Research article Special Issues

An approximate approach for fractional singular delay integro-differential equations

  • Received: 07 December 2021 Revised: 18 February 2022 Accepted: 20 February 2022 Published: 09 March 2022
  • MSC : 26A33, 34K37, 45G05

  • In this article, we present Jacobi-Gauss collocation method to numerically solve the fractional singular delay integro-differential equations, because such methods have better superiority, capability and applicability than other methods. We first apply a technique to replace the delay function in the considered equation and suggest an equivalent system. We then propose a Jacobi-Gauss collocation approach to discretize the obtained system and to achieve an algebraic system. Having solved the algebraic system, an approximate solution is gained for the original equation. Three numerical examples are solved to show the applicability of presented approximate approach. Obtaining the approximations of the solution and its fractional derivative simultaneously and an acceptable approximation by selecting a small number of collocation points are advantages of the suggested method.

    Citation: Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu. An approximate approach for fractional singular delay integro-differential equations[J]. AIMS Mathematics, 2022, 7(5): 9156-9171. doi: 10.3934/math.2022507

    Related Papers:

  • In this article, we present Jacobi-Gauss collocation method to numerically solve the fractional singular delay integro-differential equations, because such methods have better superiority, capability and applicability than other methods. We first apply a technique to replace the delay function in the considered equation and suggest an equivalent system. We then propose a Jacobi-Gauss collocation approach to discretize the obtained system and to achieve an algebraic system. Having solved the algebraic system, an approximate solution is gained for the original equation. Three numerical examples are solved to show the applicability of presented approximate approach. Obtaining the approximations of the solution and its fractional derivative simultaneously and an acceptable approximation by selecting a small number of collocation points are advantages of the suggested method.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, 2006.
    [2] A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. https://doi.org/10.1016/j.cam.2020.112908 doi: 10.1016/j.cam.2020.112908
    [3] A. Roohollahi, B. Ghazanfari, S. Akhavan, Numerical solution of the mixed Volterra–Fredholm integro-differential multi-term equations of fractional order, J. Comput. Appl. Math., 376 (2020), 112828. https://doi.org/10.1016/j.cam.2020.112828 doi: 10.1016/j.cam.2020.112828
    [4] A. S. Andreev, O. A. Peregudova, Semi-definite Lyapunov functionals in the stability problem of Volterra integral-differential equations, IFAC-PapersOnLine, 52 (2019), 103–108. https://doi.org/10.1016/j.ifacol.2019.12.214 doi: 10.1016/j.ifacol.2019.12.214
    [5] A. Yousefi, S. Javadi, E. Babolian, E. Moradi, Convergence analysis of the Chebyshev–Legendre spectral method for a class of Fredholm fractional integro-differential equations, J. Comput. Appl. Math., 358 (2019), 97–110. https://doi.org/10.1016/j.cam.2019.02.022 doi: 10.1016/j.cam.2019.02.022
    [6] A. Y. Zemlyanova, A. Machina, A new B-spline collocation method for singular integro-differential equations of higher orders, J. Comput. Appl. Math., 380 (2020), 112949. https://doi.org/10.1016/j.cam.2020.112949 doi: 10.1016/j.cam.2020.112949
    [7] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001 doi: 10.1016/j.jfranklin.2018.12.001
    [8] D. Cerna, V. Finek, Galerkin method with new quadratic spline wavelets for integral and integro-differential equations, J. Comput. Appl. Math., 363 (2020), 426–443. https://doi.org/10.1016/j.cam.2019.06.033 doi: 10.1016/j.cam.2019.06.033
    [9] H. Du, Z. Chen, T. J. Yang, A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel, Appl. Numer. Math., 157 (2020), 210–222. https://doi.org/10.1016/j.apnum.2020.06.004 doi: 10.1016/j.apnum.2020.06.004
    [10] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York: Academic Press, 1998. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [11] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [12] J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7
    [13] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [14] K. Jothimani, N. Valliammal, C. Ravichandran, Existence result for a neutral fractional integro-differential equation with state dependent delay, J. Appl. Nonlinear Dyn., 7 (2018), 371–381. https://doi.org/10.5890/JAND.2018.12.005 doi: 10.5890/JAND.2018.12.005
    [15] K. Saoudi, P. Agarwal, P., Kumam, A. Ghanmi, P. Thounthong, The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative, Adv. Differ. Equ., 2018 (2018), 263. https://doi.org/10.1186/s13662-018-1722-8 doi: 10.1186/s13662-018-1722-8
    [16] M. H. N. Skandari, M. Habibli, A. Nazemi, A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems, MCRF, 10 (2020), 171–187. https://doi.org/10.3934/mcrf.2019035 doi: 10.3934/mcrf.2019035
    [17] M. R. A. Sakran, Numerical solutions of integral and integro-differential equations using Chebyshev polynomials of the third kind, Appl. Math. Comput., 351 (2019), 66–82. https://doi.org/10.1016/j.amc.2019.01.030 doi: 10.1016/j.amc.2019.01.030
    [18] M. X. Yi, L. F. Wang, J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel, Appl. Math. Model., 40 (2016), 3422–3437. https://doi.org/10.1016/j.apm.2015.10.009 doi: 10.1016/j.apm.2015.10.009
    [19] N. Peykrayegan, M. Ghovatmand, M. H. N. Skandari, On the convergence of Jacobi-Gauss collocation method for linear fractional delay differential equations, Math. Method. Appl. Sci., 44 (2021), 2237–2253. https://doi.org/10.1002/mma.6934 doi: 10.1002/mma.6934
    [20] N. Rajagopal, S. Balaji, R. Seethalakshmi, V. S. Balaji, A new numerical method for fractional order Volterra integro-differential equations, Ain. Shams Eng. J., 11 (2020), 171–177. https://doi.org/10.1016/j.asej.2019.08.004 doi: 10.1016/j.asej.2019.08.004
    [21] P. R. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 483 (2020), 123643. https://doi.org/10.1016/j.jmaa.2019.123643 doi: 10.1016/j.jmaa.2019.123643
    [22] Q. Dai, S. D. Liu, Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method, AIMS Mathematics, 7 (2022), 2498–2511. https://doi.org/10.3934/math.2022140 doi: 10.3934/math.2022140
    [23] R. Amin, K. Shah, H. Ahmad, A. H. Ganie, A. H. Abdel-Aty, T. Botmart, Haar wavelet method for solution of variable order linear fractional integro-differential equations, AIMS Mathematics, 7 (2022), 5431–5443. https://doi.org/10.3934/math.2022301 doi: 10.3934/math.2022301
    [24] R. K. Maury, V. Devi, N. Srivastava, V. K. Singh, An efficient and stable Lagrangian matrix approach to Abel integral and integro-differential equations, Appl. Math. Comput., 374 (2020), 125005. https://doi.org/10.1016/j.amc.2019.125005 doi: 10.1016/j.amc.2019.125005
    [25] S. Abbas, M. Benchohra, G. M. N'Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https: //doi.org/10.1007/978-1-4614-4036-9
    [26] S. K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Soliton. Fract., 142 (2021), 110390. https://doi.org/10.1016/j.chaos.2020.110390 doi: 10.1016/j.chaos.2020.110390
    [27] S. Nemati, P. M. Lima, Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Appl. Math. Comput., 327 (2018), 79–92. https://doi.org/10.1016/j.amc.2018.01.030 doi: 10.1016/j.amc.2018.01.030
    [28] S. Nemati, S. Sedaghat, I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 308 (2016), 231–242. https://doi.org/10.1016/j.cam.2016.06.012 doi: 10.1016/j.cam.2016.06.012
    [29] X. M. Wang, M. Alam, A. Zada, On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Mathematics, 6 (2020), 1561–1595. https://doi.org/10.3934/math.2021094 doi: 10.3934/math.2021094
    [30] X. G. Zhang, H. Du, A generalized collocation method in reproducing kernel space for solving a weakly singular Fredholm integro-differential equations, Appl. Numer. Math., 156 (2020), 158–173. https://doi.org/10.1016/j.apnum.2020.04.019 doi: 10.1016/j.apnum.2020.04.019
    [31] Y. X. Wang, L. Zhu, SCW method for solving the fractional integro-differential equations with a weakly singular kernel, Appl. Math. Comput., 275 (2016), 72–80. https://doi.org/10.1016/j.amc.2015.11.057 doi: 10.1016/j.amc.2015.11.057
    [32] Y. Yang, G. T. Deng, E. Tohidi, High accurate convergent spectral Galerkin methods for nonlinear weakly singular Volterra integro-differential equations, Comput. Appl. Math., 40 (2021), 118. https://doi.org/10.1007/s40314-021-01469-8 doi: 10.1007/s40314-021-01469-8
    [33] Y. Yang, Y. P. Chen, Spectral collocation methods for nonlinear Volterra integro-differential equations with weakly singular kernels, Bull. Malays. Math. Sci. Soc., 42 (2019), 297–314. https://doi.org/10.1007/s40840-017-0487-7 doi: 10.1007/s40840-017-0487-7
    [34] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds, World scientific, 2016. https://doi.org/10.1142/10238
    [35] Z. Chen, X. Cheng, An efficient algorithm for solving Fredholm integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 257 (2014), 57–64. https://doi.org/10.1016/j.cam.2013.08.018 doi: 10.1016/j.cam.2013.08.018
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1526) PDF downloads(105) Cited by(2)

Article outline

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog