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Abstract: In this paper, we analyzed the local stability of three species in two fractional tritrophic
systems, with Caputo’s fractional derivative and Holling type II and III functional responses, when
the prey density has a linear growth. To begin, we obtained the equilibria in the first octant under
certain conditions for the parameters. Subsequently, through linearization and applying the Routh-
Hurwitz Criterion, we concluded that only the system with Holling type III exhibits an asymptotically
stable equilibrium point, where the fractional derivative order belongs to the interval (0, 1]. Finally, we
obtained the solution of the system with the Holling type III functional response, using the multistage
homotopic perturbation method, and presented an example that shows the dynamics of the solutions
around the stable equilibrium point.
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1. Introduction

In a tritrophic food chain, successive predation occurs between three species in the order prey-
mesopredator-superpredator, in which there is a transfer of energy and nutrients when one organism
eats another. The importance of the coexistence of species in the food chain, lies in avoiding
overpopulation and extinction of species. There are several interesting results on the study of
these systems involving Holling-type functional responses, and among them we mention: Rao and
Narayan [1] studied the stability of the interior equilibrium point using the Routh-Hurwitz criterion and
the global stability of a three-species food chain model with harvesting by constructing an appropriate
Lyapunov function. Mammat et al. [2] studied an ecological model with a trophic chain with a
classical Lotka-Volterra functional response and found a parameter space where a Hopf bifurcation
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occurs. Moreover, it is possible to find bifurcation points analytically and to show that the system
has periodic solutions around these points. Rihand et al. [3] studied the dynamics of a two-prey one-
predator system, where the growth of both prey populations is subject to Allee effects, and there is a
direct competition between them. Castillo et al. [4] demonstrated the existence of a limit cycle, via the
first Lyapunov coefficient and the Andronov-Hopf bifurcation theorem, for an asymmetric intragremial
food web model with Holling type II functional response for intermediate and top predators and logistic
growth for (common) prey. Cheng et al. [5] reviewed the existence and local stabilities of all equilibria
of the classical Holling type II model of the three-species food chain. They obtained the existence of a
single limit cycle when the limit equilibrium loses its stability, and they also demonstrated the global
stability of the limit cycle in R3. Alsakaji et al. [6] studied the dynamics of a delay differential model of
predator-prey system involving teams of two-prey and one-predator, with Monod-Haldane and Holling
type II functional responses, and a cooperation between the two-teams of preys against predation. Blé
et al. [7] demonstrated that a tritrophic chain model with Holling type III functional response has an
equilibrium point where it presents a supercritical Hopf bifurcation independently of the prey growth
rate. In the logistic case, they demonstrate the existence of at least three equilibrium points in the
positive octant and one of them presents a supercritical Hopf bifurcation.

On the other hand, the theory of fractional order differential equations has gained great popularity
in several scientific areas; such as biomathematics, control theory, and financial mathematics, among
others (see [8–11]). In particular, in the case of biomathematics, tritrophic models with fractional
derivative have been studied; for example, Maria et al. [12] calculated the equilibrium points and
analyzed their stability to exhibit the dynamic behavior of a fractional order prey-predator model (3-
Species). Mondal et al. [13] studied the dynamics of a three-dimensional discrete fractional-order eco-
epidemiological model with Holling type II functional response. They determined analytical conditions
for the local stability of different fixed points using the Jury criterion and showed that the stability of
the fractional-order discrete system depends strongly on the step size and the fractional order. More
specifically, the critical value of the step size, at which stability switching occurs, decreases as the
order of the fractional derivative decreases.

In the literature, we did not find results concerning the study of fractional order tritrophic systems
with Holling type III functional response.

In this work, we study the stability for the positive solution of the fractional tritrophic food chain
models:

Dα
t0 x = ρx − k1 fi(x)y,

Dα
t0y = c1 fi(x)y − k2gi(y)z − c2y, (1.1)

Dα
t0z = c3gi(y)z − dz,

where x, y, z represent the density of the prey, mesopredator, and superpredator, respectively; Dα
t0 is the

Caputo fractional derivative, α ∈ (0, 1], and all parameters are nonnegative. The parameters c1 and c3

represent the benefits of food consumption, k1 and k2 are the predator rates of the mesopredator, and
superpredator, respectively, c2 and d are the mortality rate of the corresponding predators, and ρ is the
growth rate of the prey in the absence of predators. Since system (1.1) is an ecological model, our
region of interest is the positive octant Ω = {(x, y, z) ∈ R3|x > 0, y > 0, z > 0}. Also, f2, g2 and f3, g3
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are the types II and III functional responses, respectively, defined as follows:

fi(x) =
xi−1

xi−1 + a1
, gi(y) =

yi−1

yi−1 + a2
, i = 2, 3.

The type II functional response is used to describe predator organisms which take some time capture
and ingest their prey. On the other hand, type III functional response is characteristic of predator
organisms which do not capture prey intensively below a certain level of threshold density; however,
above that density level, predator organisms increase their feeding rates until some saturation level is
reached.

2. Preliminaries

We begin this section by defining the Hurwitz polynomial as follows.

Definition 2.1. A polynomial p is said to be a Hurwitz polynomial or Hurwitz stable if all the roots si

of p lie in the open left half plane C−.

We assume that p(s) is the following polynomial:

p(s) = A0 + A1s + A2s2 + A3s3, (2.1)

where Ai ∈ R, i = 0, 1, 2, 3 and A3 > 0, and A0 , 0. Using the coefficients of p(s), we construct the
Table 1 (see [15]).

Table 1. The Routh table.

A3 A1 0
A2 A0 0

A1 −
A0A3

A2
0 0

A0 0 0

Theorem 2.1. Consider p(s) given in (2.1). Then, p(s) is Hurwitz if, and only if, each element of the

first column of the Routh table is positive, i.e., A3 > 0, A2 > 0, A1 −
A0A3

A2
> 0, and A0 > 0.

Proof. The proof can be found in [15]. �

Theorem 2.2. Consider p(s) given in (2.1). Suppose when calculating the Routh table that no element
in the first column is zero. Then, the number of sign changes in the first column of the Routh table is
the number of open right half-plane zeros of p(s).

Proof. The proof can be found in [15]. �

Now, we give some definitions and properties of fractional calculus theory.

Definition 2.2. (See [11]) Let x(t) ∈ L1(R+). The Riemann-Liouville fractional integral of order α ∈
(0, 1] is defined by

(Iαt0 x)(t) =
1

Γ(α)

∫ t

t0

x(τ)
(t − τ)1−α dτ, t > t0 ≥ 0,

where Γ is the Gamma function.
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Definition 2.3. (See [11]) The Caputo fractional derivative of order α ∈ (0, 1] and x ∈ AC(R+), the
space of absolutely continuous functions on R+, is defined by

(Dα
t0 x)(t) = (I1−α

t0 Dx)(t),

where D = d/dt.

The autonomous nonlinear differential system in the sense of Caputo is given as follows:

Dα
t0 X(t) = F(X(t)), (2.2)

where X(t) ∈ R3, X(t0) = Xt0 , F(X) is continuous.

Definition 2.4. Suppose that P is an equilibrium point of system (2.2) and that all the eigenvalues λ of
the linearized matrix J(P) = ∂F/∂X|X=P evaluated at P satisfy: |λ| , 0 and |arg(λ)| ,

πα

2
, then we call

P a hyperbolic equilibrium point.

Theorem 2.3. If P is a hyperbolic equilibrium point of (2.2), then vector field F(x) is topologically
equivalent with its linearization vector field J(P)x in the neighborhood δ(P).

Proof. The proof can be found in [16]. �

Theorem 2.4. We consider the fractional-order system

DαX(t) = F(X(t)), (2.3)

where 0 < α < 1. System (2.3) is asymptotically stable at the equilibrium point P if, and only if,

|arg(λ)| >
πα

2

for all roots λ of the following equation det(λI − J(P)) = 0.

Proof. The proof can be found in [17]. �

3. Main result

In this section, we present two results obtained by analyzing the stability around the coexistence
equilibrium points of three species of the tritrophic system (1.1). First, we consider the system (1.1)
with Holling type II functional response, which has only one unstable equilibrium point in the first
octant.

Theorem 3.1. We assume α = 1, i = 2, c3 > d, a2dk1 > a1ρ(c3 − d), (c1 − c2)a2dk1 > a1c1ρ(c3 − d).
Then, there is only one equilibrium point P in the first octant for the system (1.1),

P =
(k1a2d−ρa1(c3 − d)

ρ(c3 − d)
,

a2d
c3 − d

,
c3((c1 − c2)k1a2d − ρa1c1(c3 − d))

dk1k2(c3 − d)

)
.

Also, the system (1.1) is unstable around the equilibrium point P.
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Proof. Let

F1(x, y) = ρx −
k1xy

x + a1
,

F2(x, y, z) =
c1xy

x + a1
−

k2yz
y + a2

− c2y, (3.1)

F3(y, z) =
c3yz

y + a2
− dz.

The equilibrium point P ∈ Ω for system (1.1) when i = 2 is obtained by solving system F1(x, y) =

F2(x, y, z) = F3(y, z) = 0.
On the other hand, we obtain the Jacobian matrix J of (3.1)

J =


ρ −

a1k1y
(x + a1)2 −

k1x
x + a1

0

a1c1y
(x + a1)2

c1x
x + a1

−
a2k2z

(y + a2)2 − c2
−k2y

y + a2

0
a2c3z

(y + a2)2

c3y
y + a2

− d


.

Now, evaluate P in J

J(P)=



ρ(a2dk1 − a1ρ(c3 − d))
a2dk1

ρa1(c3 − d) − k1a2d
a2d

0

a1c1ρ
2(c3 − d)

a2dk2
1

a2dk1(c1 − c2) − a1c1ρ(c3 − d)
a2c3k1

−dk2

c3

0
(c3 − d)((c1 − c2)a2dk1 − a1c1ρ(c3 − d))

a2dk1k2
0


.

We denote by J(P) = (m jk), j, k = 1, 2, 3. The characteristic polynomial is

p(λ) = det[J(P) − λI], (3.2)

where I is the identity matrix 3x3. That is,

p(λ) = A3λ
3 + A2λ

2 + A1λ + A0, (3.3)

with
A3 = 1, A2 = −m11 − m22, A1 = m11m22 − m12m21 − m23m32, A0 = m11m23m32.

Let P = (x0, y0, z0) be the equilibrium point in the first octant. We reduce m11 and m32:

m11 =
ρ2x0

k1y0
, m32 =

a2d2z0

c3y2
0

.

Then

A0 = −
a2d3k2ρ

2x0z0

c2
3k1y3

0

< 0.

Therefore, by Theorem 2.2, the system is unstable. �

AIMS Mathematics Volume 9, Issue 6, 15937–15948.



15942

Now, we consider the system (1.1) with Holling type III functional response, which has two
equilibrium points in the first octant, one stable and the other unstable.

Theorem 3.2. Assuming i = 3, k1 = 2ρ
√

r, c3 = rd, c1 = rc2, a1 = a2, and r > 4, the system (1.1) has
points of equilibrium in the first octant:

P1 =

( √a1(
√

r + 1)
√

r − 1
,

√
a1

r − 1
,

√
a1c2r(r +

√
r − 2)

2k2
√

r − 1

)
,

P2 =

( √a1(
√

r − 1)
√

r − 1
,

√
a1

r − 1
,

√
a1c2r(r −

√
r − 2)

2k2
√

r − 1

)
.

Then, the system (1.1) is unstable around the equilibrium point P1 and asymptotically stable around
P2.

Proof. Let

G1(x, y) = ρx −
2ρ
√

rx2y
x2 + a1

,

G2(x, y, z) =
c2rx2y
x2 + a1

−
k2y2z

y2 + a1
− c2y, (3.4)

G3(y, z) =
dry2z

y2 + a1
− dz.

Then, the Jacobian matrix J of system (3.4) is

J=



ρ −
4a1ρ

√
rxy

(x2 + a1)2

−2ρ
√

rx2

x2 + a1
0

2a1c2xy
(x2 + a1)2

c2rx2

x2 + a1
−

2a1k2yz
(y2 + a1)2 − c2

−k2y2

y2 + a1

0
2a1dryz

(y2 + a1)2

dry2

y2 + a1
− d


.

We evaluate J in P1,

J(P1)=



ρ
√

r
−ρ(
√

r + 1) 0

c2(
√

r − 1)
2

c2

(
−

r
2
−

√
r

2
+

1
√

r
−

2
r

+ 2
)
−

k2

r

0
c2d
k2

(
r2 + r3/2 − 3r −

√
r + 2

)
0


.

Let J(P1) = (m jk), j, k = 1, 2, 3. We calculate the characteristic polynomial:

p(λ) = det[J(P1) − λI].

That is,
p(λ) = A3λ

3 + A2λ
2 + A1λ + A0, (3.5)

where

A0 = −
c2dρ
r3/2 (r − 1)(r +

√
r − 2),
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A1 =
c2ρ
√

r

(r3/2

2
−

r
2
−
√

r +
1
√

r
−

2
r

+ 2
)

+
c2d
r

(
r2 + r3/2 − 3r −

√
r + 2

)
,

A2 = c2

( r
2

+

√
r

2
− 2 −

1
√

r
+

2
r

)
−

ρ
√

r
,

A3 = 1.

We note that A0 < 0, when r > 4. Then, by Theorem 2.1, p(λ) is not a Hurwitz polynomial.
On the other hand,

J(P2)=


−
ρ
√

r
−ρ(
√

r − 1) 0

c2(
√

r + 1)
2

c2

(
−

r
2

+

√
r

2
+ 2 −

1
√

r
−

2
r

)
−

k2

r

0
c2d
k2

(
r2 − r3/2 − 3r +

√
r + 2

)
0


.

The characteristic polynomial has the form (3.5), where Ai are

A0 =
c2dρ
r3/2 (r − 1)(r −

√
r − 2),

A1 =
c2ρ
√

r

(r3/2

2
+

r
2
−
√

r − 2 +
1
√

r
+

2
r

)
+

c2d
r

(r − 1)(r −
√

r − 2),

A2 = c2

( r
2
−

√
r

2
− 2 +

1
√

r
+

2
r

)
+

ρ
√

r
,

A3 = 1.

Also, r > 4, from which we obtain

r −
√

r − 2 > 0, (3.6)
r3/2

2
+

r
2
−
√

r − 2 +
1
√

r
+

2
r

>
r
2
−

√
r

2
− 2 +

1
√

r
+

2
r
>
( √r

2
−

2
√

r

)2

+
r
4
−

√
r

2
> 0.

For (3.6), we have Ai > 0, for each i = 0, 1, 2. Now, we calculate A1A2 − A0.

A1A2 − A0 =
c2ρA1
√

r

(r3/2

2
+

r
2
−
√

r − 2 +
1
√

r
+

2
r

)
+

c2
2d
r

(r − 1)(r −
√

r − 2)
( r
2
−

√
r

2
− 2 +

1
√

r
+

2
r

)
.

By (3.6) and A1 > 0, we have A1A2 − A0 > 0. Then, by Theorem 2.1, p(λ) is a Hurwitz polynomial.
Therefore, the system (1.1), when α = 1, is stable around P2.

Now, let us consider α ∈ (0, 1). By Theorem 2.3, the system (1.1) and its linearization vector field
J(P2)X are topologically equivalent. By Theorem 2.4, DαX = J(P2)X is stable around P2. Therefore,
the system (1.1) is stable around P2. �

4. Analytical solution

In this section, we present the construction of the analytical solution for the system (1.1), with
Holling type III functional response, k1 = 2ρ

√
r, c3 = rd, c1 = rc2, and a1 = a2, which are obtained by

applying the multistage homotopy perturbation method (see [18]):
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First, let’s define a regular partition of the interval [0,T ] by t0 = 0 < t1 < t2 < · · · < tm = T and the
following family of fractional-order systems

Dα
tk−1

xk = ρxk −
2ρ
√

rx2
kyk

x2
k + a1

, (4.1)

Dα
tk−1

yk =
c2rx2

kyk

x2
k + a1

−
k2y2

kzk

y2
k + a1

− c2yk,

Dα
tk−1

zk =
dry2

kzk

y2
k + a1

− dzk,

with t ∈ [tk−1, tk] and initial conditions (x0, y0, z0) = (x1(t0), y1(t0), y1(t0)) and
(xk(tk−1), yk(tk−1), zk(tk−1)) = (xk−1(tk−1), yk−1(tk−1), zk−1(tk−1)) for k = 1, . . . ,m.

Now, we define the homotopy for each k:

(1 − p)
(
Dα

tk−1
uk − Dα

tk−1
xk(tk−1)

)
+ p

(
Dα

tk−1
uk − ρuk +

2ρ
√

ru2
kvk

u2
k + a1

)
= 0,

(1 − p)
(
Dα

tk−1
vk − Dα

tk−1
yk(tk−1)

)
+ p

(
Dα

tk−1
vk −

c2ru2
kvk

x2
k + a1

+
k2v2

kwk

v2
k + a1

+ c2vk

)
= 0, (4.2)

(1 − p)
(
Dα

tk−1
wk − Dα

tk−1
zk(tk−1)

)
+ p

(
Dα

tk−1
wk + cwk −

dv2
kwk

v2
k + e

)
= 0,

where p ∈ [0, 1]. Let’s suppose that the solution for (4.2) is given by

uk = u0k + pu1k + p2u2k + p3u3k + · · · ,

vk = v0k + pv1k + p2v2k + p3v3k + · · · , (4.3)
wk = w0k + pw1k + p2w2k + p3w3k + · · · ,

where uik, vik, wik, i = 1, 2, . . . , are functions to be determined. Then, the solution for t ∈ [tk−1, tk] is

xk = lim
p→1

uk = u0k + u1k + u2k + u3k + · · · ,

yk = lim
p→1

vk = v0k + v1k + v2k + v3k + · · · , (4.4)

zk = lim
p→1

wk = w0k + w1k + w2k + w3k + · · · .

Therefore, the analytic solution for t ∈ [0,T ] is given by

x(t) =

m∑
k=1

I[tk−1,tk]

∞∑
j=1

u jk(t),

y(t) =

m∑
k=1

I[tk−1,tk]

∞∑
j=1

v jk(t), (4.5)

z(t) =

m∑
k=1

I[tk−1,tk]

∞∑
j=1

w jk(t),
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where I[tk−1,tk] is the characteristic function, tk = k
T
m

, and
m⋃

k=1
[tk−1, tk] = [0,T ]. We show the first addends

of the series (4.4),

u1k(t) =
ρu0k(a1 + u0k(u0k − 2

√
rv0k))

(a1 + u2
0k)Γ(1 + α)

(t − tk−1)α,

v1k(t) = −
v0k(c2(a1 − (r − 1)u2

0k)(a1 + v2
0k) + k2(a1 + u2

0k)v0kw0k)

α(a1 + u2
0k)(a1 + v2

0k)Γ(α)
(t − tk−1)α,

w1k(t) = −
dw0k(a1 − (r − 1)v2

0k)

(a1 + v2
0k)Γ(1 + α)

(t − tk−1)α,

u2k(t) =
ρu0k

(a1 + u2
0k)

