Research article Special Issues

A novel study on the bifocusing method for imaging unknown objects in two-dimensional inverse scattering problem

  • Received: 14 July 2023 Revised: 19 September 2023 Accepted: 19 September 2023 Published: 25 September 2023
  • MSC : 78A46

  • In this paper, we consider the application of the bifocusing method (BFM) for a fast identification of two-dimensional circle-like small inhomogeneities from measured scattered field data. Based on the asymptotic expansion formula for the scattered field in the presence of small inhomogeneities, we introduce the imaging functions of the BFM for both dielectric permittivity and magnetic permeability contrast cases. To examine the applicability and the various properties of the BFM, we show that the imaging functions can be expressed by the Bessel function of orders zero and one, as well as the characteristics (size, permittivity, and permeability) of the inhomogeneities. To support the theoretical results, various numerical results with synthetic and experimental data are presented.

    Citation: Sangwoo Kang, Won-Kwang Park. A novel study on the bifocusing method for imaging unknown objects in two-dimensional inverse scattering problem[J]. AIMS Mathematics, 2023, 8(11): 27080-27112. doi: 10.3934/math.20231386

    Related Papers:

  • In this paper, we consider the application of the bifocusing method (BFM) for a fast identification of two-dimensional circle-like small inhomogeneities from measured scattered field data. Based on the asymptotic expansion formula for the scattered field in the presence of small inhomogeneities, we introduce the imaging functions of the BFM for both dielectric permittivity and magnetic permeability contrast cases. To examine the applicability and the various properties of the BFM, we show that the imaging functions can be expressed by the Bessel function of orders zero and one, as well as the characteristics (size, permittivity, and permeability) of the inhomogeneities. To support the theoretical results, various numerical results with synthetic and experimental data are presented.



    加载中


    [1] S. Ahmad, T. Strauss, S. Kupis, T. Khan, Comparison of statistical inversion with iteratively regularized Gauss Newton method for image reconstruction in electrical impedance tomography, Appl. Math. Comput., 358 (2019), 436–448. https://doi.org/10.1016/j.amc.2019.03.063 doi: 10.1016/j.amc.2019.03.063
    [2] H. F. Alqadah, N. Valdivia, A frequency based constraint for a multi-frequency linear sampling method, Inverse Probl., 29 (2013), 095019. https://doi.org/10.1088/0266-5611/29/9/095019 doi: 10.1088/0266-5611/29/9/095019
    [3] H. Ammari, P. Garapon, F. Jouve, H. Kang, M. Lim, S. Yu, A new optimal control approach for the reconstruction of extended inclusions, SIAM J. Control Optim., 51 (2013), 1372–1394. https://doi.org/10.1137/100808952 doi: 10.1137/100808952
    [4] H. Ammari, J. Garnier, V. Jugnon, H. Kang, Stability and resolution analysis for a topological derivative based imaging functional, SIAM J. Control Optim., 50 (2012), 48–76. https://doi.org/10.1137/100812501 doi: 10.1137/100812501
    [5] H. Ammari, J. Garnier, H. Kang, W. K. Park, K. Sølna, Imaging schemes for perfectly conducting cracks, SIAM J. Appl. Math., 71 (2011), 68–91. https://doi.org/10.1137/100800130 doi: 10.1137/100800130
    [6] H. Ammari, E. Iakovleva, S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal., 34 (2003), 882–900. https://doi.org/10.1137/S0036141001392785 doi: 10.1137/S0036141001392785
    [7] H. Ammari, H. Kang, Reconstruction of small inhomogeneities from boundary measurements, Vol. 1846, Lecture Notes in Mathematics, Berlin: Springer-Verlag, 2004. https://doi.org/10.1007/b98245
    [8] H. Ammari, S. Moskow, M. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume, ESAIM: Control Optim. Calc. Var., 9 (2003), 49–66. https://doi.org/10.1051/cocv:2002071 doi: 10.1051/cocv:2002071
    [9] L. Audibert, H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imag. Sci., 10 (2017), 845–870. https://doi.org/10.1137/16M110112X doi: 10.1137/16M110112X
    [10] A. Baussard, D. Prémel, O. Venard, A Bayesian approach for solving inverse scattering from microwave laboratory-controlled data, Inverse Probl., 17 (2001), 1659. https://doi.org/10.1088/0266-5611/17/6/309 doi: 10.1088/0266-5611/17/6/309
    [11] K. Belkebir, M. Saillard, Special section: testing inversion algorithms against experimental data, Inverse Probl., 17 (2001), 1565. https://doi.org/10.1088/0266-5611/17/6/301 doi: 10.1088/0266-5611/17/6/301
    [12] K. Belkebir, A. G. Tijhuis, Modified$^2$ gradient method and modified Born method for solving a two-dimensional inverse scattering problem, Inverse Probl., 17 (2001), 1671. https://doi.org/10.1088/0266-5611/17/6/310 doi: 10.1088/0266-5611/17/6/310
    [13] E. Bergou, Y. Diouane, V. Kungurtsev, Convergence and complexity analysis of a Levenberg–Marquardt algorithm for inverse problems, J. Optim. Theory Appl., 185 (2020), 927–944. https://doi.org/10.1007/s10957-020-01666-1 doi: 10.1007/s10957-020-01666-1
    [14] R. F. Bloemenkamp, A. Abubakar, P. M. van den Berg, Inversion of experimental multi-frequency data using the contrast source inversion method, Inverse Probl., 17 (2001), 1611. https://doi.org/10.1088/0266-5611/17/6/305 doi: 10.1088/0266-5611/17/6/305
    [15] O. Bondarenko, A. Kirsch, X. Liu, The factorization method for inverse acoustic scattering in a layered medium, Inverse Probl., 29 (2013), 045010. https://doi.org/10.1088/0266-5611/29/4/045010 doi: 10.1088/0266-5611/29/4/045010
    [16] A. Carpio, T. G. Dimiduk, F. L. Louër, M. L. Rapún, When topological derivatives met regularized Gauss–Newton iterations in holographic 3D imagingg, J. Comput. Phys., 388 (2019), 224–251. https://doi.org/10.1016/j.jcp.2019.03.027 doi: 10.1016/j.jcp.2019.03.027
    [17] A. Carpio, M. Pena, M. L. Rapún, Processing the 2D and 3D Fresnel experimental databases via topological derivative methodss, Inverse Probl., 37 (2021), 105012. https://doi.org/10.1088/1361-6420/ac21c8 doi: 10.1088/1361-6420/ac21c8
    [18] X. Chen, Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium, Inverse Probl., 26 (2010), 074007. https://doi.org/10.1088/0266-5611/26/7/074007 doi: 10.1088/0266-5611/26/7/074007
    [19] M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Probl., 17 (2001), 591. https://doi.org/10.1088/0266-5611/17/4/301 doi: 10.1088/0266-5611/17/4/301
    [20] S. Coşğun, E. Bilgin, M. Çayören, Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent, Med. Phys., 47 (2020), 3113–3122. https://doi.org/10.1002/mp.14156 doi: 10.1002/mp.14156
    [21] L. Crocco, T. Isernia, Inverse scattering with real data: detecting and imaging homogeneous dielectric objects, Inverse Probl., 17 (2001), 1573. https://doi.org/10.1088/0266-5611/17/6/302 doi: 10.1088/0266-5611/17/6/302
    [22] A. J. Deveney, Super-resolution processing of multi-static data using time-reversal and MUSIC, unpublished work, 2002.
    [23] O. Dorn, D. Lesselier, Level set methods for inverse scattering, Inverse Probl., 22 (2006), R67. https://doi.org/10.1088/0266-5611/22/4/R01 doi: 10.1088/0266-5611/22/4/R01
    [24] B. Duchêne, Inversion of experimental data using linearized and binary specialized nonlinear inversion schemes, Inverse Probl., 17 (2001), 1623. https://doi.org/10.1088/0266-5611/17/6/306 doi: 10.1088/0266-5611/17/6/306
    [25] L. Fatone, P. Maponi, F. Zirilli, An image fusion approach to the numerical inversion of multifrequency electromagnetic scattering data, Inverse Probl., 17 (2001), 1689. https://doi.org/10.1088/0266-5611/17/6/311 doi: 10.1088/0266-5611/17/6/311
    [26] M. Q. Feng, F. D. Flaviis, Y. J. Kim, Use of microwaves for damage detection of fiber reinforced polymer-wrapped concrete structures, J. Eng. Mech., 128 (2002), 172–183. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(172) doi: 10.1061/(ASCE)0733-9399(2002)128:2(172)
    [27] A. Franchois, C. Pichot, Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method, IEEE Trans. Antenn. Propag., 45 (1997), 203–215. https://doi.org/10.1109/8.560338 doi: 10.1109/8.560338
    [28] J. F. Funes, J. M. Perales, M. L. Rapún, J. M. Vega, Defect detection from multi-frequency limited data via topological sensitivity, J. Math. Imaging Vis., 55 (2016), 19–35. https://doi.org/10.1007/s10851-015-0611-y doi: 10.1007/s10851-015-0611-y
    [29] R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Probl., 27 (2011), 085005. https://doi.org/10.1088/0266-5611/27/8/085005 doi: 10.1088/0266-5611/27/8/085005
    [30] B. B. Guzina, F. Cakoni, C. Bellis, On the multi-frequency obstacle reconstruction via the linear sampling method, Inverse Probl., 26 (2010), 125005. https://doi.org/10.1088/0266-5611/26/12/125005 doi: 10.1088/0266-5611/26/12/125005
    [31] I. Harris, D. L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 42 (2020), B722–B737. https://doi.org/10.1137/19M129783X doi: 10.1137/19M129783X
    [32] K. Huang, K. Sølna, H. Zhao, Generalized Foldy-Lax formulation, J. Comput. Phys., 229 (2010), 4544–4553. https://doi.org/10.1016/j.jcp.2010.02.021 doi: 10.1016/j.jcp.2010.02.021
    [33] D. Ireland, K. Bialkowski, A. Abbosh, Microwave imaging for brain stroke detection using Born iterative method IET Microw. Antenn. Propag., 7 (2013), 909–915. https://doi.org/10.1049/iet-map.2013.0054
    [34] K. Ito, B. Jin, J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Probl., 28 (2012), 025003. https://doi.org/10.1088/0266-5611/28/2/025003 doi: 10.1088/0266-5611/28/2/025003
    [35] L. Jofre, A. Broquetas, J. Romeu, S. Blanch, A. P. Toda, X. Fabregas et al., UWB tomographic radar imaging of penetrable and impenetrable objects, Proc. IEEE, 97 (2009), 451–464. https://doi.org/10.1109/JPROC.2008.2008854 doi: 10.1109/JPROC.2008.2008854
    [36] S. Kang, S. Chae, W. K. Park, A study on the orthogonality sampling method corresponding to the observation directions configuration, Results Phys., 33 (2022), 105108. https://doi.org/10.1016/j.rinp.2021.105108 doi: 10.1016/j.rinp.2021.105108
    [37] S. Kang, M. Lambert, Structure analysis of direct sampling method in 3D electromagnetic inverse problem: near- and far-field configuration, Inverse Probl., 37 (2021), 075002. https://doi.org/10.1088/1361-6420/abfe4e doi: 10.1088/1361-6420/abfe4e
    [38] S. Kang, M. Lambert, C. Y. Ahn, T. Ha, W. K. Park, Single- and multi-frequency direct sampling methods in limited-aperture inverse scattering problem, IEEE Access, 8 (2020), 121637–121649. https://doi.org/10.1109/ACCESS.2020.3006341
    [39] S. Kang, M. Lambert, W. K. Park, Direct sampling method for imaging small dielectric inhomogeneities: analysis and improvement, Inverse Probl., 34 (2018), 095005. https://doi.org/10.1088/1361-6420/aacf1d doi: 10.1088/1361-6420/aacf1d
    [40] S. Kang, M. Lambert, W. K. Park, Analysis and improvement of direct sampling method in the mono-static configuration, IEEE Geosci. Remote Sens. Lett., 16 (2019), 1721–1725. https://doi.org/10.1109/LGRS.2019.2906366
    [41] S. Kang, M. Lim, W. K. Park, Fast identification of short, linear perfectly conducting cracks in the bistatic measurement configuration, J. Comput. Phys., 468 (2022), 111479. https://doi.org/10.1016/j.jcp.2022.111479 doi: 10.1016/j.jcp.2022.111479
    [42] S. Kang, W. K. Park, Application of MUSIC algorithm for a fast identification of small perfectly conducting cracks in limited-aperture inverse scattering problem, Comput. Math. Appl., 117 (2022), 97–112. https://doi.org/10.1016/j.camwa.2022.04.015 doi: 10.1016/j.camwa.2022.04.015
    [43] S. Kang, W. K. Park, S. H. Son, A qualitative analysis of bifocusing method for a real-time anomaly detection in microwave imaging, Comput. Math. Appl., 137 (2023), 93–101. https://doi.org/10.1016/j.camwa.2023.02.017 doi: 10.1016/j.camwa.2023.02.017
    [44] Y. J. Kim, L. Jofre, F. D. Flaviis, M. Q. Feng, Microwave reflection tomographic array for damage detection of civil structures, IEEE Trans. Antenn. Propag., 51 (2003), 3022–3032. https://doi.org/10.1109/TAP.2003.818786 doi: 10.1109/TAP.2003.818786
    [45] A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Probl., 18 (2002), 1025. https://doi.org/10.1088/0266-5611/18/4/306 doi: 10.1088/0266-5611/18/4/306
    [46] A. Kirsch, S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Probl., 16 (2000), 89. https://doi.org/10.1088/0266-5611/16/1/308 doi: 10.1088/0266-5611/16/1/308
    [47] R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Probl., 19 (2003), S91. https://doi.org/10.1088/0266-5611/19/6/056 doi: 10.1088/0266-5611/19/6/056
    [48] O. Kwon, J. K. Seo, J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Commun. Pure Appl. Math., 55 (2002), 1–29. https://doi.org/10.1002/cpa.3009 doi: 10.1002/cpa.3009
    [49] L. J. Landau, Bessel functions: monotonicity and bounds, J. London Math. Soc., 61 (2000), 197–215. https://doi.org/10.1112/S0024610799008352 doi: 10.1112/S0024610799008352
    [50] Z. Liu, A new scheme based on Born iterative method for solving inverse scattering problems with noise disturbance, IEEE Geosci. Remote Sens. Lett., 16 (2019), 1021–1025. https://doi.org/10.1109/LGRS.2019.2891660
    [51] F. L. Louër, M. L. Rapún, Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I: one step method, SIAM J. Imaging Sci., 10 (2017), 1291–1321. https://doi.org/10.1137/17M1113850 doi: 10.1137/17M1113850
    [52] R. Marklein, K. Balasubramanian, A. Qing, K. J. Langenberg, Linear and nonlinear iterative scalar inversion of multi-frequency multi-bistatic experimental electromagnetic scattering data, Inverse Probl., 17 (2001), 1597. https://doi.org/10.1088/0266-5611/17/6/304 doi: 10.1088/0266-5611/17/6/304
    [53] W. K. Park, Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions, J. Comput. Phys., 231 (2012), 1426–1439. https://doi.org/10.1016/j.jcp.2011.10.014 doi: 10.1016/j.jcp.2011.10.014
    [54] W. K. Park, Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions, Appl. Numer. Math., 77 (2014), 31–42. https://doi.org/10.1016/j.apnum.2013.11.001 doi: 10.1016/j.apnum.2013.11.001
    [55] W. K. Park, Asymptotic properties of MUSIC-type imaging in two-dimensional inverse scattering from thin electromagnetic inclusions, SIAM J. Appl. Math., 75 (2015), 209–228. https://doi.org/10.1137/140975176 doi: 10.1137/140975176
    [56] W. K. Park, Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems, J. Comput. Phys., 283 (2015), 52–80. https://doi.org/10.1016/j.jcp.2014.11.036 doi: 10.1016/j.jcp.2014.11.036
    [57] W. K. Park, A novel study on subspace migration for imaging of a sound-hard arc, Comput. Math. Appl., 74 (2017), 3000–3007. https://doi.org/10.1016/j.camwa.2017.07.045 doi: 10.1016/j.camwa.2017.07.045
    [58] W. K. Park, Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix, Mech. Syst. Signal Proc., 153 (2021), 107501. https://doi.org/10.1016/j.ymssp.2020.107501 doi: 10.1016/j.ymssp.2020.107501
    [59] W. K. Park, Real-time detection of small anomaly from limited-aperture measurements in real-world microwave imaging, Mech. Syst. Signal Proc., 171 (2022), 108937. https://doi.org/10.1016/j.ymssp.2022.108937 doi: 10.1016/j.ymssp.2022.108937
    [60] W. K. Park, On the application of orthogonality sampling method for object detection in microwave imaging, IEEE Trans. Antenn. Propag., 71 (2023), 934–946. https://doi.org/10.1109/TAP.2022.3220033 doi: 10.1109/TAP.2022.3220033
    [61] W. K. Park, D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level set method, Inverse Probl., 25 (2009), 085010. https://doi.org/10.1088/0266-5611/25/8/085010 doi: 10.1088/0266-5611/25/8/085010
    [62] R. Potthast, On the convergence of a new {N}ewton-type method in inverse scattering, Inverse Probl., 17 (2001), 1419. https://doi.org/10.1088/0266-5611/17/5/312 doi: 10.1088/0266-5611/17/5/312
    [63] C. Ramananjaona, M. Lambert, D. Lesselier, Shape inversion from TM and TE real data by controlled evolution of level sets, Inverse Probl., 17 (2001), 1585–1595. https://doi.org/10.1088/0266-5611/17/6/303 doi: 10.1088/0266-5611/17/6/303
    [64] F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM: Control Optim. Calc. Var., 1 (1996), 17–33. https://doi.org/10.1051/cocv:1996101 doi: 10.1051/cocv:1996101
    [65] J. D. Shea, P. Kosmas, S. C. Hagness, B. D. V. Veen, Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique, Med. Phys., 37 (2010), 4210–4226. https://doi.org/10.1118/1.3443569 doi: 10.1118/1.3443569
    [66] S. H. Son, W. K. Park, Application of the bifocusing method in microwave imaging without background information, J. Korean Soc. Ind. Appl. Math., 27 (2023), 109–122. https://doi.org/10.12941/jksiam.2023.27.109 doi: 10.12941/jksiam.2023.27.109
    [67] M. Testorf, M. Fiddy, Imaging from real scattered field data using a linear spectral estimation technique, Inverse Probl., 17 (2001), 1645. https://doi.org/10.1088/0266-5611/17/6/308 doi: 10.1088/0266-5611/17/6/308
    [68] A. G. Tijhuis, K. Belkebir, A. Litman, B. P. de Hon, Multiple-frequency distorted-wave Born approach to 2D inverse profiling, Inverse Probl., 17 (2001), 1635. https://doi.org/10.1088/0266-5611/17/6/307 doi: 10.1088/0266-5611/17/6/307
    [69] Y. Zhong, X. Chen, Twofold subspace-based optimization method for solving inverse scattering problems, Inverse Probl., 25 (2009), 085003. https://doi.org/10.1088/0266-5611/25/8/085003 doi: 10.1088/0266-5611/25/8/085003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1016) PDF downloads(63) Cited by(2)

Article outline

Figures and Tables

Figures(19)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog