208-013-0923-4
    [22] T. Iwabuchi, R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321–1337. https://doi.org/10.1016/j.jfa.2014.05.022 doi: 10.1016/j.jfa.2014.05.022
    [23] G. Karch, N. Prioux, Self-similarity in viscous Boussinesq equations, Proc. Amer. Math. Soc., 136 (2008), 879–888. https://doi.org/10.1090/S0002-9939-07-09063-6 doi: 10.1090/S0002-9939-07-09063-6
    [24] Y. Koh, S. Lee, R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differ. Equ., 19 (2014), 857–878. https://doi.org/10.57262/ade/1404230126 doi: 10.57262/ade/1404230126
    [25] P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ., 250 (2011), 3859–3873. https://doi.org/10.1016/j.jde.2011.01.003 doi: 10.1016/j.jde.2011.01.003
    [26] H. Kozono, T. Ogawa, Y. Taniuchi, Navier-Stokes equations in the Besov space near $L^\infty$ and BMO, Kyushu J. Math., 57 (2003), 303–324. https://doi.org/10.2206/kyushujm.57.303 doi: 10.2206/kyushujm.57.303
    [27] P. Joseph, Geophysical fluid dynamics, New York: Springer, 1987. https://doi.org/10.1007/978-1-4612-4650-3
    [28] S. Ru, M. Z. Abidin, Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents, Comput. Math. Appl., 77 (2019), 1082–1090. https://doi.org/10.1016/j.camwa.2018.10.039 doi: 10.1016/j.camwa.2018.10.039
    [29] S. Sulaiman, On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces, Asymptot. Anal., 77 (2012), 89–121.
    [30] J. Sun, S. Cui, Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces, Nonlinear Anal.-Real, 48 (2019), 445–465. https://doi.org/10.1016/j.nonrwa.2019.02.003 doi: 10.1016/j.nonrwa.2019.02.003
    [31] J. Sun, C. Liu, M. Yang, Global solutions to 3D rotating Boussinesq equations in Besov spaces, J. Dyn. Differ. Equ., 32 (2020), 589–603. https://doi.org/10.1007/s10884-019-09747-0 doi: 10.1007/s10884-019-09747-0
    [32] J. Sun, M. Yang, Global well-posedness for the viscous primitive equations of geophysics, Bound. Value Probl., 2016 (2016), 21. https://doi.org/10.1186/s13661-016-0526-6 doi: 10.1186/s13661-016-0526-6
    [33] J. Sun, M. Yang, S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), 1203–1229. https://doi.org/10.1007/s10231-016-0613-4 doi: 10.1007/s10231-016-0613-4
    [34] X. Sun, H. Liu, Uniqueness of the weak solution to the fractional anisotropic Navier-Stokes equations, Math. Methods Appl. Sci., 44 (2021), 253–264. https://doi.org/10.1002/mma.6727 doi: 10.1002/mma.6727
    [35] X. Sun, M. Liu, J. Zhang, Global well-posedness for the generalized Navier-Stokes-Coriolis equations with highly oscillating initial data, Math. Methods Appl. Sci., 46 (2023), 715–731. https://doi.org/10.1002/mma.8541 doi: 10.1002/mma.8541
    [36] X. Yu, Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dot B^{-(2\beta-1)}_{\infty, \infty}(\Bbb R^n)$, Math. Methods Appl. Sci., 35 (2012), 676–683. https://doi.org/10.1002/mma.1582 doi: 10.1002/mma.1582
    [37] H. Koba, A. Mahalov, T. Yoneda, Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects, Adv. Math. Sci. Appl., 22 (2012), 61–90.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(907) PDF downloads(62) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog