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Abstract: In this paper, we deal with the existence, uniqueness, and finite time blow-up of the solution
to the degenerate nonlinear parabolic problem: uτ =

(
ξrumuξ

)
ξ
/ξr + up for 0 < ξ < a, 0 < τ < Γ,

u (ξ, 0) = u0 (ξ) for 0 ≤ ξ ≤ a, and u (0, τ) = 0 = u (a, τ) for 0 < τ < Γ, where u0 (ξ) is a positive
function and u0 (0) = 0 = u0 (a). In addition, we prove that u exists globally if a is small through
constructing a global-exist upper solution, and uτ blows up in a finite time.
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1. Introduction

Let Γ ∈ (0,∞], r be a nonnegative constant less than 1, a and m be positive constants, and p be
a positive constant greater than 1. We study the following degenerate nonlinear parabolic first initial-
boundary value problem:

uτ =
1
ξr

(
ξrumuξ

)
ξ

+ up in (0, a) × (0,Γ) , (1.1)

u (ξ, 0) = u0 (ξ) on [0, a] , u (0, τ) = 0 = u (a, τ) for τ ∈ (0,Γ) , (1.2)

where u0 (ξ) is a positive function in (0, a) such that um+1
0 (ξ) ∈ C2+α

(
D̄
)

for some α ∈ (0, 1) and
u0 (0) = 0 = u0 (a).

Problems (1.1)–(1.2) describe the creeping gravity flow of a power-law liquid on a rigid horizontal
surface. The solution u is the thickness of the current and r represents the Cartesian symmetry, see [5].
It also explains the radial spreading of an axisymmetric current with ξ and um+1/ (m + 1) corresponding
respectively to the radial coordinate and the integral of velocity profile of the current, see [7]. If u
represents the temperature, then it can be interpreted as a nonlinear heat conduction problem with um

being the thermal diffusivity, see [12, pp. 73–74]. When m = 0 and r = 0.5, it exemplifies heat transfer
into one face of a flat cylinder with a small ratio of depth to diameter, see [2,15]. Problems (1.1)–(1.2)
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can illustrate population dynamics when r = 0, see [6]. (1.1) is a degenerate equation because the
thermal diffusivity um → 0 when ξ → 0 or ξ → a.

Let ξ = ax, τ = a2 (m + 1) t, Γ = a2 (m + 1) T , D = (0, 1), Ω = D×(0,T ), D̄ = [0, 1], Ω̄ = D̄×[0,T ),
∂D = {0, 1}, and ∂Ω =

(
D̄ × {0}

)
∪ (∂D × (0,T )). Then, the problems (1.1)–(1.2) are transformed into

the degenerate nonlinear parabolic problem below,

ut = (m + 1)
1
xr

(xrumux)x + a2 (m + 1) up in Ω, (1.3)

u (x, 0) = u0 (x) on D̄, u (0, t) = 0 = u (1, t) for t ∈ (0,T ) . (1.4)

When r = 0 and u0 (x) ≥ 0 on D̄, the multi-dimensional version of the problems (1.3)–(1.4) have
been studied by [4,8,11,13,14]. Let µ1 be the first eigenvalue of the following Sturm-Liouville problem,

ϕ′′ + µϕ = 0 in D, ϕ (0) = 0 = ϕ (1) .

When p = m + 1, Sacks [13] proved that if a2 (m + 1) > µ1, the solution blows up in a finite time. If
a2 (m + 1) ≤ µ1 (that is, the domain size is sufficiently small), the problems (1.3)–(1.4) have a global
solution (also see [14]). In the case of p > m + 1, the solution may or may not exist for all time which
depends on the initial condition u0, see [8,11,13]. Galaktionov [4] proved that the problems (1.3)–(1.4)
have a global solution if p < m + 1.

This paper is organized as follows. In section 2, we prove the existence and uniqueness of the
classical solution of the problems (1.1)–(1.2). In section 3, we show that u blows up in a finite time
when p ≥ m + 1. Then, we prove that there is a global solution when a is sufficiently small. Different
from [13], our method does not require additional conditions on p and m. In section 4, we prove that
ut blows up in a finite time when u is unbounded.

2. Existence and uniqueness of the solution

We assume that the initial data u0 (x) satisfies the condition below,

d2 (u0)m+1

dx2 +
r
x

d (u0)m+1

dx
+ a2 (m + 1) (u0)p

≥ 0 in D. (2.1)

We note that u0 =
[
Kx sin

(
π (1 − x)2 /2

)]1/(m+1)
, where K is a positive constant, satisfies (2.1) and

u0 (x) = 0 on ∂D. Let v = um+1, the problems (1.3)–(1.4) become

vt = (m + 1) vm/(m+1)
[
vxx +

r
x

vx + a2 (m + 1) vp/(m+1)
]

in Ω, (2.2)

v (x, 0) = v0 (x) on D̄, v (0, t) = 0 = v (1, t) for t ∈ (0,T ) , (2.3)

where v0 (x) = um+1
0 (x). To prove the existence of a solution, Chan and Chan [1] consider the following

nonlinear parabolic problem with ε being a small positive number less than 1,

vεt = (m + 1) vm/(m+1)
ε

[
vεxx +

r
x

vεx + a2 (m + 1) vp/(m+1)
ε

]
in Ω,

vε (x, 0) = v0 (x) + ε on D̄, vε (0, t) = ε = vε (1, t) for t ∈ (0,T ) .
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They prove that vε ∈ C
(
Ω̄
)
∩ C2+α,1+α/2 (D × [0,T )), and the sequence of solutions: {vε} converges

to v ∈ C
(
Ω̄
)
∩ C2+α,1+α/2 (D × [0,T )) when ε → 0. They also show that v > 0 in D × [0,T ) and

v (x, t) ≥ v0 (x) on D̄ × [0,T ). Using these results, they prove that the problems (1.3)–(1.4) have a
solution u ∈ C

(
Ω̄
)
∩ C2+α,1+α/2 (D × [0,T )), u > 0 in D × [0,T ), and u (x, t) ≥ u0 (x) on D̄ × [0,T ).

By (2.1), they show that ut ≥ 0 and vt ≥ 0 in D × [0,T ). Further, they prove that u is unbounded in
D × (0,T ) if T < ∞. For ease of reference, let us state their Theorem 2.8 below.

Theorem 2.1. Problems (1.3)–(1.4) have a solution u ∈ C
(
Ω̄
)
∩ C2+α,1+α/2 (D × [0,T )). If T < ∞,

then u is unbounded in D × (0,T ).
Let Lv = v−m/(m+1)vt/ (m + 1) − vxx − rvx/x and β (x, t) be a bounded function on Ω̄. Here is a

comparison theorem.
Lemma 2.2. Suppose that y and s ∈ C

(
Ω̄
)
∩C2,1 (Ω), and

Ly − βy ≥ Ls − βs in Ω, y ≥ s on ∂Ω. (2.4)

Then, y ≥ s on Ω̄.
Proof. If not, let us assume that s > y somewhere, say, (x̄, t̄) ∈ Ω. By the continuity of s and y over

Ω̄, there exists an interval (a1, a2) ⊂ D such that x̄ ∈ (a1, a2), s (a1, t̄)−y (a1, t̄) = 0, s (a2, t̄)−y (a2, t̄) = 0,
s (x, t̄) > y (x, t̄) for x ∈ (a1, a2), and s ≤ y in [a1, a2] × [0, t̄). Then,∫ a2

a1

(
s1/(m+1) (x, t̄) − y1/(m+1) (x, t̄)

)
dx > 0. (2.5)

Let φ̃ (x) and λ̃ be the first eigenfunction and eigenvalue of the following Sturm-Liouville problem,(
xrw′

)′
+ λxrw = 0 in D, w (a1) = 0 = w (a2) .

By Theorem 3.1.2 of Pao [9, p. 97], φ̃ (x) exists and λ̃ > 0. Further, φ̃ (x) > 0 in (a1, a2). Let γ be a
positive real number to be determined. By the above equation, we have∫ t̄

0

∫ a2

a1

(s − y) λ̃xrφ̃eγtdxdt = −

∫ t̄

0

∫ a2

a1

(s − y)
(
xrφ̃′

)′
eγtdxdt. (2.6)

Using integration by parts, φ̃′ (a1) ≥ 0, and φ̃′ (a2) ≤ 0, we have∫ t̄

0

∫ a2

a1

(s − y)
(
xrφ̃′

)′
eγtdxdt ≥

∫ t̄

0

∫ a2

a1

[
(s − y)x xr]

x φ̃eγtdxdt.

By (2.4), we get

xr
[
y1/(m+1)

− s1/(m+1)
]

t
− βxr (y − s) ≥ −xr (sxx − yxx) − rxr−1 (sx − yx) = −

[
(s − y)x xr]

x .

From this, we have∫ t̄

0

∫ a2

a1

(s − y)
(
xrφ̃′

)′
eγtdxdt ≥ −

∫ t̄

0

∫ a2

a1

[
y1/(m+1)

− s1/(m+1)
]

t
xrφ̃eγtdxdt+

∫ t̄

0

∫ a2

a1

β (y − s) xrφ̃eγtdxdt.
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By (2.6), we obtain

−

∫ t̄

0

∫ a2

a1

(s − y) λ̃xrφ̃eγtdxdt

≥ −

∫ t̄

0

∫ a2

a1

[
y1/(m+1)

− s1/(m+1)
]

t
xrφ̃eγtdxdt +

∫ t̄

0

∫ a2

a1

β (y − s) xrφ̃eγtdxdt

= −

∫ a2

a1

[
y1/(m+1) (x, t̄) − s1/(m+1) (x, t̄)

]
xrφ̃eγt̄dx

+

∫ a2

a1

[
y1/(m+1) (x, 0) − s1/(m+1) (x, 0)

]
xrφ̃dx

+

∫ t̄

0

∫ a2

a1

[
y1/(m+1)

− s1/(m+1)
]
γxrφ̃eγtdxdt +

∫ t̄

0

∫ a2

a1

β (y − s) xrφ̃eγtdxdt.

The above expression is equivalent to∫ t̄

0

∫ a2

a1

(
β − λ̃

)
(s − y) xrφ̃eγtdxdt +

∫ a2

a1

[
s1/(m+1) (x, 0) − y1/(m+1) (x, 0)

]
xrφ̃dx

+

∫ t̄

0

∫ a2

a1

[
s1/(m+1)

− y1/(m+1)
]
γxrφ̃eγtdxdt

≥

∫ a2

a1

[
s1/(m+1) (x, t̄) − y1/(m+1) (x, t̄)

]
xrφ̃eγt̄dx.

By the mean value theorem, there exists an ζ between s1/(m+1) and y1/(m+1) such that∫ t̄

0

∫ a2

a1

[
s1/(m+1)

− y1/(m+1)
] [

(m + 1)
(
β − λ̃

)
ζm + γ

]
xrφ̃eγtdxdt

+

∫ a2

a1

[
s1/(m+1) (x, 0) − y1/(m+1) (x, 0)

]
xrφ̃dx

≥

∫ a2

a1

[
s1/(m+1) (x, t̄) − y1/(m+1) (x, t̄)

]
xrφ̃eγt̄dx.

By the Gronwall inequality (cf. Walter [16, pp. 14–15]),∫ a2

a1

[
s1/(m+1) (x, t̄) − y1/(m+1) (x, t̄)

]
xrφ̃eγt̄dx

≤

∫ a2

a1

[
s1/(m+1) (x, 0) − y1/(m+1) (x, 0)

]
xrφ̃dx

[
1 +

∫ t̄

0

[
(m + 1)

(
β − λ̃

)
ζm + γ

]
e
∫ t̄

t [(m+1)(β−λ̃)ζm+γ]dtdt
]
.

As β is bounded, we choose γ such that γ ≥ (m + 1)
(
λ̃ − β

)
ζm. By y ≥ s in [a1, a2] ×

[
0, t̃

)
, we have∫ a2

a1

[
s1/(m+1) (x, t̄) − y1/(m+1) (x, t̄)

]
xrφ̃eγt̄dx ≤ 0.

Since xrφ̃eγt̄ > 0 in (a1, a2), the above inequality contradicts (2.5). Therefore, y ≥ s in Ω. As y ≥ s on
∂Ω, y ≥ s on Ω̄. The proof is complete. �
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Let Ly = v−m/(m+1)yt/ (m + 1)− yxx − ryx/x. Based on a similar computation of Lemma 2.2, we have
the following result.

Lemma 2.3. Suppose that y and s ∈ C
(
Ω̄
)
∩C2,1 (Ω), and

Ly − βy ≥ Ls − βs in Ω, y ≥ s on ∂Ω.

Then, y ≥ s on Ω̄.
By Theorem 2.1 and Lemma 2.2, we obtain the result of the existence and uniqueness of solution.
Theorem 2.4. Problems (1.3)–(1.4) and (2.2)–(2.3) have the unique classical solution.

3. Blow-up of the solution and global existence

Instead of using condition (2.1), let us assume that u0 satisfies the inequality below in the following
two sections:

d2 (u0)m+1

dx2 +
r
x

d (u0)m+1

dx
+ a2 (m + 1) (u0)p > 0 in D. (3.1)

Then, by (1.3) and u ∈ C
(
Ω̄
)
∩ C2+α,1+α/2 (D × [0,T )), we have ut (x, 0) > 0 (vt (x, 0) > 0) in D. We

want to prove that vt (x, t) > 0 in D for t > 0. To achieve it, we have the following two results.
Lemma 3.1. v (x, t) > v0 (x) in Ω.
Proof. From (3.1), we obtain

d2v0

dx2 +
r
x

dv0

dx
+ a2 (m + 1) vp/(m+1)

0 > 0 in D.

As stated in section 2, we have v (x, t) ≥ v0 (x) on D̄ × [0,T ). Subtract the above inequality from (2.2),
it gives

v−m/(m+1)vt > (m + 1)
[
(v − v0)xx +

r
x

(v − v0)x + a2 (m + 1)
(
vp/(m+1)

− vp/(m+1)
0

)]
≥ (m + 1)

[
(v − v0)xx +

r
x

(v − v0)x

]
.

Further, we know that v (x, t) = v0 (x) = 0 on ∂D × (0,T ) and v (x, 0) = v0 (x) on D̄. Suppose that
v (x̃, t) = v0 (x̃) for some x̃ ∈ D and t > 0. Then, the set

{t : v (x, t) = v0 (x) for some x ∈ D and t > 0}

is non-empty. Let t̃ denote its infimum. Suppose that t̃ > 0. Then, v
(
x̃, t̃

)
= v0 (x̃) and v (x, t) >

v0 in D ×
(
0, t̃

)
. Therefore,

(
v
(
x̃, t̃

)
− v0 (x̃)

)
t ≤ 0. From section 2, we have vt

(
x̃, t̃

)
≥ 0. Thus,(

v
(
x̃, t̃

)
− v0 (x̃)

)
t = 0. Further, v (x, t) − v0 (x) attains its local minimum at

(
x̃, t̃

)
. This implies that(

v
(
x̃, t̃

)
− v0 (x̃)

)
x = 0 and

(
v
(
x̃, t̃

)
− v0 (x̃)

)
xx > 0. Since v

(
x̃, t̃

)
> 0, we have

0 = v−m/(m+1) (x̃, t̃) vt
(
x̃, t̃

)
> (m + 1)

[(
v
(
x̃, t̃

)
− v0 (x̃)

)
xx +

r
x̃
(
v
(
x̃, t̃

)
− v0 (x̃)

)
x

]
> 0.

It leads to a contradiction. If t̃ = 0, we have v (x, 0) = v0 (x) on D̄ and v (x, t) > v0 (x) for t > 0 in D.
Hence, v (x, t) > v0 (x) in Ω. �
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Let h be a small positive real number and q (x, t) = v (x, t + h). Further, q is the solution of the
following problem:

q−m/(m+1)qt = (m + 1)
[
qxx +

r
x

qx + a2 (m + 1) qp/(m+1)
]

in Ω, (3.2)

q (x, 0) = v (x, h) on D̄, q (0, t) = 0 = q (1, t) for t ∈ (0,T ) . (3.3)

We follow a similar calculation of Lemma 3.1 to obtain the corollary below.
Corollary 3.2. q (x, t) > v (x, t) in Ω.
Having these two results, we prove vt being positive in the domain.
Lemma 3.3. vt > 0 in Ω.
Proof. From the result of section 2, vt ≥ 0 in D × [0,T ). Let us assume that vt (ρ, ω) = 0 for some

(ρ, ω) ∈ Ω. Then, there exists a neighborhood (a3, a4) × (t1, t2) ⊂ Ω such that (ρ, ω) ∈ (a3, a4) × (t1, t2).
We differentiate (2.2) with respect to t to obtain

(vt)t =
m

(m + 1)
v−1 (vt)2 + (m + 1) vm/(m+1)

[
(vt)xx +

r
x

(vt)x + a2 pv(p−m−1)/(m+1)vt

]
. (3.4)

Since v > 0 in (a3, a4) × (t1, t2), it gives

(vt)t ≥ (m + 1) vm/(m+1)
[
(vt)xx +

r
x

(vt)x + a2 pv(p−m−1)/(m+1)vt

]
in (a3, a4) × (t1, t2) .

By the strong maximum principle (cf. Protter and Weinberger [10, pp. 168–169]), vt ≡ 0 in (a3, a4) ×
(t1, t2). This contradicts Corollary 3.2 that v is strictly increasing in t in Ω. Therefore, vt > 0 in
(a3, a4) × (t1, t2). Since (ρ, ω) is arbitrary in Ω, vt > 0 in Ω. �

To study the blow-up of the solution u, we let z1/(1−r) = x. By a direct computation,

vx = vz
1 − r
zr/(1−r) ,

vxx = (1 − r)2 z−2r/(1−r)vzz − r (1 − r)
vz

z(1+r)/(1−r) .

Then, the problems (2.2)–(2.3) are transformed into

vt = (m + 1) vm/(m+1)
[
(1 − r)2 z−2r/(1−r)vzz + a2 (m + 1) vp/(m+1)

]
in Ω, (3.5)

v (z, 0) = v0 (z) on D̄, v (0, t) = 0 = v (1, t) for t ∈ (0,T ) . (3.6)

Let

F (t) =
(m + 1)2

p + 1

∫ 1

0
z2r/(1−r)v(p+1)/(m+1)dz. (3.7)

Since v > 0 in D × [0,T ), F (t) > 0 over [0,T ). We modify Lemma 4.3 of Deng, Duan and Xie [3] to
obtain the result below.

Lemma 3.4. If p ≥ m + 1, then

(
F′ (t)

)2
≤

p + 1
2p

F (t) F′′ (t) .
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Proof. By a direct computation, the derivative of F (t) is given by

F′ (t) = (m + 1)
∫ 1

0
z2r/(1−r)v(p−m)/(m+1)vtdz. (3.8)

By vt (x, 0) > 0 in D and Lemma 3.3 vt > 0 in Ω, we have F′ (t) > 0 over [0,T ). By (3.5), (3.8) is
rewritten as

F′ (t) = (m + 1)2
∫ 1

0

[
(1 − r)2 vzz + a2 (m + 1) z2r/(1−r)vp/(m+1)

]
vp/(m+1)dz.

Differentiating F′ (t) with respect to t and by (3.5), we have

F′′ (t) = p
∫ 1

0
v(p−2m−1)/(m+1)z2r/(1−r) (vt)2 dz + (m + 1)2 (1 − r)2

∫ 1

0
vp/(m+1)vzztdz

+ a2 (m + 1)2 p
∫ 1

0
z2r/(1−r)v[2p−(m+1)]/(m+1)vtdz.

Using integration by parts and p ≥ m + 1, we obtain

F′′ (t) = p
∫ 1

0
v(p−2m−1)/(m+1)z2r/(1−r) (vt)2 dz + a2 (m + 1)2 p

∫ 1

0
z2r/(1−r)v[2p−(m+1)]/(m+1)vtdz

+ (1 − r)2 p (m + 1)
( p
m + 1

− 1
) ∫ 1

0
vp/(m+1)−2vt (vz)2 dz + p (m + 1) (1 − r)2

∫ 1

0
vp/(m+1)−1vtvzzdz.

By (3.5), the above expression becomes

F′′ (t) = p
∫ 1

0
v(p−2m−1)/(m+1)z2r/(1−r) (vt)2 dz + a2 (m + 1)2 p

∫ 1

0
z2r/(1−r)v[2p−(m+1)]/(m+1)vtdz

+ (1 − r)2 p (m + 1)
( p
m + 1

− 1
) ∫ 1

0
vp/(m+1)−2vt (vz)2 dz

+ p
∫ 1

0
vp/(m+1)−1vt (m + 1)

[
v−m/(m+1)z2r/(1−r)vt

(m + 1)
− a2 (m + 1) z2r/(1−r)vp/(m+1)

]
dz

= 2p
∫ 1

0
v(p−2m−1)/(m+1)z2r/(1−r) (vt)2 dz + (1 − r)2 p (m + 1)

( p
m + 1

− 1
) ∫ 1

0
vp/(m+1)−2vt (vz)2 dz.

By assumption p ≥ m + 1, it yields

F′′ (t) ≥ 2p
∫ 1

0
z2r/(1−r)v(p−2m−1)/(m+1) (vt)2 dz. (3.9)

By (3.8) and the Cauchy-Schwartz inequality, we obtain

(
F′ (t)

)2
= (m + 1)2

[∫ 1

0
z2r/(1−r)v(p−m)/(m+1)vtdz

]2

≤ (m + 1)2
∫ 1

0
z2r/(1−r)v(p+1)/(m+1)dz

∫ 1

0
z2r/(1−r)v(p−2m−1)/(m+1) (vt)2 dz.
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Then, by (3.7) and (3.9), we have

(
F′ (t)

)2
≤

p + 1
2p

F (t) F′′ (t) . (3.10)

This completes the proof. �

Lemma 3.5. If p ≥ m + 1, then the solution u blows up somewhere on D̄ in a finite time T .
Proof. By a direct computation,

d2

dt2 F−(p−1)/(p+1) (t) = −
p − 1
p + 1

[
−2p
p + 1

F−(3p+1)/(p+1) (F′)2
+ F−2p/(p+1)F′′

]
=

2p (p − 1)
(p + 1)2 F−(3p+1)/(p+1)

[(
F′

)2
−

p + 1
2p

FF′′
]
.

By (3.10), p > 1, and F > 0 over [0,T ), we have

d2

dt2 F−(p−1)/(p+1) (t) ≤ 0.

We integrate the above inequality over (0, t) to get(
F−(p−1)/(p+1) (t)

)′
−

(
F−(p−1)/(p+1) (0)

)′
≤ 0.

Equivalently, (
F−(p−1)/(p+1) (t)

)′
≤ −

p − 1
p + 1

F−2p/(p+1) (0) F′ (0) .

Then, we integrate this inequality over (0, t) to obtain

F−(p−1)/(p+1) (t) ≤ −
p − 1
p + 1

F−2p/(p+1) (0) F′ (0) t + F−(p−1)/(p+1) (0) .

Since F (0) > 0, F′ (0) > 0, and p > 1, the right side of the above inequality is a decreasing function in t
and is equal to zero in a finite time. Therefore, there exists some finite T such that F−(p−1)/(p+1) (T ) = 0.
Hence, F (T ) = ∞. It implies that v (z, t) → ∞ when t → T for some z ∈ D̄. Thus, u (x, t) blows up
somewhere on D̄ in a finite time T . �

Now, we prove that u exists globally if a is sufficiently small. This can be achieved through
constructing a global-exist upper solution of the problems (2.2)–(2.3). In this proof, we do not have
additional conditions on p and m.

Theorem 3.6. If a is small enough, then u exists globally.
Proof. It suffices to prove that v(x, t) exists globally. Let V (x) = kx1−r (1 − x) where k is a positive

constant. Then, V (x) ∈ C
(
D̄
)
∩ C2 (D). We choose k such that V (x) ≥ v0 (x). Clearly, V (x) = 0 at

x = 0 and x = 1. The expression of Vx and Vxx is below

Vx = k
[
(1 − r) x−r − (2 − r) x1−r

]
,

Vxx = k
[
−r (1 − r) x−r−1 − (2 − r) (1 − r) x−r

]
.
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By a direct computation,

Vxx +
r
x

Vx + a2 (m + 1) V p/(m+1)

= k
[
−r (1 − r) x−r−1 − (2 − r) (1 − r) x−r + r (1 − r) x−r−1 − r (2 − r) x−r

]
+ a2 (m + 1) kp/(m+1)

[
x1−r (1 − x)

]p/(m+1)

= −k (2 − r) x−r + a2 (m + 1) kp/(m+1)
[
x1−r (1 − x)

]p/(m+1)
.

If a is sufficiently small, then Vxx+rVx/x+a2 (m + 1) V p/(m+1) ≤ 0 (= Vt). By Lemma 2.2, V (x) ≥ v (x, t)
on D̄ × [0,∞). Therefore, v exists globally which implies u exists globally. �

4. Blow-up of ut

In this section, we want to prove that ut tends to infinity if u blows up. From Lemma 3.3, vt > 0 in
Ω. Let J (x, t) = vt (x, t) − εv (x, t) where ε is a small positive number. Then, J = 0 on ∂D × [0,T ). Let
t3 ∈ (0,T ). We choose ε such that J (x, t3) ≥ 0 on D̄.

Lemma 4.1. If p ≥ m + 1, then J ≥ 0 on D̄ × [t3,T ).
Proof. By a direct computation, Jt = vtt − εvt, Jx = vtx − εvx, and Jxx = vtxx − εvxx. From (3.4), we

have

vtt =
m

m + 1
v−1 (vt)2 + (m + 1) vm/(m+1)

[
Jxx + εvxx +

r
x

(Jx + εvx) + a2 pv(p−m−1)/(m+1)vt

]
.

By Lemma 3.3, Jt + εvt = vtt, and (2.2), we have

Jt + εvt > (m + 1) vm/(m+1)
(
Jxx +

r
x

Jx

)
+ (m + 1) vm/(m+1)ε

[
v−m/(m+1)

m + 1
vt − a2 (m + 1) vp/(m+1)

]
+ a2 (m + 1) pv(p−1)/(m+1) (J + εv) .

Simplifying the above inequality and by p ≥ m + 1, it gives

Jt > (m + 1) vm/(m+1)
(
Jxx +

r
x

Jx

)
+ a2 (m + 1) pv(p−1)/(m+1)J + εa2 (m + 1)

[
p − (m + 1)

]
v(p+m)/(m+1)

≥ (m + 1) vm/(m+1)
(
Jxx +

r
x

Jx

)
+ a2 (m + 1) pv(p−1)/(m+1)J.

By Lemma 2.3, we have J ≥ 0 on D̄ × [t3,T ). �

Our main result below is immediately followed by Lemma 3.5 and Lemma 4.1.
Theorem 4.2. If p ≥ m + 1 and u is unbounded somewhere on D̄ in a finite time T , then ut blows

up at T .

5. Conclusion

In this paper, we prove the existence and uniqueness of the solution of a degenerate nonlinear
parabolic problem. This solution blows up in a finite time if p ≥ m + 1. Then, we show that ut blows
up somewhere in the domain in a finite time.
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