Mathematics

Research article

Blow-up for degenerate nonlinear parabolic problem

W. Y. Chan*
Department of Mathematics, Texas A\&M University-Texarkana, Texarkana, TX 75503

* Correspondence: Email: wychan@tamut.edu; Tel: 9033346679.

Abstract

In this paper, we deal with the existence, uniqueness, and finite time blow-up of the solution to the degenerate nonlinear parabolic problem: $u_{\tau}=\left(\xi^{r} u^{m} u_{\xi}\right)_{\xi} / \xi^{r}+u^{p}$ for $0<\xi<a, 0<\tau<\Gamma$, $u(\xi, 0)=u_{0}(\xi)$ for $0 \leq \xi \leq a$, and $u(0, \tau)=0=u(a, \tau)$ for $0<\tau<\Gamma$, where $u_{0}(\xi)$ is a positive function and $u_{0}(0)=0=u_{0}(a)$. In addition, we prove that u exists globally if a is small through constructing a global-exist upper solution, and u_{τ} blows up in a finite time.

Keywords: blow-up; degenerate nonlinear parabolic problem; global existence
Mathematics Subject Classification: 35K55, 35K57, 35K60, 35K65

1. Introduction

Let $\Gamma \in(0, \infty], r$ be a nonnegative constant less than $1, a$ and m be positive constants, and p be a positive constant greater than 1 . We study the following degenerate nonlinear parabolic first initialboundary value problem:

$$
\begin{gather*}
u_{\tau}=\frac{1}{\xi^{r}}\left(\xi^{r} u^{m} u_{\xi}\right)_{\xi}+u^{p} \text { in }(0, a) \times(0, \Gamma), \tag{1.1}\\
u(\xi, 0)=u_{0}(\xi) \text { on }[0, a], u(0, \tau)=0=u(a, \tau) \text { for } \tau \in(0, \Gamma), \tag{1.2}
\end{gather*}
$$

where $u_{0}(\xi)$ is a positive function in $(0, a)$ such that $u_{0}^{m+1}(\xi) \in C^{2+\alpha}(\bar{D})$ for some $\alpha \in(0,1)$ and $u_{0}(0)=0=u_{0}(a)$.

Problems (1.1)-(1.2) describe the creeping gravity flow of a power-law liquid on a rigid horizontal surface. The solution u is the thickness of the current and r represents the Cartesian symmetry, see [5]. It also explains the radial spreading of an axisymmetric current with ξ and $u^{m+1} /(m+1)$ corresponding respectively to the radial coordinate and the integral of velocity profile of the current, see [7]. If u represents the temperature, then it can be interpreted as a nonlinear heat conduction problem with u^{m} being the thermal diffusivity, see [12, pp. 73-74]. When $m=0$ and $r=0.5$, it exemplifies heat transfer into one face of a flat cylinder with a small ratio of depth to diameter, see [2,15]. Problems (1.1)-(1.2)
can illustrate population dynamics when $r=0$, see [6]. (1.1) is a degenerate equation because the thermal diffusivity $u^{m} \rightarrow 0$ when $\xi \rightarrow 0$ or $\xi \rightarrow a$.

Let $\xi=a x, \tau=a^{2}(m+1) t, \Gamma=a^{2}(m+1) T, D=(0,1), \Omega=D \times(0, T), \bar{D}=[0,1], \bar{\Omega}=\bar{D} \times[0, T)$, $\partial D=\{0,1\}$, and $\partial \Omega=(\bar{D} \times\{0\}) \cup(\partial D \times(0, T))$. Then, the problems (1.1)-(1.2) are transformed into the degenerate nonlinear parabolic problem below,

$$
\begin{gather*}
u_{t}=(m+1) \frac{1}{x^{r}}\left(x^{r} u^{m} u_{x}\right)_{x}+a^{2}(m+1) u^{p} \text { in } \Omega, \tag{1.3}\\
u(x, 0)=u_{0}(x) \text { on } \bar{D}, u(0, t)=0=u(1, t) \text { for } t \in(0, T) . \tag{1.4}
\end{gather*}
$$

When $r=0$ and $u_{0}(x) \geq 0$ on \bar{D}, the multi-dimensional version of the problems (1.3)-(1.4) have been studied by $[4,8,11,13,14]$. Let μ_{1} be the first eigenvalue of the following Sturm-Liouville problem,

$$
\varphi^{\prime \prime}+\mu \varphi=0 \text { in } D, \varphi(0)=0=\varphi(1) .
$$

When $p=m+1$, Sacks [13] proved that if $a^{2}(m+1)>\mu_{1}$, the solution blows up in a finite time. If $a^{2}(m+1) \leq \mu_{1}$ (that is, the domain size is sufficiently small), the problems (1.3)-(1.4) have a global solution (also see [14]). In the case of $p>m+1$, the solution may or may not exist for all time which depends on the initial condition u_{0}, see [8,11,13]. Galaktionov [4] proved that the problems (1.3)-(1.4) have a global solution if $p<m+1$.

This paper is organized as follows. In section 2 , we prove the existence and uniqueness of the classical solution of the problems (1.1)-(1.2). In section 3, we show that u blows up in a finite time when $p \geq m+1$. Then, we prove that there is a global solution when a is sufficiently small. Different from [13], our method does not require additional conditions on p and m. In section 4, we prove that u_{t} blows up in a finite time when u is unbounded.

2. Existence and uniqueness of the solution

We assume that the initial data $u_{0}(x)$ satisfies the condition below,

$$
\begin{equation*}
\frac{d^{2}\left(u_{0}\right)^{m+1}}{d x^{2}}+\frac{r}{x} \frac{d\left(u_{0}\right)^{m+1}}{d x}+a^{2}(m+1)\left(u_{0}\right)^{p} \geq 0 \text { in } D . \tag{2.1}
\end{equation*}
$$

We note that $u_{0}=\left[K x \sin \left(\pi(1-x)^{2} / 2\right)\right]^{1 /(m+1)}$, where K is a positive constant, satisfies (2.1) and $u_{0}(x)=0$ on ∂D. Let $v=u^{m+1}$, the problems (1.3)-(1.4) become

$$
\begin{align*}
& v_{t}=(m+1) v^{m /(m+1)}\left[v_{x x}+\frac{r}{x} v_{x}+a^{2}(m+1) v^{p /(m+1)}\right] \text { in } \Omega, \tag{2.2}\\
& v(x, 0)=v_{0}(x) \text { on } \bar{D}, v(0, t)=0=v(1, t) \text { for } t \in(0, T), \tag{2.3}
\end{align*}
$$

where $v_{0}(x)=u_{0}^{m+1}(x)$. To prove the existence of a solution, Chan and Chan [1] consider the following nonlinear parabolic problem with ε being a small positive number less than 1 ,

$$
\begin{gathered}
v_{\varepsilon_{t}}=(m+1) v_{\varepsilon}^{m /(m+1)}\left[v_{\varepsilon_{x x}}+\frac{r}{x} v_{\varepsilon_{x}}+a^{2}(m+1) v_{\varepsilon}^{p /(m+1)}\right] \text { in } \Omega, \\
v_{\varepsilon}(x, 0)=v_{0}(x)+\varepsilon \text { on } \bar{D}, v_{\varepsilon}(0, t)=\varepsilon=v_{\varepsilon}(1, t) \text { for } t \in(0, T) .
\end{gathered}
$$

They prove that $v_{\varepsilon} \in C(\bar{\Omega}) \cap C^{2+\alpha, 1+\alpha / 2}(D \times[0, T))$, and the sequence of solutions: $\left\{v_{\varepsilon}\right\}$ converges to $v \in C(\bar{\Omega}) \cap C^{2+\alpha, 1+\alpha / 2}(D \times[0, T))$ when $\varepsilon \rightarrow 0$. They also show that $v>0$ in $D \times[0, T)$ and $v(x, t) \geq v_{0}(x)$ on $\bar{D} \times[0, T)$. Using these results, they prove that the problems (1.3)-(1.4) have a solution $u \in C(\bar{\Omega}) \cap C^{2+\alpha, 1+\alpha / 2}(D \times[0, T)), u>0$ in $D \times[0, T)$, and $u(x, t) \geq u_{0}(x)$ on $\bar{D} \times[0, T)$. By (2.1), they show that $u_{t} \geq 0$ and $v_{t} \geq 0$ in $D \times[0, T)$. Further, they prove that u is unbounded in $D \times(0, T)$ if $T<\infty$. For ease of reference, let us state their Theorem 2.8 below.

Theorem 2.1. Problems (1.3)-(1.4) have a solution $u \in C(\bar{\Omega}) \cap C^{2+\alpha, 1+\alpha / 2}(D \times[0, T))$. If $T<\infty$, then u is unbounded in $D \times(0, T)$.

Let $L v=v^{-m /(m+1)} v_{t} /(m+1)-v_{x x}-r v_{x} / x$ and $\beta(x, t)$ be a bounded function on $\bar{\Omega}$. Here is a comparison theorem.

Lemma 2.2. Suppose that y and $s \in C(\bar{\Omega}) \cap C^{2,1}(\Omega)$, and

$$
\begin{equation*}
L y-\beta y \geq L s-\beta s \text { in } \Omega, y \geq \text { s on } \partial \Omega . \tag{2.4}
\end{equation*}
$$

Then, $y \geq \operatorname{s}$ on $\bar{\Omega}$.
Proof. If not, let us assume that $s>y$ somewhere, say, $(\bar{x}, \bar{t}) \in \Omega$. By the continuity of s and y over $\bar{\Omega}$, there exists an interval $\left(a_{1}, a_{2}\right) \subset D$ such that $\bar{x} \in\left(a_{1}, a_{2}\right), s\left(a_{1}, \bar{t}\right)-y\left(a_{1}, \bar{t}\right)=0, s\left(a_{2}, \bar{t}\right)-y\left(a_{2}, \bar{t}\right)=0$, $s(x, \bar{t})>y(x, \bar{t})$ for $x \in\left(a_{1}, a_{2}\right)$, and $s \leq y$ in $\left[a_{1}, a_{2}\right] \times[0, \bar{t})$. Then,

$$
\begin{equation*}
\int_{a_{1}}^{a_{2}}\left(s^{1 /(m+1)}(x, \bar{t})-y^{1 /(m+1)}(x, \bar{t})\right) d x>0 \tag{2.5}
\end{equation*}
$$

Let $\tilde{\phi}(x)$ and $\tilde{\lambda}$ be the first eigenfunction and eigenvalue of the following Sturm-Liouville problem,

$$
\left(x^{r} w^{\prime}\right)^{\prime}+\lambda x^{r} w=0 \text { in } D, w\left(a_{1}\right)=0=w\left(a_{2}\right) .
$$

By Theorem 3.1.2 of Pao [9, p. 97], $\tilde{\phi}(x)$ exists and $\tilde{\lambda}>0$. Further, $\tilde{\phi}(x)>0$ in $\left(a_{1}, a_{2}\right)$. Let γ be a positive real number to be determined. By the above equation, we have

$$
\begin{equation*}
\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(s-y) \tilde{\lambda} x^{r} \tilde{\phi} e^{\gamma t} d x d t=-\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(s-y)\left(x^{r} \tilde{\phi}^{\prime}\right)^{\prime} e^{\gamma t} d x d t \tag{2.6}
\end{equation*}
$$

Using integration by parts, $\tilde{\phi}^{\prime}\left(a_{1}\right) \geq 0$, and $\tilde{\phi}^{\prime}\left(a_{2}\right) \leq 0$, we have

$$
\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(s-y)\left(x^{r} \tilde{\phi}^{\prime}\right)^{\prime} e^{\gamma t} d x d t \geq \int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[(s-y)_{x} x^{r}\right]_{x} \tilde{\phi} e^{\gamma t} d x d t
$$

By (2.4), we get

$$
x^{r}\left[y^{1 /(m+1)}-s^{1 /(m+1)}\right]_{t}-\beta x^{r}(y-s) \geq-x^{r}\left(s_{x x}-y_{x x}\right)-r x^{r-1}\left(s_{x}-y_{x}\right)=-\left[(s-y)_{x} x^{r}\right]_{x} .
$$

From this, we have

$$
\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(s-y)\left(x^{r} \tilde{\phi}^{\prime}\right)^{\prime} e^{\gamma t} d x d t \geq-\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[y^{1 /(m+1)}-s^{1 /(m+1)}\right]_{t} x^{r} \tilde{\phi} e^{\gamma t} d x d t+\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}} \beta(y-s) x^{r} \tilde{\phi} e^{\gamma t} d x d t .
$$

By (2.6), we obtain

$$
\begin{aligned}
& -\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(s-y) \tilde{\lambda} x^{r} \tilde{\phi} e^{\gamma t} d x d t \\
& \geq-\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[y^{1 /(m+1)}-s^{1 /(m+1)}\right]_{t} x^{r} \tilde{\phi} e^{\gamma t} d x d t+\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}} \beta(y-s) x^{r} \tilde{\phi} e^{\gamma t} d x d t \\
& =-\int_{a_{1}}^{a_{2}}\left[y^{1 /(m+1)}(x, \bar{t})-s^{1 /(m+1)}(x, \bar{t})\right] x^{r} \tilde{\phi} e^{\gamma \bar{t}} d x \\
& +\int_{a_{1}}^{a_{2}}\left[y^{1 /(m+1)}(x, 0)-s^{1 /(m+1)}(x, 0)\right] x^{r} \tilde{\phi} d x \\
& +\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[y^{1 /(m+1)}-s^{1 /(m+1)}\right] \gamma x^{r} \tilde{\phi} e^{\gamma t} d x d t+\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}} \beta(y-s) x^{r} \tilde{\phi} e^{\gamma t} d x d t .
\end{aligned}
$$

The above expression is equivalent to

$$
\begin{aligned}
& \int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}(\beta-\tilde{\lambda})(s-y) x^{r} \tilde{\phi} e^{\gamma t} d x d t+\int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, 0)-y^{1 /(m+1)}(x, 0)\right] x^{r} \tilde{\phi} d x \\
& +\int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}-y^{1 /(m+1)}\right] \gamma x^{r} \tilde{\phi} e^{\gamma t} d x d t \\
& \geq \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, \bar{t})-y^{1 /(m+1)}(x, \bar{t})\right] x^{r} \tilde{\phi} e^{\gamma \bar{t}} d x .
\end{aligned}
$$

By the mean value theorem, there exists an ζ between $s^{1 /(m+1)}$ and $y^{1 /(m+1)}$ such that

$$
\begin{aligned}
& \int_{0}^{\bar{t}} \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}-y^{1 /(m+1)}\right]\left[(m+1)(\beta-\tilde{\lambda}) \zeta^{m}+\gamma\right] x^{r} \tilde{\phi} e^{\gamma t} d x d t \\
& +\int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, 0)-y^{1 /(m+1)}(x, 0)\right] x^{r} \tilde{\phi} d x \\
& \geq \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, \bar{t})-y^{1 /(m+1)}(x, \tilde{t})\right] x^{r} \tilde{\phi} e^{\gamma \bar{t}} d x .
\end{aligned}
$$

By the Gronwall inequality (cf. Walter [16, pp. 14-15]),

$$
\begin{aligned}
& \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, \bar{t})-y^{1 /(m+1)}(x, \tilde{t})\right] x^{r} \tilde{\phi} e^{\gamma \bar{\tau}} d x \\
& \leq \int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, 0)-y^{1 /(m+1)}(x, 0)\right] x^{r} \tilde{\phi} d x\left[1+\int_{0}^{\bar{t}}\left[(m+1)(\beta-\tilde{\lambda}) \zeta^{m}+\gamma\right] e^{\int_{t}^{\bar{T}}\left[(m+1)(\beta-\tilde{\chi}) s^{m}+\gamma\right] d t} d t\right]
\end{aligned}
$$

As β is bounded, we choose γ such that $\gamma \geq(m+1)(\tilde{\lambda}-\beta) \zeta^{m}$. By $y \geq s$ in $\left[a_{1}, a_{2}\right] \times[0, \tilde{t})$, we have

$$
\int_{a_{1}}^{a_{2}}\left[s^{1 /(m+1)}(x, \bar{t})-y^{1 /(m+1)}(x, \bar{t})\right] x^{r} \tilde{\phi} e^{\gamma \bar{t}} d x \leq 0
$$

Since $x^{r} \tilde{\phi} e^{\gamma \bar{t}}>0$ in $\left(a_{1}, a_{2}\right)$, the above inequality contradicts (2.5). Therefore, $y \geq s$ in Ω. As $y \geq s$ on $\partial \Omega, y \geq s$ on $\bar{\Omega}$. The proof is complete.

Let $\mathcal{L} y=v^{-m /(m+1)} y_{t} /(m+1)-y_{x x}-r y_{x} / x$. Based on a similar computation of Lemma 2.2, we have the following result.

Lemma 2.3. Suppose that y and $s \in C(\bar{\Omega}) \cap C^{2,1}(\Omega)$, and

$$
\mathcal{L} y-\beta y \geq \mathcal{L} s-\beta s \text { in } \Omega, y \geq \text { s on } \partial \Omega .
$$

Then, $y \geq s$ on $\bar{\Omega}$.
By Theorem 2.1 and Lemma 2.2, we obtain the result of the existence and uniqueness of solution.
Theorem 2.4. Problems (1.3)-(1.4) and (2.2)-(2.3) have the unique classical solution.

3. Blow-up of the solution and global existence

Instead of using condition (2.1), let us assume that u_{0} satisfies the inequality below in the following two sections:

$$
\begin{equation*}
\frac{d^{2}\left(u_{0}\right)^{m+1}}{d x^{2}}+\frac{r}{x} \frac{d\left(u_{0}\right)^{m+1}}{d x}+a^{2}(m+1)\left(u_{0}\right)^{p}>0 \text { in } D . \tag{3.1}
\end{equation*}
$$

Then, by (1.3) and $u \in C(\bar{\Omega}) \cap C^{2+\alpha, 1+\alpha / 2}(D \times[0, T))$, we have $u_{t}(x, 0)>0\left(v_{t}(x, 0)>0\right)$ in D. We want to prove that $v_{t}(x, t)>0$ in D for $t>0$. To achieve it, we have the following two results.

Lemma 3.1. $v(x, t)>v_{0}(x)$ in Ω.
Proof. From (3.1), we obtain

$$
\frac{d^{2} v_{0}}{d x^{2}}+\frac{r}{x} \frac{d v_{0}}{d x}+a^{2}(m+1) v_{0}^{p /(m+1)}>0 \text { in } D .
$$

As stated in section 2, we have $v(x, t) \geq v_{0}(x)$ on $\bar{D} \times[0, T)$. Subtract the above inequality from (2.2), it gives

$$
\begin{aligned}
v^{-m /(m+1)} v_{t} & >(m+1)\left[\left(v-v_{0}\right)_{x x}+\frac{r}{x}\left(v-v_{0}\right)_{x}+a^{2}(m+1)\left(v^{p /(m+1)}-v_{0}^{p /(m+1)}\right)\right] \\
& \geq(m+1)\left[\left(v-v_{0}\right)_{x x}+\frac{r}{x}\left(v-v_{0}\right)_{x}\right] .
\end{aligned}
$$

Further, we know that $v(x, t)=v_{0}(x)=0$ on $\partial D \times(0, T)$ and $v(x, 0)=v_{0}(x)$ on \bar{D}. Suppose that $v(\tilde{x}, t)=v_{0}(\tilde{x})$ for some $\tilde{x} \in D$ and $t>0$. Then, the set

$$
\left\{t: v(x, t)=v_{0}(x) \text { for some } x \in D \text { and } t>0\right\}
$$

is non-empty. Let \tilde{t} denote its infimum. Suppose that $\tilde{t}>0$. Then, $v(\tilde{x}, \tilde{t})=v_{0}(\tilde{x})$ and $v(x, t)>$ v_{0} in $D \times(0, \tilde{t})$. Therefore, $\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{t} \leq 0$. From section 2, we have $v_{t}(\tilde{x}, \tilde{t}) \geq 0$. Thus, $\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{t}=0$. Further, $v(x, t)-v_{0}(x)$ attains its local minimum at (\tilde{x}, \tilde{t}). This implies that $\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{x}=0$ and $\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{x x}>0$. Since $v(\tilde{x}, \tilde{t})>0$, we have

$$
0=v^{-m /(m+1)}(\tilde{x}, \tilde{t}) v_{t}(\tilde{x}, \tilde{t})>(m+1)\left[\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{x x}+\frac{r}{\tilde{x}}\left(v(\tilde{x}, \tilde{t})-v_{0}(\tilde{x})\right)_{x}\right]>0 .
$$

It leads to a contradiction. If $\tilde{t}=0$, we have $v(x, 0)=v_{0}(x)$ on \bar{D} and $v(x, t)>v_{0}(x)$ for $t>0$ in D. Hence, $v(x, t)>v_{0}(x)$ in Ω.

Let h be a small positive real number and $q(x, t)=v(x, t+h)$. Further, q is the solution of the following problem:

$$
\begin{align*}
& q^{-m /(m+1)} q_{t}=(m+1)\left[q_{x x}+\frac{r}{x} q_{x}+a^{2}(m+1) q^{p /(m+1)}\right] \text { in } \Omega, \tag{3.2}\\
& q(x, 0)=v(x, h) \text { on } \bar{D}, q(0, t)=0=q(1, t) \text { for } t \in(0, T) . \tag{3.3}
\end{align*}
$$

We follow a similar calculation of Lemma 3.1 to obtain the corollary below.
Corollary 3.2. $q(x, t)>v(x, t)$ in Ω.
Having these two results, we prove v_{t} being positive in the domain.
Lemma 3.3. $v_{t}>0$ in Ω.
Proof. From the result of section 2, $v_{t} \geq 0$ in $D \times[0, T)$. Let us assume that $v_{t}(\rho, \omega)=0$ for some $(\rho, \omega) \in \Omega$. Then, there exists a neighborhood $\left(a_{3}, a_{4}\right) \times\left(t_{1}, t_{2}\right) \subset \Omega$ such that $(\rho, \omega) \in\left(a_{3}, a_{4}\right) \times\left(t_{1}, t_{2}\right)$. We differentiate (2.2) with respect to t to obtain

$$
\begin{equation*}
\left(v_{t}\right)_{t}=\frac{m}{(m+1)} v^{-1}\left(v_{t}\right)^{2}+(m+1) v^{m /(m+1)}\left[\left(v_{t}\right)_{x x}+\frac{r}{x}\left(v_{t}\right)_{x}+a^{2} p v^{(p-m-1) /(m+1)} v_{t}\right] . \tag{3.4}
\end{equation*}
$$

Since $v>0$ in $\left(a_{3}, a_{4}\right) \times\left(t_{1}, t_{2}\right)$, it gives

$$
\left(v_{t}\right)_{t} \geq(m+1) v^{m /(m+1)}\left[\left(v_{t}\right)_{x x}+\frac{r}{x}\left(v_{t}\right)_{x}+a^{2} p v^{(p-m-1) /(m+1)} v_{t}\right] \text { in }\left(a_{3}, a_{4}\right) \times\left(t_{1}, t_{2}\right) .
$$

By the strong maximum principle (cf. Protter and Weinberger [10, pp. 168-169]), $v_{t} \equiv 0$ in (a_{3}, a_{4}) \times $\left(t_{1}, t_{2}\right)$. This contradicts Corollary 3.2 that v is strictly increasing in t in Ω. Therefore, $v_{t}>0$ in $\left(a_{3}, a_{4}\right) \times\left(t_{1}, t_{2}\right)$. Since (ρ, ω) is arbitrary in $\Omega, v_{t}>0$ in Ω.

To study the blow-up of the solution u, we let $z^{1 /(1-r)}=x$. By a direct computation,

$$
\begin{gathered}
v_{x}=v_{z} \frac{1-r}{z^{r /(1-r)}}, \\
v_{x x}=(1-r)^{2} z^{-2 r /(1-r)} v_{z z}-r(1-r) \frac{v_{z}}{z^{(1+r) /(1-r)}} .
\end{gathered}
$$

Then, the problems (2.2)-(2.3) are transformed into

$$
\begin{gather*}
v_{t}=(m+1) v^{m /(m+1)}\left[(1-r)^{2} z^{-2 r /(1-r)} v_{z z}+a^{2}(m+1) v^{p /(m+1)}\right] \text { in } \Omega, \tag{3.5}\\
v(z, 0)=v_{0}(z) \text { on } \bar{D}, v(0, t)=0=v(1, t) \text { for } t \in(0, T) . \tag{3.6}
\end{gather*}
$$

Let

$$
\begin{equation*}
F(t)=\frac{(m+1)^{2}}{p+1} \int_{0}^{1} z^{2 r /(1-r)} v^{(p+1) /(m+1)} d z . \tag{3.7}
\end{equation*}
$$

Since $v>0$ in $D \times[0, T), F(t)>0$ over [$0, T)$. We modify Lemma 4.3 of Deng, Duan and Xie [3] to obtain the result below.

Lemma 3.4. If $p \geq m+1$, then

$$
\left(F^{\prime}(t)\right)^{2} \leq \frac{p+1}{2 p} F(t) F^{\prime \prime}(t) .
$$

Proof. By a direct computation, the derivative of $F(t)$ is given by

$$
\begin{equation*}
F^{\prime}(t)=(m+1) \int_{0}^{1} z^{2 r /(1-r)} v^{(p-m) /(m+1)} v_{t} d z . \tag{3.8}
\end{equation*}
$$

By $v_{t}(x, 0)>0$ in D and Lemma $3.3 v_{t}>0$ in Ω, we have $F^{\prime}(t)>0$ over $[0, T)$. By (3.5), (3.8) is rewritten as

$$
F^{\prime}(t)=(m+1)^{2} \int_{0}^{1}\left[(1-r)^{2} v_{z z}+a^{2}(m+1) z^{2 r /(1-r)} v^{p /(m+1)}\right] v^{p /(m+1)} d z .
$$

Differentiating $F^{\prime}(t)$ with respect to t and by (3.5), we have

$$
\begin{aligned}
F^{\prime \prime}(t) & =p \int_{0}^{1} v^{(p-2 m-1) /(m+1)} z^{2 r /(1-r)}\left(v_{t}\right)^{2} d z+(m+1)^{2}(1-r)^{2} \int_{0}^{1} v^{p /(m+1)} v_{z z} d z \\
& +a^{2}(m+1)^{2} p \int_{0}^{1} z^{2 r /(1-r)} v^{[2 p-(m+1)] /(m+1)} v_{t} d z
\end{aligned}
$$

Using integration by parts and $p \geq m+1$, we obtain

$$
\begin{aligned}
F^{\prime \prime}(t) & =p \int_{0}^{1} v^{(p-2 m-1) /(m+1)} z^{2 r /(1-r)}\left(v_{t}\right)^{2} d z+a^{2}(m+1)^{2} p \int_{0}^{1} z^{2 r /(1-r)} v^{[2 p-(m+1)] /(m+1)} v_{t} d z \\
& +(1-r)^{2} p(m+1)\left(\frac{p}{m+1}-1\right) \int_{0}^{1} v^{p /(m+1)-2} v_{t}\left(v_{z}\right)^{2} d z+p(m+1)(1-r)^{2} \int_{0}^{1} v^{p /(m+1)-1} v_{t} v_{z z} d z
\end{aligned}
$$

By (3.5), the above expression becomes

$$
\begin{aligned}
F^{\prime \prime}(t) & =p \int_{0}^{1} v^{(p-2 m-1) /(m+1)} z^{2 r /(1-r)}\left(v_{t}\right)^{2} d z+a^{2}(m+1)^{2} p \int_{0}^{1} z^{2 r /(1-r)} v^{[2 p-(m+1)] /(m+1)} v_{t} d z \\
& +(1-r)^{2} p(m+1)\left(\frac{p}{m+1}-1\right) \int_{0}^{1} v^{p /(m+1)-2} v_{t}\left(v_{z}\right)^{2} d z \\
& +p \int_{0}^{1} v^{p /(m+1)-1} v_{t}(m+1)\left[\frac{v^{-m /(m+1)} z^{2 r /(1-r)} v_{t}}{(m+1)}-a^{2}(m+1) z^{2 r /(1-r)} v^{p /(m+1)}\right] d z \\
& =2 p \int_{0}^{1} v^{(p-2 m-1) /(m+1)} z^{2 r /(1-r)}\left(v_{t}\right)^{2} d z+(1-r)^{2} p(m+1)\left(\frac{p}{m+1}-1\right) \int_{0}^{1} v^{p /(m+1)-2} v_{t}\left(v_{z}\right)^{2} d z
\end{aligned}
$$

By assumption $p \geq m+1$, it yields

$$
\begin{equation*}
F^{\prime \prime}(t) \geq 2 p \int_{0}^{1} z^{2 r /(1-r)} v^{(p-2 m-1) /(m+1)}\left(v_{t}\right)^{2} d z \tag{3.9}
\end{equation*}
$$

By (3.8) and the Cauchy-Schwartz inequality, we obtain

$$
\begin{aligned}
\left(F^{\prime}(t)\right)^{2} & =(m+1)^{2}\left[\int_{0}^{1} z^{2 r /(1-r)} v^{(p-m) /(m+1)} v_{t} d z\right]^{2} \\
& \leq(m+1)^{2} \int_{0}^{1} z^{2 r /(1-r)} v^{(p+1) /(m+1)} d z \int_{0}^{1} z^{2 r /(1-r)} v^{(p-2 m-1) /(m+1)}\left(v_{t}\right)^{2} d z
\end{aligned}
$$

Then, by (3.7) and (3.9), we have

$$
\begin{equation*}
\left(F^{\prime}(t)\right)^{2} \leq \frac{p+1}{2 p} F(t) F^{\prime \prime}(t) . \tag{3.10}
\end{equation*}
$$

This completes the proof.
Lemma 3.5. If $p \geq m+1$, then the solution u blows up somewhere on \bar{D} in a finite time T.
Proof. By a direct computation,

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} F^{-(p-1) /(p+1)}(t) & =-\frac{p-1}{p+1}\left[\frac{-2 p}{p+1} F^{-(3 p+1) /(p+1)}\left(F^{\prime}\right)^{2}+F^{-2 p /(p+1)} F^{\prime \prime}\right] \\
& =\frac{2 p(p-1)}{(p+1)^{2}} F^{-(3 p+1) /(p+1)}\left[\left(F^{\prime}\right)^{2}-\frac{p+1}{2 p} F F^{\prime \prime}\right]
\end{aligned}
$$

By (3.10), $p>1$, and $F>0$ over $[0, T)$, we have

$$
\frac{d^{2}}{d t^{2}} F^{-(p-1) /(p+1)}(t) \leq 0
$$

We integrate the above inequality over $(0, t)$ to get

$$
\left(F^{-(p-1) /(p+1)}(t)\right)^{\prime}-\left(F^{-(p-1) /(p+1)}(0)\right)^{\prime} \leq 0 .
$$

Equivalently,

$$
\left(F^{-(p-1) /(p+1)}(t)\right)^{\prime} \leq-\frac{p-1}{p+1} F^{-2 p /(p+1)}(0) F^{\prime}(0) .
$$

Then, we integrate this inequality over $(0, t)$ to obtain

$$
F^{-(p-1) /(p+1)}(t) \leq-\frac{p-1}{p+1} F^{-2 p /(p+1)}(0) F^{\prime}(0) t+F^{-(p-1) /(p+1)}(0) .
$$

Since $F(0)>0, F^{\prime}(0)>0$, and $p>1$, the right side of the above inequality is a decreasing function in t and is equal to zero in a finite time. Therefore, there exists some finite T such that $F^{-(p-1) /(p+1)}(T)=0$. Hence, $F(T)=\infty$. It implies that $v(z, t) \rightarrow \infty$ when $t \rightarrow T$ for some $z \in \bar{D}$. Thus, $u(x, t)$ blows up somewhere on \bar{D} in a finite time T.

Now, we prove that u exists globally if a is sufficiently small. This can be achieved through constructing a global-exist upper solution of the problems (2.2)-(2.3). In this proof, we do not have additional conditions on p and m.

Theorem 3.6. If a is small enough, then u exists globally.
Proof. It suffices to prove that $v(x, t)$ exists globally. Let $V(x)=k x^{1-r}(1-x)$ where k is a positive constant. Then, $V(x) \in C(\bar{D}) \cap C^{2}(D)$. We choose k such that $V(x) \geq v_{0}(x)$. Clearly, $V(x)=0$ at $x=0$ and $x=1$. The expression of V_{x} and $V_{x x}$ is below

$$
\begin{gathered}
V_{x}=k\left[(1-r) x^{-r}-(2-r) x^{1-r}\right], \\
V_{x x}=k\left[-r(1-r) x^{-r-1}-(2-r)(1-r) x^{-r}\right] .
\end{gathered}
$$

By a direct computation,

$$
\begin{aligned}
& V_{x x}+\frac{r}{x} V_{x}+a^{2}(m+1) V^{p /(m+1)} \\
& =k\left[-r(1-r) x^{-r-1}-(2-r)(1-r) x^{-r}+r(1-r) x^{-r-1}-r(2-r) x^{-r}\right] \\
& +a^{2}(m+1) k^{p /(m+1)}\left[x^{1-r}(1-x)\right]^{p /(m+1)} \\
& =-k(2-r) x^{-r}+a^{2}(m+1) k^{p /(m+1)}\left[x^{1-r}(1-x)\right]^{p /(m+1)} .
\end{aligned}
$$

If a is sufficiently small, then $V_{x x}+r V_{x} / x+a^{2}(m+1) V^{p /(m+1)} \leq 0\left(=V_{t}\right)$. By Lemma 2.2, $V(x) \geq v(x, t)$ on $\bar{D} \times[0, \infty)$. Therefore, v exists globally which implies u exists globally.

4. Blow-up of u_{t}

In this section, we want to prove that u_{t} tends to infinity if u blows up. From Lemma 3.3, $v_{t}>0$ in Ω. Let $J(x, t)=v_{t}(x, t)-\varepsilon v(x, t)$ where ε is a small positive number. Then, $J=0$ on $\partial D \times[0, T)$. Let $t_{3} \in(0, T)$. We choose ε such that $J\left(x, t_{3}\right) \geq 0$ on \bar{D}.

Lemma 4.1. If $p \geq m+1$, then $J \geq 0$ on $\bar{D} \times\left[t_{3}, T\right)$.
Proof. By a direct computation, $J_{t}=v_{t t}-\varepsilon v_{t}, J_{x}=v_{t x}-\varepsilon v_{x}$, and $J_{x x}=v_{t x x}-\varepsilon v_{x x}$. From (3.4), we have

$$
v_{t t}=\frac{m}{m+1} v^{-1}\left(v_{t}\right)^{2}+(m+1) v^{m /(m+1)}\left[J_{x x}+\varepsilon v_{x x}+\frac{r}{x}\left(J_{x}+\varepsilon v_{x}\right)+a^{2} p v^{(p-m-1) /(m+1)} v_{t}\right] .
$$

By Lemma 3.3, $J_{t}+\varepsilon v_{t}=v_{t t}$, and (2.2), we have

$$
\begin{aligned}
J_{t}+\varepsilon v_{t} & >(m+1) v^{m /(m+1)}\left(J_{x x}+\frac{r}{x} J_{x}\right)+(m+1) v^{m /(m+1)} \varepsilon\left[\frac{v^{-m /(m+1)}}{m+1} v_{t}-a^{2}(m+1) v^{p /(m+1)}\right] \\
& +a^{2}(m+1) p v^{(p-1) /(m+1)}(J+\varepsilon v) .
\end{aligned}
$$

Simplifying the above inequality and by $p \geq m+1$, it gives

$$
\begin{aligned}
J_{t} & >(m+1) v^{m /(m+1)}\left(J_{x x}+\frac{r}{x} J_{x}\right)+a^{2}(m+1) p v^{(p-1) /(m+1)} J+\varepsilon a^{2}(m+1)[p-(m+1)] v^{(p+m) /(m+1)} \\
& \geq(m+1) v^{m /(m+1)}\left(J_{x x}+\frac{r}{x} J_{x}\right)+a^{2}(m+1) p v^{(p-1) /(m+1)} J .
\end{aligned}
$$

By Lemma 2.3, we have $J \geq 0$ on $\bar{D} \times\left[t_{3}, T\right)$.
Our main result below is immediately followed by Lemma 3.5 and Lemma 4.1.
Theorem 4.2. If $p \geq m+1$ and u is unbounded somewhere on \bar{D} in a finite time T, then u_{t} blows up at T.

5. Conclusion

In this paper, we prove the existence and uniqueness of the solution of a degenerate nonlinear parabolic problem. This solution blows up in a finite time if $p \geq m+1$. Then, we show that u_{t} blows up somewhere in the domain in a finite time.

Acknowledgments

The author thanks the anonymous referee for careful reading. This research did not receive any specific grant funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The author declares that there are no conflicts of interest in this paper.

References

1. C. Y. Chan, W. Y. Chan, Existence of classical solutions of nonlinear degenerate parabolic problems, Proc. Dynam. Systems Appl., 5 (2008), 85-91.
2. C. Y. Chan, C. S. Chen, A numerical method for semilinear singular parabolic quenching problems, Q. Appl. Math., 47 (1989), 45-57.
3. W. Deng, Z. Duan, C. Xie, The blow-up rate for a degenerate parabolic equation with a non-local source, J. Math. Anal. Appl., 264 (2001), 577-597.
4. V. A. Galaktionov, Boundary-value problem for the nonlinear parabolic equation $u_{t}=\Delta u^{\sigma+1}+u^{\beta}$, Differ. Uravn., 17 (1981), 836-842.
5. J. Gratton, F. Minotti, S. M. Mahajan, Theory of creeping gravity currents of a non-Newtonian liquid, Phy. Rev. E., 60 (1999), 6960-6967.
6. M. E. Gurtin, R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.
7. H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech., 121 (1982), 43-58.
8. H. A. Levine, P. E. Sacks, Some existence and nonexistence theorems for solutions of degenerate paraoblic equations, J. Differ. Equations, 52 (1984), 135-161.
9. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press, 1992.
10. M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, New York: Springer-Verlag, 1984.
11. M. I. Roux, Numerical solution of nonlinear reaction diffusion processes, SIAM J. Numer. Anal., 37 (2000), 1644-1656.
12. P. L. Sachdev, Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems, Florida: Chapman and Hall/CRC, 2000.
13. P. E. Sacks, Global behavior for a class of nonlinear evolution equations, SIAM J. Math. Anal., 16 (1985), 233-250.
14. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, et al. Blow-up in Quasilinear Parabolic Equations, New York: Walter de Gruyter, 1995.
15. A. D. Solomon, Melt time and heat flux for a simple PCM body, Sol. Energy, 22 (1979), 251-257.
16. W. Walter, Differential and Integral Inequalities, New York: Springer-Verlag, 1970.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
