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Abstract: In this paper, we consider the application of the bifocusing method (BFM) for a fast
identification of two-dimensional circle-like small inhomogeneities from measured scattered field
data. Based on the asymptotic expansion formula for the scattered field in the presence of small
inhomogeneities, we introduce the imaging functions of the BFM for both dielectric permittivity and
magnetic permeability contrast cases. To examine the applicability and the various properties of the
BFM, we show that the imaging functions can be expressed by the Bessel function of orders zero
and one, as well as the characteristics (size, permittivity, and permeability) of the inhomogeneities.
To support the theoretical results, various numerical results with synthetic and experimental data are
presented.
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1. Introduction

In this paper, we consider the localization of a set of small two-dimensional (2D) homogeneous
inhomogeneities using various electromagnetic source transmitters and receivers. The problem is
formulated as an inverse scattering problem for the 2D electromagnetic system. To solve this problem,
various remarkable techniques have been investigated, most of which are classified as quantitative or
qualitative methods.

In order to reconstruct the parameter (such as dielectric permittivity, electric conductivity, or
magnetic permeability at a given frequency) distribution or identify an unknown object larger than
the given wavelength, various quantitative methods (or iterative methods) have been developed, such
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as Newton’s method [47,62], Gauss–Newton method [1,16], optimal control approach [3], Levenberg–
Marquardt algorithm [13,27], Born iterative method [33,50], level-set technique [23,64], and subspace
optimization method [18, 69]. Although these algorithms have shown feasibility and applicability in
inverse scattering problems, good initial guess must be generated before the iteration procedure because
the success of iterative-based techniques significantly depend on the initial guess [48, 61].

Alternatively, for obtaining a good initial guess or identifying the location or determining the outline
shape of small objects, various qualitative methods (or non-iterative methods) have been investigated,
such as the direct sampling method [34, 37, 39], factorization method [15, 20, 45], Kirchhoff and
subspace migrations [5, 54, 59], MUltiple SIgnal Classification (MUSIC) algorithm [22, 42, 58],
linear sampling method [9, 19, 46], topological derivative strategy [4, 51, 53], orthogonality sampling
method [31, 36, 60], and variational algorithm based on the Fourier inversion [6–8].

The bifocusing method (BFM) is classified as a qualitative method using a multistatic measurement
system. Recently, it has been successfully applied to various interesting problems, such as damage
detection of inhomogeneous structures [26, 44], radar imaging [35], and anomaly detection in
microwave imaging [66]. Let us emphasize that a reliable mathematical theory of BFM in the
presence of small anomaly has been developed only for the transverse magnetic polarization (TM)
case, refer to [43]. However, to the best of our knowledge, the application of BFM in inverse
scattering problem for both transverse magnetic and electric (TE) polarizations is still heuristic; thus,
developing an appropriate mathematical theory and performing numerical simulations with synthetic
and experimental data are necessary to explain the applicability, fundamental limitations, and various
intrinsic properties of the BFM in TM and TE polarizations.

In this paper, we design the imaging functions of the BFM for the dielectric permittivity
(TM polarization) and magnetic permeability (TE polarization) contrast cases in full-aperture
inverse scattering problem. Based on the asymptotic expansion formula in the presence of small
inhomogeneities, we show that the designed imaging functions comprise the Bessel function of order
zero and order one for the dielectric permittivity and magnetic permeability contrast cases, respectively,
and the material properties (such as the total number, size, dielectric permittivity, and magnetic
permeability) of the inhomogeneities. This analysis confirms the reason of the unique determination of
inhomogeneities for the permittivity contrast case and the identification of two locations instead of true
locations of inhomogeneities for the permeability contrast case. To demonstrate the theoretical results,
various results of the numerical simulation with synthetic and experimental data are presented.

This study is organized as follows. In Section 2, we introduce the basic concept of the 2D direct
scattering problem in the presence of a set of small, well-separated inhomogeneities and the asymptotic
expansion formula for the scattered field. In Section 3, we design the imaging functions of the BFM
for the dielectric permittivity and magnetic permeability contrast cases, explore the mathematical
structures of the imaging functions, and discuss their applicability, limitations, and various properties.
In Section 4, we present some numerical simulation results with synthetic and experimental data, and
compared with those obtained by other qualitative methods such as direct sampling method, MUSIC,
subspace migration, and topological derivative method. In Section 5, we present a short conclusion
including an outline of future research.

Finally, let us emphasize that the imaging result via experimental data obtained through the BFM
does not guarantee the exact shape of object. However, retrieved result can be adopted as a good
initial guess and correspondingly, it will be possible to retrieve a better shape through the iterative-
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based algorithms. Let us mention some classical but very useful approaches of the retrieval of objects
via Fresnel data; Bayesian approach [10], modified Born method [12], contrast source inversion
method [14], conjugate gradient fast Fourier transform (CG-FFT) method [21], modified gradient
method [24], image fusion approach [25], diffraction tomography, modified gradient, and real-coded
genetic algorithms [52], level set method [63], linear spectral estimation technique [67], and distorted-
wave Born approach [68].

2. Forward problem and asymptotic expansion formula

We shall consider 2D direct scattering from a set of small electromagnetic inhomogeneities located
in homogeneous space R2. We denote Ω be the region of interest (ROI) and assume that the
inhomogeneity Σs, s = 1, 2, · · · , S , is a small ball with radius αs and location xs:

Σs = xs + αsS
1, Σ =

S⋃
s=1

Σs,⊂ Ω,

where S1 denotes the unit circle centered at the origin.
Let εb and µb denote the values of the dielectric permittivity and magnetic permeability of R2,

respectively, at the given angular frequency ω = 2π f , where f denotes the ordinary frequency
measured in hertz. Similarly, we denote εs and µs as the values of the dielectric permittivity and
magnetic permeability of Σs. With this, we denote ε(x) and µ(x) as the piecewise constants of dielectric
permittivity and magnetic permeability, respectively, such that

ε(x) =

{
εs, x ∈ Σs

εb, x ∈ R2\Σ
and µ(x) =

{
µs, x ∈ Σs

µb, x ∈ R2\Σ.

With this, we denote k as the background wavenumber that satisfies k2 = ω2εbµb. Throughout this
paper, we assume that all Σs are well-separated from each other and, correspondingly, that k satisfies
the following:

|xs − xs′ | �
3
4k

for s , s′. (2.1)

We assume that transmitters are located at tm, m = 1, 2, · · · ,M, while receivers are located at rn,
n = 1, 2, · · · ,N. That is, tm and rn are given by the following:

tm = rtx(cos θm, sin θm), θm =
2π(m − 1)

M
(2.2)

and
rn = rrx(cosϑn, sinϑn), ϑn =

2π(n − 1)
N

, (2.3)

respectively. In this study, we consider the point-source illumination, letting

uinc(tm, x) = G(tm, x) = −
i
4

H(1)
0 (k|tm − x|) = −

i
4

(
J0(k|tm − x|) + iY0(k|tm − x|)

)
be the incident field at source tm. Here, Jn and Yn denote the Bessel and Neumann functions of integer
order n, respectively, and H(1)

0 denotes the Hankel function or order zero of the first kind. Throughout
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this paper, we assume that the time dependence is of the form e−iωt. Then, the governing equation for
the time-harmonic total field u(tm, x) emitted by a source at tm is

∇ ·

(
1
µ(x)
∇u(tm, x)

)
+ ω2ε(x)u(tm, x) = 0, (2.4)

with transmission conditions at the boundaries of Σs. With this, we denote uscat(tm, rn) as the scattered
field, which is obtained by subtracting the total and incident fields and satisfies the Sommerfeld
radiation condition

lim
|x|→∞

√
|x|

(
∂uscat(tm, rn)

∂|x|
− ikuscat(tm, rn)

)
= 0

uniformly in all directions x/|x|. Based on [7], uscat(tm, rn) can be represented as an asymptotic
expansion formula, which plays a key role in designing the imaging function.

Lemma 2.1 (Asymptotic formula). For sufficiently large k, uscat(tm, rn) can be represented as follows:

uscat(tm, rn) ≈
S∑

s=1

α2
sk

2π

(
εs − εb
√
εbµb

)
G(tm, xs)G(rn, xs) +

S∑
s=1

α2
sπ∇G(tm, xs)M∇G(rn, xs)T , (2.5)

whereM(xs) denotes 2 × 2 diagonal matrix with diagonal element 2πµb/(µs + µb).

3. Designing imaging functions and qualitative analysis

In this section, we apply the asymptotic formula (2.5) to design an imaging function for identifying
Σs with no prior information and to establish a mathematical theory. Consequently, we examine
the structure of the MSR matrix K. The analysis is then led successively for two cases: dielectric
permittivity (ε(x) , εb and µ(x) = µb) and magnetic permeability contrast cases (ε(x) = εb and
µ(x) , µb). Throughout this section, we assume that there is no noise and the full MSR matrix K is
available such that

K =


uscat(t1, r1) uscat(t1, r2) · · · uscat(t1, rN)
uscat(t2, r1) uscat(t2, r2) · · · uscat(t2, rN)

...
...

. . .
...

uscat(tM, r1) uscat(tM, r2) · · · uscat(tM, rN)

 .
3.1. Dielectric permittivity contrast (transverse magnetic polarization) case

First, we assume that ε(x) , εb and µ(x) = µb. Based on the representation formula (2.5), u(ε)
scat(tm, rn)

can be written as follows:

u(ε)
scat(tm, rn) ≈

S∑
s=1

k2α2
sπ

(
εs − εb
√
εbµb

)
G(tm, xs)G(rn, xs).

Correspondingly, the MSR matrix becomes

K ≈
S∑

s=1

k2α2
sπ

(
εs − εb
√
εbµb

) 
G(t1, xs)G(r1, xs) G(t1, xs)G(r2, xs) · · · G(t1, xs)G(rN , xs)
G(t2, xs)G(r1, xs) G(t2, xs)G(r2, xs) · · · G(t2, xs)G(rN , xs)

...
...

. . .
...

G(tM, xs)G(r1, xs) G(tM, xs)G(r2, xs) · · · G(tM, xs)G(rN , xs)

 .
AIMS Mathematics Volume 8, Issue 11, 27080–27112.
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Based on the above representation, we can design the imaging function forms every image point
through the synthesis inversion of two Green’s functions, G(tm, x) and G(rn, x), for m = 1, 2, · · · ,M
and n = 1, 2, · · · ,N. Correspondingly, the imaging function FTM(x) of BFM can be introduced as
follows: for x ∈ Ω,

FTM(x) =
|ΦTM(x)|

max
x∈Ω
|ΦTM(x)|

, where ΦTM(x) =

M∑
m=1

N∑
n=1

u(ε)
scat(tm, rn)

G(tm, x)G(rn, x)
. (3.1)

Here, Ω denotes the imaging area. The resulting plot of FTM(x) is expected to exhibit large peaks at
xs ∈ Σs, s = 1, 2, · · · , S so that all inhomogeneities can be recognized through the map of FTM(x), refer
to [35].

Although the location of the inhomogeneities can be retrieved from the map of FTM(x), further
mathematical theories to explain the feasibilities, fundamental limitations, and some phenomena in
the simulation results must be investigated. Here, we show that FTM(x) can be written by the Bessel
function of order zero of the first kind. For a proper derivation, we introduce the following useful
identity derived in [56].

Lemma 3.1. For sufficiently large M, θm, θ ∈ S
1, and x ∈ R2, the following relation holds

1
M

M∑
m=1

eikθm·x ≈
1

2π

∫
S1

eikθ·xdθ = J0(k|x − xs|).

Then, we can obtain the following result.

Theorem 3.1. Let x ∈ Ω, θm = (cos θm, sin θm), ϑn = (cosϑn, sinϑn), and x−xs = |x−xs|(cos φs, sin φs),
and assume that the values of M, N, k are sufficiently large such that |x − xs| � 0.25/k. Subsequently,
for tm and rn respectively defined in (2.2) and (2.3), FTM(x) can be represented as follows:

FTM(x) =
|ΨTM(x)|

max
x∈Ω
|ΨTM(x)|

, where ΨTM(x) ≈ MNk2π

S∑
s=1

α2
s

(
εs − εb
√
εbµb

)
J0(k|x − xs|)2. (3.2)

Proof. Since |tm − x|, |rn − x| � 0.25/k and −2π < arg(k|tm − x|), arg(k|rn − x|) < π for all m and n, the
following asymptotic forms hold

G(tm, x) ≈
(1 − i)eik|tm−x|

√
kπ|tm − x|

and

G(rn, x) ≈
(1 − i)eik|rn−x|

√
kπ|rn − x|

.

Since

|tm − x| =
√
|t|2 − 2tm · x + |x|2 = |tm|

2 −
tm

|tm|
· x + O

(
1
|tm|

)
≈ |tm| − θm · x,

we have

G(tm, x) ≈
(1 − i)eik|tm |

√
kπ|tm|

e−ikθm·x and G(rn, x) ≈
(1 − i)eik|rn |

√
kπ|rn|

e−ikϑn·x. (3.3)
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Thus, ΦTM(x) can be written as follows:

ΦTM(x) =

M∑
m=1

N∑
n=1

S∑
s=1

k2α2
sπ

(
εs − εb
√
εbµb

)
G(tm, xs)G(rn, xs)
G(tm, x)G(rn, x)

≈

M∑
m=1

N∑
n=1

S∑
s=1

k2α2
sπ

(
εs − εb
√
εbµb

)
e−ikθm·xse−ikϑn·xs

e−ikθm·xe−ikϑn·x

=

S∑
s=1

k2α2
sπ

(
εs − εb
√
εbµb

)  M∑
m=1

eikθm·(x−xs)

  N∑
n=1

eikϑn·(x−xs)

 .
Since M and N are sufficiently large, applying Lemma 3.1 yields

M∑
m=1

eikθm·(x−xs) ≈ MJ0(k|x − xs|)) and
N∑

n=1

eikϑn·(x−xs) ≈ NJ0(k|x − xs|).

Hence, we can obtain

ΦTM(x) ≈ MNk2π

S∑
s=1

α2
s

(
εs − εb
√
εbµb

)
J0(k|x − xs|)2

and correspondingly, (3.2) can be derived. �

Based on the identified structure (3.2), we can examine some properties of the imaging function
FTM(x).

Remark 3.1 (Unique detectability and resolution). Since J0(0) = 1, xs can be identified uniquely
because the local maxima of the FTM(x) will appear at xs. Moreover, several artifacts that depend
on k also appear in the map of FTM(x) due to the oscillating property of the J0. That is, if the value of k
is sufficiently large, high-resolution results can be obtained, but several artifacts will be included in the
map of FTM(x). Conversely, if the value of k is small, a blurred image will appear, but less artifacts will
be included. Thus, xs cannot be identified using the map of FTM(x) if the value k is extremely small
(see Figure 11).

Remark 3.2 (Material properties). Based on (3.2), we can examine the value of FTM(x) as proportional
to α2

s(εs − εb). This means that the value of FTM(x) depends on the size and permittivity of the
inhomogeneities. That is, if there are two inhomogeneities Σ1 and Σ2 satisfying α2

1(ε1−εb) > α2
2(ε2−εb),

then FTM(x1) > FTM(x2) so that the identification of x1 is guaranteed. However, the identification of x2

is not guaranteed in some cases because the value of FTM(x2) cannot be distinguished from the artifacts.
Hence, if the size or permittivity of an inhomogeneity is larger than that of another inhomogeneity, its
location can be identified. If α2

1(ε1 − εb) � α2
2(ε2 − εb), then the location x1 can be identified, while x2

cannot.

Based on the Remark 3.1, we can examine the following result of unique determination.

Corollary 3.1 (Unique determination in permittivity contrast case). With the same condition of the
Theorem 3.1, the location of small inhomogeneities can be identified uniquely through the map of
FTM(x).

AIMS Mathematics Volume 8, Issue 11, 27080–27112.
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3.2. Magnetic permeability contrast (transverse electric polarization) case

Next, we assume that ε(x) = εb and µ(x) , µb. Based on the representation formula (2.5),
u(µ)

scat(tm, rn) can be written as follows:

u(µ)
scat(tm, rn) ≈

S∑
s=1

α2
sπ

(
2µb

µs + µb

)
∇G(tm, xs) · ∇G(rn, xs).

Correspondingly, the MSR matrix becomes

K ≈
S∑

s=1

α2
sπ

(
2µb

µs + µb

) 
∇G(t1, xs) · ∇G(r1, xs) ∇G(t1, xs) · ∇G(r2, xs) · · · ∇G(t1, xs) · ∇G(rN , xs)
∇G(t2, xs) · ∇G(r1, xs) ∇G(t2, xs) · ∇G(r2, xs) · · · ∇G(t2, xs) · ∇G(rN , xs)

...
...

. . .
...

∇G(tM, xs) · ∇G(r1, xs) ∇G(tM, xs) · ∇G(r2, xs) · · · ∇G(tM, xs) · ∇G(rN , xs)

 .
Based on the above representation, we can regard that the imaging function forms every image point
through the synthesis inversion of ∇G(tm, x) · ∇G(rn, x) for m = 1, 2, · · · ,M and n = 1, 2, · · · ,N.
Correspondingly, the imaging function f (x) can be introduced as follows: for x ∈ Ω,

F(x) =
|Φ(x)|

max
x∈Ω
|Φ(x)|

, where Φ(x) =

M∑
m=1

N∑
n=1

u(µ)
scat(tm, rn)

∇G(tm, x) · ∇G(rn, x)
. (3.4)

Remark 3.3. Notably, since

∇xG(y, x) =
ik(y − x)
4|y − x|

H(1)
1 (k|y − x|), y , x,

sometimes m, n ∈ N and x ∈ Ω exist such that

∇G(tm, x) · ∇G(rn, x) = −
k2(tm − x) · (rn − x)

16|tm − x||rn − x|
H(1)

1 (k|tm − x|)H(1)
1 (k|rn − x|) = 0.

This means that the denominator of Φ(x) defined in (3.4) can be zero, we refer to Figure 1 for an
illustration.

tm

rn

x

Figure 1. Illustration of the case (tm − x) · (rn − x) = 0 i.e., ∇G(tm, x) · ∇G(rn, x) = 0.
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Based on the Remark 3.3, using the F(x) of (3.4) to identify xs is inappropriate. Thus, motivated by
the permittivity contrast case, we consider the following imaging function of the BFM: for x ∈ Ω,

FTE(x) =
|ΦTE(x)|

max
x∈Ω
|ΦTE(x)|

, where ΦTE(x) =

M∑
m=1

N∑
n=1

u(µ)
scat(tm, rn)

G(tm, x)G(rn, x)
. (3.5)

In order to explore some properties of FTE(x), we explore its structure. To this end, we introduce the
following useful identity derived in [56].

Lemma 3.2. For sufficiently large M, θm, θ,ϑn, ∈ S
1, and x ∈ R2, the following relation holds

1
M

M∑
m=1

(θm · ϑn)eikθm·x ≈
1

2π

∫
S1

(θ · ϑn)eikθ·xdθ = i
(
ϑn ·

x
|x|

)
J1(k|x|).

Then, we can obtain the following result.

Theorem 3.2. Let x ∈ Ω, θm = (cos θm, sin θm), ϑn = (cosϑn, sinϑn), and x−xs = |x−xs|(cos φs, sin φs),
and assume that the values of M, N, k are sufficiently large such that |x − xs| � 0.25/k. Then, for tm

and rn respectively defined in (2.2) and (2.3), FTE(x) can be represented as follows:

FTE(x) =
|ΨTE(x)|

max
x∈Ω
|ΨTE(x)|

, where ΨTE(x) ≈ −2MNk2π

S∑
s=1

α2
s

(
µb

µs + µb

)
J1(k|x − xs|)2. (3.6)

Proof. Since |tm−x| � 0.25/k, |rn−x| � 0.25/k, −2π < arg(k|tm−x|) < π, and −2π < arg(k|rn−x|) < π
for all m and n, we have

∇xG(tm, x) ≈
k(1 − i)eik|tm |

√
kπ|tm|

(
θme−ikθm·x) and ∇xG(rn, x) ≈

k(1 − i)eik|rn |

√
kπ|rn|

(
ϑne−ikϑn·x). (3.7)

Subsequently, using (3.3) and (3.7), ΦTE(x) can be written as follows:

ΦTE(x) =

M∑
m=1

N∑
n=1

S∑
s=1

α2
sπ

(
2µb

µs + µb

)
∇G(tm, xs) · ∇G(rn, xs)

G(tm, x)G(rn, x)

≈

M∑
m=1

N∑
n=1

S∑
s=1

k2α2
sπ

(
2µb

µs + µb

)
(θm · ϑn)e−ikθm·xse−ikϑn·xs

e−ikθm·xe−ikϑn·x

=

S∑
s=1

k2α2
sπ

(
2µb

µs + µb

) N∑
n=1

 M∑
m=1

(θm · ϑn)eikθm·(x−xs)

 eikϑn·(x−xs).

(3.8)

Since M is sufficiently large, applying Lemma 3.2 yields

M∑
m=1

(θm · ϑn)eikθm·(x−xs) ≈ iM
(
ϑn ·

x − xs

|x − xs|

)
J1(k|x − xs|). (3.9)

Since N is sufficiently large, applying Lemma 3.2 again, we can obtain

N∑
n=1

(
ϑn ·

x − xs

|x − xs|

)
eikϑn·(x−xs) ≈ iN

(
x − xs

|x − xs|
·

x − xs

|x − xs|

)
J1(k|x − xs|) = iNJ1(k|x − xs|). (3.10)
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Therefore, by combining (3.9) and (3.10), ΦTE(x) of (3.8) becomes

ΦTE(x) ≈ −2MNk2π

S∑
s=1

α2
s

(
µb

µs + µb

)
J1(k|x − xs|)2

and correspondingly, (3.6) can be derived. �

Based on the identified structure (3.6), we can examine some properties of the imaging function
FTE(x).
Remark 3.4 (Detectability and resolution). Since J1(0) = 0, contrary to the permittivity contrast case,
xs cannot be identified through the map of FTE(x). Instead, since J1(|x|) has its maximum value at x ≈
±1.8412, the map of FTE(x) has a large magnitude ring at each location xs satisfies k|x − xs| = 1.8412.
Therefore, it can be confirmed that the center of the ring is the location of xs. Similar to the permittivity
contrast case, several artifacts that depend on the value of k are also included in the map of FTE(x) due
to the oscillation property of J1.

If an extremely large value of k is applied, since |x − xs| = 1.8412/k −→ 0, the ring with large
magnitude is concentrated to the center xs so that an almost accurate location xs can be identified
through the map of FTE(x), refer to Figure 15 at f = 10 GHz and f = 12 GHz.
Remark 3.5 (Material properties). Based on (3.6), we can examine the value of FTE(x) as proportional
to α2

s/(µs + µb). This means that the value of FTE(x) depends on the size and permeability of the
inhomogeneities. That is, if there are two inhomogeneities Σ1 and Σ2 satisfying α2

1/(µ1 +µb) > α2
2/(µ2 +

µb), then FTE(x1) > FTE(x2) so that the identification of x1 is guaranteed. However, the identification
of x2 is not guaranteed in some cases because the value of FTE(x2) cannot be distinguished from the
artifacts. Hence, if the size of an inhomogeneity is larger than that of another inhomogeneity or the
permeability of an inhomogeneity is smaller than that of another inhomogeneity, its location can be
identified. If α2

1/(µ1 + µb) � α2
2/(µ2 + µb), then the location x1 can be identified, while x2 cannot.

3.3. Identification of accurate location in magnetic permeability contrast case

Although, it can be recognized the existence of small inhomogeneities through the appearance of
rings in the map of FTE(x), it is still difficult to identity their true locations. Here, we design a new
imaging function of the BFM for accurate localization of small inhomogeneities. The main idea is to
convert the factor J1(k|x− xs|)2 of (3.6) to the form J0(k|x− xs|). To this end, we consider the following
result derived in [57].

Lemma 3.3. For sufficiently large M, θm, θ ∈ S
1, and x, y ∈ R2, the following relation holds

1
M

M∑
m=1

(θm · y)2eikθm·x ≈
1

2π

∫
S1

(θ · y)2eikθ·xdθ =
1
2

(
J0(k|x|) + J2(k|x|)

)
−

(
x
|x|
· y

)2

J2(k|x|).

On the basis of Lemma 3.3, we introduce the following imaging function

FITE(x) =
|ΦITE(x)|

max
x∈Ω
|ΦITE(x)|

, where ΦITE(x) =

M∑
m=1

N∑
n=1

(tm · rn)u(µ)
scat(θm,ϑn)

G(tm, x)G(rn, x)
. (3.11)

Then, the location of small inhomogeneities can be retrieved through the map of FITE(x). To support
this assertion, we derive the following result.
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Theorem 3.3. Let x ∈ Ω, θm = (cos θm, sin θm), ϑn = (cosϑn, sinϑn), and x−xs = |x−xs|(cos φs, sin φs),
and assume that the values of M, N, k are sufficiently large such that |x − xs| � 0.25/k. Then, for tm

and rn respectively defined in (2.2) and (2.3), FITE(x) can be represented as follows:

FITE(x) =
|ΨITE(x)|

max
x∈Ω
|ΨITE(x)|

, (3.12)

where

ΨITE(x) ≈ MNk2πrtxrrx

S∑
s=1

α2
s

(
µb

µs + µb

) (
J0(k|x − xs|)2 + J2(k|x − xs|)2

)
.

Proof. Based on the (3.3) and (3.7), ΦITE(x) can be written as follows:

ΦITE(x) =

M∑
m=1

N∑
n=1

S∑
s=1

α2
sπ

(
2µb

µs + µb

)
(tm · rn)∇G(tm, xs) · ∇G(rn, xs)

G(tm, x)G(rn, x)

≈

M∑
m=1

N∑
n=1

S∑
s=1

k2α2
sπ

(
2µb

µs + µb

)
rtxrrx(θm · ϑn)2e−ikθm·xse−ikϑn·xs

e−ikθm·xe−ikϑn·x

=

S∑
s=1

k2α2
srtxrrxπ

(
2µb

µs + µb

) N∑
n=1

 M∑
m=1

(θm · ϑn)2eikθm·(x−xs)

 eikϑn·(x−xs).

(3.13)

Since M is sufficiently large, θm · (x − xs) = |x − xs| cos
(
θm − φs), and θm · ϑn = cos(θm − ϑn), applying

Lemma 3.3 yields the following:

M∑
m=1

(θm · ϑn)2eikθm·(x−xs) ≈
M
2

(
J0(k|x − xs|) + J2(k|x − xs|)

)
− M

(
x − xs

|x − xs|
· θn

)2

J2(k|x − xs|).

Hence,

ΦITE(x) ≈
S∑

s=1

Mk2α2
sπrtxrrx

(
µb

µs + µb

) (
J0(k|x − xs|) + J2(k|x − xs|)

) N∑
n=1

eikϑn·(x−xs)

−

S∑
s=1

Mk2α2
sπrtxrrx

(
2µb

µs + µb

)
J2(k|x − xs|)

N∑
n=1

(
x − xs

|x − xs|
· θn

)2

eikϑn·(x−xs).

(3.14)

Since N is sufficiently large, applying Lemma 3.3 again, we can derive

N∑
n=1

(
x − xs

|x − xs|
· ϑn

)2

eikϑn·(x−xs)

≈
N
2

(
J0(k|x − xs|) + J2(k|x − xs|)

)
− N

(
x − xs

|x − xs|
·

x − xs

|x − xs|

)2

J2(k|x − xs|)

=
N
2

(
J0(k|x − xs|) − J2(k|x − xs|)

)
.

(3.15)
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Therefore, by combining (3.14) and (3.15), ΦITE(x) of (3.13) becomes

ΦITE(x) ≈ MNk2πrtxrrx

S∑
s=1

α2
s

(
µb

µs + µb

) (
J0(k|x − xs|)2 + J2(k|x − xs|)2

)
and correspondingly, (3.12) can be derived. �

Based on the identified structure (3.6), we can examine some properties of the imaging function
FTE(x).

Remark 3.6 (Detectability). Since FITE(x) contains the factor J0(k|x − xs|)2, similar to the permittivity
contrast case, xs can be identified through the map of FITE(x). Notice that the factor J2(k|x − xs|)2 is
also included in the FITE(x) but since (see [49] for instance)

J2(x) ≤
{

b
3√2
,

c
3√
|x|

: b = 0.674885 . . . , c = 0.7857468704 . . .
}
,

it generates some artifacts with small magnitudes. Numerically, J2(x)2 has maximum value 0.2367
at |x| = 0.1940. Therefore, by regarding local maxima of J0(k|x − xs|)2 + J2(k|x − xs|)2, the factor
J2(k|x − xs|)2 does not disturb the identification significantly so almost accurate location xs can be
identified through the map of FITE(x). We refer to the Figure 2 for related illustration.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

J0(k|x|)2

J0(k|x|)2 + J2(k|x|)2

Figure 2. (Remark 3.6) Plots of J0(k|x|)2 and J0(k|x|)2 + J2(k|x|)2 for |x| ≤ 1 and k = 2π/0.4.

Correspondingly, we can obtain the following result of unique determination in the magnetic
permeability contrast case.

Corollary 3.2 (Unique determination in permeability contrast case). With the same condition of the
Theorem 3.3, the location of small inhomogeneities can be identified uniquely through the map of
FITE(x).
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4. Numerical experiments

4.1. Synthetic data experiments

In this section, a set of simulation results are shown to validate the investigated results of
Theorems 3.1–3.3. To this end, we applied the background wavenumber of the form k = 2π/λ with
λ = 0.6 m, 0.4 m, and 0.2 m, and selected S = 3 small circles with locations x1 = (0.7 m, 0.5 m),
x2 = (−0.7 m, 0.0 m), and x3 = (0.4 m,−0.6 m). The background permittivity and permeability are set
to εb = µb = 1, and the size, permittivity, and permeability of the inhomogeneities Σs are given in
Tables 1 and 2. We selected M = 64 and N = 32, different transmitters and receivers with |tm| = 3 m
and |rn| = 2 m (see Figure 3), and Ω as a square region [−1 m, 1 m] × [−1 m, 1 m]. With this, the
scattered field data uscat(tm, rn) of K are generated by solving the Foldy-Lax formulation introduced
in [32]. After generating the MSR matrix, 20 dB white Gaussian random noise is added to show the
robustness.

Ω

Σ1

Σ2

Σ3

Transmitters

Receivers

Figure 3. Illustration of simulation configuration.

Table 1. Permittivity and size of inhomogeneities.

Permittivity contrast case ε1 ε2 ε3 α1 α2 α3

Case 1 5 5 5 0.1 m 0.1 m 0.1 m
Case 2 3 5 7 0.1 m 0.1 m 0.1 m
Case 3 5 5 5 0.15 m 0.1 m 0.05 m
Case 4 3 5 7 0.15 m 0.1 m 0.05 m
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Table 2. Permeability and size of inhomogeneities.

Permeability contrast case µ1 µ2 µ3 α1 α2 α3

Case 1 5 5 5 0.1 m 0.1 m 0.1 m
Case 2 3 5 7 0.1 m 0.1 m 0.1 m
Case 3 5 5 5 0.15 m 0.1 m 0.05 m
Case 4 3 5 7 0.15 m 0.1 m 0.05 m

Example 4.1 (Permittivity contrast case). Figure 4 shows the maps of FTM(x) for Cases 1–4. Based
on the results, we determined that every location xs can be identified for Case 1. For Case 2, since
ε3 > ε2 > ε1, the location x3 can be recognized clearly, but due to the appearance of several artifacts,
identifying x1 is very difficult. Similarly, since α1 > α2 > α3 for Case 3, the location x1 can be
identified through the map of FTM(x), but x3 cannot be recognized. Notice that the value of FTM(x2) is
greater than the values in the neighborhood of x2, but it is difficult to distinguish from the artifacts. For
Case 4, since

α2
1(ε1 − εb) = 0.045 ≈ α2

2(ε2 − εb) = 0.040 > α2
3(ε3 − εb) = 0.015,

the locations x1 and x2 can be recognized. Similar to Case 3, although the value of FTM(x3) is greater
than the values in the neighborhood of x3, it is difficult to distinguish from the artifacts.

Example 4.2 (Comparison with different algorithms). Figure 5 shows the imaging results obtained
by MUSIC algorithm [55], subspace migration technique [56], and direct sampling method [39] to
compare the imaging performances. Based on the simulation results, it is possible to recognize the
existence of small inhomogeneities by using MUSIC (map of FMUSIC(r)) and subspace migration
(map of FSUB(r)) very clearly. However, it is impossible to distinguish the characteristics (relative
proportions of the size and permittivity) of inhomogeneities. It is interesting to observe that the imaging
results by using the direct sampling method with multiple sources (map of FDSM(r)) are almost similar
to the results via the maps of FTM(x) but map of the FDSM(r)) contains more artifacts than the one of
the FTM(x).

Example 4.3 (Permeability contrast case). Figure 6 shows the maps of FTE(x) for Cases 1–4. Similar
to the permittivity contrast case, we determined that every location xs can be identified for Case 1.
For Case 2, since µ3 > µ2 > µ1, the rings in the neighborhood of all xs can be recognized, but the
magnitudes of each ring are different. In contrast, since α1 > α2 > α3 for Case 3, the rings with large
magnitudes in the neighborhood of x1 and x2 can be identified through the map of FTE(x). However,
it is difficult to find a ring in the neighborhood of x3 so that the existence of Σ3 cannot be recognized.
For Case 4, since

α2
1/(µ1 + µb) = 0.0056 > α2

2/(µ2 + µb) = 0.0017 � α2
3/(µ3 + µb) = 3.1250 × 10−4,

the ring in the neighborhood of x1 can be recognized, but it is difficult to distinguish the ring in the
neighborhood of x2 and the artifacts in the map. Furthermore, the ring in the neighborhood of x3 cannot
be recognized because the value of α2

3/(µ3 + µb) is close to zero.
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(a) Case 1, λ = 0.6 m
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(b) Case 1, λ = 0.4 m

-1 -0.5 0 0.5 1

x-axis (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Case 1, λ = 0.2 m
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(d) Case 2, λ = 0.6 m
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(e) Case 2, λ = 0.4 m
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(f) Case 2, λ = 0.2 m
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(g) Case 3, λ = 0.6 m
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(h) Case 3, λ = 0.4 m
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(i) Case 3, λ = 0.2 m

-1 -0.5 0 0.5 1

x-axis (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j) Case 4, λ = 0.6 m
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(k) Case 4, λ = 0.4 m
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(l) Case 4, λ = 0.2 m

Figure 4. (Example 4.1) Maps of FTM(x) for Cases 1–4.
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(a) Case 1, FMUSIC(x)
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(b) Case 1, FSUB(x)
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(c) Case 1, FDSM(x)
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(d) Case 2, FMUSIC(x)
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(e) Case 2, FSUB(x)
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(f) Case 2, FDSM(x)

-1 -0.5 0 0.5 1

x-axis (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

 (
m

)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(g) Case 3, FMUSIC(x)
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(h) Case 3, FSUB(x)
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(i) Case 3, FDSM(x)
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(j) Case 4, FMUSIC(x)
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(k) Case 4, FSUB(x)
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(l) Case 4, FDSM(x)

Figure 5. (Example 4.2) Imaging results via MUSIC, subspace migration, and direct
sampling method for Cases 1–4 with λ = 0.4 m.
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(a) Case 1, λ = 0.6 m
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(b) Case 1, λ = 0.4 m
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(c) Case 1, λ = 0.2 m
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(d) Case 2, λ = 0.6 m
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(e) Case 2, λ = 0.4 m
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(f) Case 2, λ = 0.2 m
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(g) Case 3, λ = 0.6 m
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(h) Case 3, λ = 0.4 m
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(i) Case 3, λ = 0.2 m
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(j) Case 4, λ = 0.6 m
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(k) Case 4, λ = 0.4 m
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(l) Case 4, λ = 0.2 m

Figure 6. (Example 4.3) Maps of FTE(x) for Cases 1–4.

AIMS Mathematics Volume 8, Issue 11, 27080–27112.



27096

Example 4.4 (Comparison with different algorithms). Figure 7 shows the imaging results obtained by
MUSIC algorithm, subspace migration technique, and direct sampling method. Similar to the results
in Example 4.2, it is possible to recognize the existence of small inhomogeneities through the maps
of FMUSIC(r) and FSUB(r) by regarding the rings with large magnitudes but it is still impossible to
distinguish size and permeability of inhomogeneities. Map of FTE(x) contains less artifacts than the
map of FDSM(r) however, opposite to the results in Example 4.2, imaging results via the maps of
FDSM(r) are quite different.

Example 4.5 (Accurate localization in permeability contrast case). Figure 8 shows the maps of FITE(x)
for Cases 1–4. As we already discussed in the Remark 3.6, locations of all inhomogeneities are
successfully identified for Cases 1 and 2. Moreover, similar to the Example 4.3, it is very difficult
to recognize the location x3 for Cases 3 and 4. Notice that opposite to the results in Example 4.1,
rings of large magnitudes are included in the neighborhood of all xs due to the effect of the factor
J2(k|x − xs|)2 but they do not disturb the recognition of inhomogeneities.

Example 4.6 (Application of multiple frequencies). On the basis of several studies [2, 5, 28–30, 38, 56,
61,65], we consider the multi-frequency imaging to improve the quality of the reconstruction. For this
purpose, we introduce the following multi-frequency imaging functions

FMTM(x) =
1
P

P∑
p=1

FTM(x, kp),

FMTE(x) =
1
P

P∑
p=1

FTE(x, kp),

and

FMITE(x) =
1
P

P∑
p=1

FITE(x, kp),

where FTM(x, kp), FTE(x, kp), and FITE(x, kp) are the imaging functions at kp defined in (3.1), (3.5),
and (3.11), respectively. Here, applied wavenumbers kp are equidistributed in the interval [k1, kP] with
k1 = 2π/0.6 and kP = k10 = 2π/0.2.

Figure 9 exhibits multi-frequency imaging results. On the basis of the results, we can examine
that several artifacts in the single-frequency imaging were successfully eliminated. Nevertheless, it is
very difficult to recognize the inhomogeneity Σ3 for the Case 3 via the maps of FMTM(x), FMTE(x), and
FMITE(x), and for the Case 4 via the maps of FMTE(x) and FMITE(x). Hence, development of imaging
technique for a further improvement is required.
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(a) Case 1, FMUSIC(x)
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(b) Case 1, FSUB(x)
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(c) Case 1, FDSM(x)
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(d) Case 2, FMUSIC(x)
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(e) Case 2, FSUB(x)
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(f) Case 2, FDSM(x)
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(g) Case 3, FMUSIC(x)

-1 -0.5 0 0.5 1

x-axis (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) Case 3, FSUB(x)
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(i) Case 3, FDSM(x)
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(j) Case 4, FMUSIC(x)
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(k) Case 4, FSUB(x)
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(l) Case 4, FDSM(x)

Figure 7. (Example 4.4) Imaging results via MUSIC, subspace migration, and direct
sampling method for Cases 1–4 with λ = 0.4 m.
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(a) Case 1, λ = 0.6 m
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(b) Case 1, λ = 0.4 m
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(c) Case 1, λ = 0.2 m
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(d) Case 2, λ = 0.6 m
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(e) Case 2, λ = 0.4 m
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(f) Case 2, λ = 0.2 m
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(g) Case 3, λ = 0.6 m
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(h) Case 3, λ = 0.4 m
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(i) Case 3, λ = 0.2 m
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(j) Case 4, λ = 0.6 m
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(k) Case 4, λ = 0.4 m
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(l) Case 4, λ = 0.2 m

Figure 8. (Example 4.5) Maps of FITE(x) for Cases 1–4.
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(b) Case 1, map of FMTE(x)
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(c) Case 1, map of FMITE(x)
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(d) Case 2, map of FMTM(x)
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(e) Case 2, map of FMTE(x)
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(f) Case 2, map of FMITE(x)
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(g) Case 3, map of FMTM(x)
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(h) Case 3, map of FMTE(x)
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(i) Case 3, map of FMITE(x)
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(j) Case 4, map of FMTM(x)
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(k) Case 4, map of FMTE(x)
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(l) Case 4, map of FMITE(x)

Figure 9. (Example 4.6) Imaging results by using multiple frequencies for Cases 1–4.
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4.2. Real data experiments in limited-aperture configuration

Subsequently, we show the simulation results using the Fresnel data introduced in [11] at various
frequencies. The transmitters and receivers are placed on the circles with radii 0.72 m and 0.76 m,
respectively, and the ROI Ω was chosen as the square [−0.15 m, 0.15 m] × [−0.15 m, 0.15 m]. Notably,
due to the limitation of the experimental setting, the range of receivers is restricted from 60° to
300°, with a step size of 5° based on each direction of the transmitters. The transmitters are evenly
distributed with step sizes of 10° from 0° to 350° (Figure 10). Thus, the simulation results are obtained
with limited-aperture data, even though the theoretical results are derived under the full-aperture
measurement hypothesis.

Example 4.7 (Imaging of dielectric objects: transverse magnetic case). Figure 11 shows maps of
FTM(x) at various frequencies in the presence of single and multiple dielectric circular objects with the
same radii in transverse magnetic (TM) polarization. As we already discussed in Remark 3.1, a blurred
imaging result was obtained when f = 1 GHz. Moreover, the presence of the two objects at f = 1 GHz
cannot be recognized because a peak of large magnitude appeared at their center. Fortunately, every
location of objects can be identified by increasing the value of frequency e.g., f = 4 GHz and 8 GHz.

Example 4.8 (Imaging of metallic objects: transverse magnetic case). Here, we consider the imaging of
a small rectangular-shaped and U-shaped metallic objects in TM polarization. Figure 12 includes maps
of FTM(x) with various frequencies. Based on the results, the center of the small rectangular-shaped
object can be recognized for any frequency. Interestingly, unlike the other results, a considerable
number of artifacts with small magnitudes are included in the map when f = 8 GHz. Notice that it is
very hard to retrieve the shape of U-shaped object at any frequency. Hence, further improvement is
required still.

Ω

Transmitters

Receivers

Ω

Transmitters

Receivers

Figure 10. Illustration of experimental data simulation configuration.
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(f) f = 8 GHz

Figure 11. (Example 4.7) Maps of FTM(x) in the presence of single (top line) and multiple
(bottom line) dielectric objects. Black-colored circles describe the boundary of objects.
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(f) f = 16 GHz

Figure 12. (Example 4.8) Maps of FTM(x) in the presence of rectangular (top line) and U-
shaped (bottom line) metallic objects. Black-colored lines describe the boundary of object.
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Example 4.9 (Comparison with different methods: transverse magnetic case). Figures 13 and 14 exhibit
the imaging results obtained by MUSIC algorithm and direct sampling method, respectively. Same
as the results in Example 4.7 and Figure 11, it is impossible to recognize the existence of multiple
objects when applied frequency is low ( f = 1 GHz). Moreover, the shape of U-shaped object cannot
be recognized through the MUSIC and direct sampling method for any frequency. It is interesting
to examine the opposite to the synthetic data experiments (see Example 4.2 and Figure 5), it is very
difficult to recognize the outline shape of multiple objects through the maps of MUSIC when a high
frequency f = 8 GHz was applied.

Additionally, let us consider the imaging results of U-shaped object obtained by the topological
derivative (TD) method introduced in [17, Figure 10]. Similar to the results in Figure 12, it is possible
to recognize the existence of object at low frequency f = 2 GHz. Opposite to the results via the BFM,
although some artifacts are also included, one can recognize some features of the shape via the TD at
high frequencies f = 10 and 12 GHz.

Example 4.10 (Imaging of metallic object: transverse electric case). Now, we consider the imaging of
a rectangular-shaped metallic object in transverse electric (TE) polarization. Figure 15 shows maps of
FTE(x) at various frequencies. Similar to the results in Figure 6, we can observe that two peaks of large
magnitudes are included in the map when f = 2, 4, 6, 8 GHz instead of the true location of the object.
As discussed in Remark 3.3, an almost exact location of the object is identified through the map when
the value of the applied frequency is sufficiently large enough such as f = 10 GHz and 12 GHz.

Example 4.11 (Comparison with different methods: transverse electric case). Figures 16 and 17 show
the imaging results for a rectangular-shaped metallic object in transverse electric case through the
MUSIC algorithm and direct sampling method, respectively. Similar to the results in Example 4.10,
two peaks of large magnitudes were included in the map of FMUSIC(x) and FDSM(x) when f = 2 and
4 GHz. Moreover, an almost exact shape of the object is retrieved via the direct sampling method when
a high frequency f = 8 GHz was applied. Opposite to the TM case in Example 4.9 and Figure 13, it is
very difficult to recognize the shape of the object via MUSIC algorithm when high frequencies f = 8,
10, and 12 GHz were applied.

Example 4.12 (Accurate imaging of metallic object: transverse electric case). Here, we apply FITE(x)
for identifying a rectangular-shaped metallic object in transverse electric (TE) polarization. Similar to
the results in Example 4.5, the location of the object was successfully identified for various frequencies,
refer to Figure 18. However, at the f = 2 GHz, it seems to be difficult to recognize the object due to
the blurring effect in the neighborhood of the object. Similarly with the results in Example 4.10, some
artifacts are also included in the map but there is no difficulty to recognize the location of object.

Example 4.13 (Multi-frequency imaging: both transverse magnetic and electric cases). For the final
example, we consider the multi-frequency imaging to improve the quality of the reconstruction. For
this purpose, we adopted multi-frequency imaging functions FMTM(x), FMTE(x), and FMITE(x) defined
in Example 4.6. We applied frequency ranges from 1 to 8 GHz in steps of 1 GHz for imaging single
and multiple circular objects in TM polarization, from 2 to 16 GHz in steps of 2 GHz for imaging
rectangular-shaped object in both TM and TE polarizations and U-shaped metallic objects in TM
polarization.
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Figure 13. (Example 4.9) Maps of FMUSIC(x) in the presence of multiple (top line) and U-
shaped metallic (bottom line) objects. Black-colored lines describe the boundary of objects.
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Figure 14. (Example 4.9) Maps of FDSM(x) in the presence of multiple (top line) and U-
shaped metallic (bottom line) objects. Black-colored lines describe the boundary of objects.
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Figure 15. (Example 4.10) Maps of FTE(x) in the presence of rectangular shaped metallic
object. Black-colored rectangle describes the boundary of object.
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Figure 16. (Example 4.11) Maps of FMUSIC(x) in the presence of rectangular shaped metallic
object. Black-colored rectangle describes the boundary of object.
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Figure 17. (Example 4.11) Maps of FDSM(x) in the presence of rectangular shaped metallic
object. Black-colored rectangle describes the boundary of object.

-0.15 -0.1 -0.05 0 0.05 0.1

x-axis (m)

-0.15

-0.1

-0.05

0

0.05

0.1

y
-a

x
is

 (
m

)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) f = 2 GHz

-0.15 -0.1 -0.05 0 0.05 0.1

x-axis (m)

-0.15

-0.1

-0.05

0

0.05

0.1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) f = 4 GHz

-0.15 -0.1 -0.05 0 0.05 0.1

x-axis (m)

-0.15

-0.1

-0.05

0

0.05

0.1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) f = 6 GHz

-0.15 -0.1 -0.05 0 0.05 0.1

x-axis (m)

-0.15

-0.1

-0.05

0

0.05

0.1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) f = 8 GHz

-0.15 -0.1 -0.05 0 0.05 0.1

x-axis (m)

-0.15

-0.1

-0.05

0

0.05

0.1

y
-a

x
is

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) f = 10 GHz
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(f) f = 12 GHz

Figure 18. (Example 4.12) Maps of FITE(x) in the presence of rectangular shaped metallic
object. Black-colored rectangle describes the boundary of object.
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Figure 19 shows multi-frequency imaging results. Throughout the results, we can observe that most
of objects were successfully retrieved in both TM and TE polarizations. Moreover, by regarding the
large magnitudes in the map, an outline shape of U-shaped metallic object can be recognized. Hence,
same as the previous studies, application of multiple frequencies on the BFM guarantees better imaging
results.

We compare the imaging results via multi-frequency topological derivative (MFTD) method in
TM polarization case, refer to Figures 11–14 in [17]. By comparing the results, we can observe
that obtained imaging results are very close to the ones via MFTD hence, multi-frequency BFM will
guarantee successful reconstruction of shape, size and number of objects.
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(e) Map of FMTE(x)
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(f) Map of FMITE(x)

Figure 19. (Example 4.13) Maps of FMTM(x), FMTE(x), and FMITE(x) in the presence of
single and multiple dielectric objects (top line) and U-shaped and rectangular shaped metallic
objects (bottom line).

5. Conclusions

We considered the BFM for identifying small 2D inhomogeneities when their permittivities or
permeabilities differ from the homogeneous background. Through careful analysis, we show that the
imaging function can be expressed by the characteristics (size, permittivity, and permeability) of the
inhomogeneities and the Bessel function of orders zero and one for the permittivity and permeability
contrast cases, respectively. Based on this, we observed and verified the applicability and several
properties of the BFM. Numerical simulations with synthetic and experimental data were provided to
support the theoretical result.

To achieve the best imaging of inhomogeneities in the permeability contrast case, an improved
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version of the BFM is needed. Improving the BFM to identify the exact locations of inhomogeneities
for permeability contrast case will be the focus of future studies. Based on the experimental data
experiments, we determined that the BFM is highly effective in the limited-aperture inverse scattering
problem. The theoretical study of BFM in limited-aperture inverse scattering problem will be a
significant research topic. Moreover, imaging results from experimental data indicate that the BFM
is still effective in situations not reduced to the case of penetrable objects. Hence, extension to the
imaging of metallic objects will be also an interesting research. Furthermore, application to the BFM
with monostatic [40] and bistatic [41] measurement configuration will be the forthcoming work.
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