Research article Special Issues

Tritrophic fractional model with Holling III functional response

  • Received: 25 January 2024 Revised: 04 April 2024 Accepted: 18 April 2024 Published: 06 May 2024
  • MSC : 34A08, 37C75

  • In this paper, we analyzed the local stability of three species in two fractional tritrophic systems, with Caputo's fractional derivative and Holling type Ⅱ and Ⅲ functional responses, when the prey density has a linear growth. To begin, we obtained the equilibria in the first octant under certain conditions for the parameters. Subsequently, through linearization and applying the Routh-Hurwitz Criterion, we concluded that only the system with Holling type Ⅲ exhibits an asymptotically stable equilibrium point, where the fractional derivative order belongs to the interval $ (0, 1] $. Finally, we obtained the solution of the system with the Holling type Ⅲ functional response, using the multistage homotopic perturbation method, and presented an example that shows the dynamics of the solutions around the stable equilibrium point.

    Citation: Anel Esquivel-Navarrete, Jorge Sanchez-Ortiz, Gabriel Catalan-Angeles, Martin P. Arciga-Alejandre. Tritrophic fractional model with Holling III functional response[J]. AIMS Mathematics, 2024, 9(6): 15937-15948. doi: 10.3934/math.2024771

    Related Papers:

  • In this paper, we analyzed the local stability of three species in two fractional tritrophic systems, with Caputo's fractional derivative and Holling type Ⅱ and Ⅲ functional responses, when the prey density has a linear growth. To begin, we obtained the equilibria in the first octant under certain conditions for the parameters. Subsequently, through linearization and applying the Routh-Hurwitz Criterion, we concluded that only the system with Holling type Ⅲ exhibits an asymptotically stable equilibrium point, where the fractional derivative order belongs to the interval $ (0, 1] $. Finally, we obtained the solution of the system with the Holling type Ⅲ functional response, using the multistage homotopic perturbation method, and presented an example that shows the dynamics of the solutions around the stable equilibrium point.



    加载中


    [1] K. Rao, L. Narayan, Stability analysis of a three species food chain model with harvesting, J. Math. Stat. Sci., 2017 (2017), 285–294.
    [2] M. Mammat, W. S. M. Sanyaja, Z. Salleh, M. F. Ahmad, Numerical simulation dynamical model of three-species food chain with Lotka-Volterra linear functional response, J. Sustain. Sci. Manag., 6 (2011), 44–50.
    [3] F. A. Rihand, H. J. Alsakaji, C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect, Complexity, 2020 (2020), 7306412. https://doi.org/10.1155/2020/7306412. doi: 10.1155/2020/7306412
    [4] F. E. Castillo-Santos, M. A. D. Rosa, I. Loreto-Hernández, Existence of a limit cycle in an intraguild food web model with Holling type Ⅱ and Logistic growth for the common prey, Appl. Math., 8 (2017), 358–376. https://doi.org/10.4236/am.2017.83030 doi: 10.4236/am.2017.83030
    [5] K. Cheng, H. You, T. Yang, Global stability of the periodic solution of the three level food chain model with extinction of top predator, arXiv: 2109.05420, 2021. https://doi.org/10.48550/arXiv.2109.05420
    [6] H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
    [7] G. B. V. Castellanos, M. A. Dela-Rosa, Coexistence of species in a tritrophic food chain modelwith Holling functional response type Ⅳ, Math. Methods Appl. Sci., 41 (2018), 6683–6701. https://doi.org/10.1002/mma.5184 doi: 10.1002/mma.5184
    [8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [9] Y. Kao, Y. Cao, X. Chen, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, Chaos, 32 (2022), 113123. https://doi.org/10.1063/5.0102787 doi: 10.1063/5.0102787
    [10] Y. Cao, Y. Kao, J. H. Park, H. Bao, Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 6473–6483. https://doi.org/10.1109/tnnls.2021.3080830 doi: 10.1109/tnnls.2021.3080830
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523.
    [12] A. G. Maria, R. Dhineshbabu, D. Abraham, Analysis of a fractional order prey-predator model (3-species), Global J. Comput. Sci. Math., 6 (2016), 1–9.
    [13] S. Mondal, X. Cao, N. Bairagi, Study of a discretized fractional-order eco-epidemiological model with prey infection, arXiv: 2104.06610, 2020. https://doi.org/10.48550/arXiv.2104.06610
    [14] D. Hinrichsen, A. J. Pritchard, Mathematical systems theory I: Modelling, state space analysis, stability and robustness, Heidelber: Springer Berlin, 2005. https://doi.org/10.1007/b137541
    [15] J. J. Anagnost, C. A. Desoer, An elementary proof of the Routh-Hurwitz stability criterion, Circuits Systems Signal Process., 10 (1991), 101–114. https://doi.org/10.1007/BF01183243 doi: 10.1007/BF01183243
    [16] C. Li, Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dyn., 71 (2013), 621–633. https://doi.org/10.1007/s11071-012-0601-1 doi: 10.1007/s11071-012-0601-1
    [17] M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D, 237 (2008), 2628–2637. https://doi.org/10.1016/j.physd.2008.03.037 doi: 10.1016/j.physd.2008.03.037
    [18] G. Catalan-Angeles, M. P. Arciga-Alejandre, J. Sanchez-Ortiz, Fractional Lotka-Volterra model with Holling type Ⅲ functional response, Math. Meth. Appl. Sci., 46 (2023), 17128–17136. https://doi.org/10.1002/mma.9491 doi: 10.1002/mma.9491
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(572) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog