Citation: W. Y. Chan. Blow-up for degenerate nonlinear parabolic problem[J]. AIMS Mathematics, 2019, 4(5): 1488-1498. doi: 10.3934/math.2019.5.1488
[1] | C. Y. Chan, W. Y. Chan, Existence of classical solutions of nonlinear degenerate parabolic problems, Proc. Dynam. Systems Appl., 5 (2008), 85-91. |
[2] | C. Y. Chan, C. S. Chen, A numerical method for semilinear singular parabolic quenching problems, Q. Appl. Math., 47 (1989), 45-57. doi: 10.1090/qam/987894 |
[3] | W. Deng, Z. Duan, C. Xie, The blow-up rate for a degenerate parabolic equation with a non-local source, J. Math. Anal. Appl., 264 (2001), 577-597. doi: 10.1006/jmaa.2001.7696 |
[4] | V. A. Galaktionov, Boundary-value problem for the nonlinear parabolic equation ut = △uσ+1+uβ, Differ. Uravn., 17 (1981), 836-842. |
[5] | J. Gratton, F. Minotti, S. M. Mahajan, Theory of creeping gravity currents of a non-Newtonian liquid, Phy. Rev. E., 60 (1999), 6960-6967. doi: 10.1103/PhysRevE.60.6960 |
[6] | M. E. Gurtin, R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. doi: 10.1016/0025-5564(77)90062-1 |
[7] | H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech., 121 (1982), 43-58. doi: 10.1017/S0022112082001797 |
[8] | H. A. Levine, P. E. Sacks, Some existence and nonexistence theorems for solutions of degenerate paraoblic equations, J. Differ. Equations, 52 (1984), 135-161. doi: 10.1016/0022-0396(84)90174-8 |
[9] | C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press, 1992. |
[10] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, New York:Springer-Verlag, 1984. |
[11] | M. I. Roux, Numerical solution of nonlinear reaction diffusion processes, SIAM J. Numer. Anal.,37 (2000), 1644-1656. doi: 10.1137/S0036142998335996 |
[12] | P. L. Sachdev, Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems, Florida:Chapman and Hall/CRC, 2000. |
[13] | P. E. Sacks, Global behavior for a class of nonlinear evolution equations, SIAM J. Math. Anal.,16 (1985), 233-250. doi: 10.1137/0516018 |
[14] | A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, et al. Blow-up in Quasilinear Parabolic Equations, New York: Walter de Gruyter, 1995. |
[15] | A. D. Solomon, Melt time and heat flux for a simple PCM body, Sol. Energy, 22 (1979), 251-257. doi: 10.1016/0038-092X(79)90140-3 |
[16] | W. Walter, Differential and Integral Inequalities, New York: Springer-Verlag, 1970. |