3Γ2(1 + α)
(a1ρ(a1 + u2

0k)(a1 + u0k(u0k − 2
√

rv0k)) + 3ρu2
0k(a1 + u2

0k)(a1 + u0k

×(u0k − 2
√

rv0k)) − 4ρ
√

ru0kv0k(a1 + u2
0k)(a1 + u0k(u0k − 2

√
rv0k)) − 2ρu2

0k(a1 + u0k

×(u0k − 2
√

rv0k))2 +
2
√

ru0kv0k

a1 + v2
0k

(a1 + u2
0k)(c2(a1 − (r − 1)u2

0k)(a1 + v2
0k) + k2(a1 + u2

0k)

×v0kw0k))(t − tk−1)2α,

v2k(t) =
v0k

(a1 + u2
0k)

3(a1 + v2
0k)

3Γ2(1 + α)
((a1 + u2

0k)((a1 + v2
0k)c2(a1 − (r − 1)u2

0k) + k2(a1 + u2
0k)

×v0kw0k)(c2(a1 − (r − 1)u2
0k)(a1 + v2

0k)
2 + 2a1k2(a1 + u2

0k)v0kw0k) + (a1 + v2
0k)(2a1c2ρ

×u2
0kr(a1 + v2

0k)
2(a1 + u0k(u0k − 2

√
rv0k)) + dk2(a1 + u2

0k)
3v0k(a1 − (r − 1)v2

0k)w0k))
×(t − tk−1)2α,

w2k(t) =
dw0k

(a1 + u2
0k)(a1 + v2

0k)
3αΓ2(1 + α)

(d(a1 + u2
0k)(a1 + v2

0k)(a1 − (r − 1)v2
0k)

2α − 2a1rv2
0k(c2

×(a1 − (r − 1)u2
0k)(a1 + v2

0k) + k2(a1 + u2
0k)vk0w0k)α)(t − tk−1)2α.

5. Examples

In this section, we illustrate the results obtained in Theorems 3.1 and 3.2, through some particular
examples, where its graphs show the dynamics of the solutions around the equilibrium points.
Furthermore, we can observe that as the order of the derivative α moves away from 1, the length
of the trajectories increases. For this purpose, we use the analytical solution given in (4.5).

Example 5.1. (See Figure 1) For i = 2, fix a1 = c2 = ρ = r = 1, c1 = d = k1 = k2 = 2, c3 = 2.5,
a2 = 5, m = 50, t ∈ [0, 0.5], (16, 8, 5) is the initial condition, and P = (39, 20, 11.875) is an unstable
equilibrium point.
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Figure 1. Unstable equilibrium point P.

Example 5.2. (See Figure 2) For i = 3:

• Let a1 = c2 = d = k2 = ρ = r = 1, r = 5, m = 100, t ∈ [0, 1], (2, 1, 7) is the initial condition, and
P1 = (1.61803, 0.5, 6.54508) is an unstable equilibrium point.
• We take a1 = c2 = d = k2 = ρ = r = 5, m = 100, t ∈ [0, 1], (1, 1, 2) is the initial condition, and

P2 = (1.38197, 1.11803, 2.13525) is a locally asymptotically stable equilibrium point.
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Figure 2. Unstable equilibrium point P1 and asymptotic stability around P2.

6. Conclusions

In this work, the local stability around the coexistence equilibrium points of two tritrophic fractional
models were studied, with Holling type II and III functional responses, respectively. Under certain
conditions of the parameters, it was found that only the second model has a stable equilibrium point
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P2, when α ∈ (0, 1]. The multistage homotopic perturbation method was used to obtain the solution
of the tritrophic fractional model with Holling type III function response, and it was observed that the
trajectories tend faster toward the equilibrium point when α < 1. These results reveal the possibility
of tritrophic coexistence when the interaction is Holling type III. A future work is to use the analytical
solution, obtained via the homotopic perturbation method, to solve the inverse problem associated
to system (1.1); that is, to estimate the parameters involved in the system, from a Bayesian analysis
perspective, which is important to model experimental problems in ecology.
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