In this paper, we analyzed the local stability of three species in two fractional tritrophic systems, with Caputo's fractional derivative and Holling type Ⅱ and Ⅲ functional responses, when the prey density has a linear growth. To begin, we obtained the equilibria in the first octant under certain conditions for the parameters. Subsequently, through linearization and applying the Routh-Hurwitz Criterion, we concluded that only the system with Holling type Ⅲ exhibits an asymptotically stable equilibrium point, where the fractional derivative order belongs to the interval $ (0, 1] $. Finally, we obtained the solution of the system with the Holling type Ⅲ functional response, using the multistage homotopic perturbation method, and presented an example that shows the dynamics of the solutions around the stable equilibrium point.
Citation: Anel Esquivel-Navarrete, Jorge Sanchez-Ortiz, Gabriel Catalan-Angeles, Martin P. Arciga-Alejandre. Tritrophic fractional model with Holling III functional response[J]. AIMS Mathematics, 2024, 9(6): 15937-15948. doi: 10.3934/math.2024771
In this paper, we analyzed the local stability of three species in two fractional tritrophic systems, with Caputo's fractional derivative and Holling type Ⅱ and Ⅲ functional responses, when the prey density has a linear growth. To begin, we obtained the equilibria in the first octant under certain conditions for the parameters. Subsequently, through linearization and applying the Routh-Hurwitz Criterion, we concluded that only the system with Holling type Ⅲ exhibits an asymptotically stable equilibrium point, where the fractional derivative order belongs to the interval $ (0, 1] $. Finally, we obtained the solution of the system with the Holling type Ⅲ functional response, using the multistage homotopic perturbation method, and presented an example that shows the dynamics of the solutions around the stable equilibrium point.
[1] | K. Rao, L. Narayan, Stability analysis of a three species food chain model with harvesting, J. Math. Stat. Sci., 2017 (2017), 285–294. |
[2] | M. Mammat, W. S. M. Sanyaja, Z. Salleh, M. F. Ahmad, Numerical simulation dynamical model of three-species food chain with Lotka-Volterra linear functional response, J. Sustain. Sci. Manag., 6 (2011), 44–50. |
[3] | F. A. Rihand, H. J. Alsakaji, C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect, Complexity, 2020 (2020), 7306412. https://doi.org/10.1155/2020/7306412. doi: 10.1155/2020/7306412 |
[4] | F. E. Castillo-Santos, M. A. D. Rosa, I. Loreto-Hernández, Existence of a limit cycle in an intraguild food web model with Holling type Ⅱ and Logistic growth for the common prey, Appl. Math., 8 (2017), 358–376. https://doi.org/10.4236/am.2017.83030 doi: 10.4236/am.2017.83030 |
[5] | K. Cheng, H. You, T. Yang, Global stability of the periodic solution of the three level food chain model with extinction of top predator, arXiv: 2109.05420, 2021. https://doi.org/10.48550/arXiv.2109.05420 |
[6] | H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919 |
[7] | G. B. V. Castellanos, M. A. Dela-Rosa, Coexistence of species in a tritrophic food chain modelwith Holling functional response type Ⅳ, Math. Methods Appl. Sci., 41 (2018), 6683–6701. https://doi.org/10.1002/mma.5184 doi: 10.1002/mma.5184 |
[8] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[9] | Y. Kao, Y. Cao, X. Chen, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, Chaos, 32 (2022), 113123. https://doi.org/10.1063/5.0102787 doi: 10.1063/5.0102787 |
[10] | Y. Cao, Y. Kao, J. H. Park, H. Bao, Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 6473–6483. https://doi.org/10.1109/tnnls.2021.3080830 doi: 10.1109/tnnls.2021.3080830 |
[11] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523. |
[12] | A. G. Maria, R. Dhineshbabu, D. Abraham, Analysis of a fractional order prey-predator model (3-species), Global J. Comput. Sci. Math., 6 (2016), 1–9. |
[13] | S. Mondal, X. Cao, N. Bairagi, Study of a discretized fractional-order eco-epidemiological model with prey infection, arXiv: 2104.06610, 2020. https://doi.org/10.48550/arXiv.2104.06610 |
[14] | D. Hinrichsen, A. J. Pritchard, Mathematical systems theory I: Modelling, state space analysis, stability and robustness, Heidelber: Springer Berlin, 2005. https://doi.org/10.1007/b137541 |
[15] | J. J. Anagnost, C. A. Desoer, An elementary proof of the Routh-Hurwitz stability criterion, Circuits Systems Signal Process., 10 (1991), 101–114. https://doi.org/10.1007/BF01183243 doi: 10.1007/BF01183243 |
[16] | C. Li, Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dyn., 71 (2013), 621–633. https://doi.org/10.1007/s11071-012-0601-1 doi: 10.1007/s11071-012-0601-1 |
[17] | M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D, 237 (2008), 2628–2637. https://doi.org/10.1016/j.physd.2008.03.037 doi: 10.1016/j.physd.2008.03.037 |
[18] | G. Catalan-Angeles, M. P. Arciga-Alejandre, J. Sanchez-Ortiz, Fractional Lotka-Volterra model with Holling type Ⅲ functional response, Math. Meth. Appl. Sci., 46 (2023), 17128–17136. https://doi.org/10.1002/mma.9491 doi: 10.1002/mma.9491 |