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Abstract: Regarding delay-induced predator-prey systems, extensive research has focused on the
phenomenon of delayed destabilization. However, the question of whether delays contribute to
stabilizing or destabilizing the system remains a subtle one. In this paper, the predator-prey interaction
with discrete delay involving Ivlev-type functional response is studied by theoretical analysis and
numerical simulations. The positivity and boundedness of the solution for the delayed model have
been discussed. When time delay is accounted as a bifurcation parameter, stability analysis for the
coexistence equilibrium is given in theoretical aspect. Supercritical Hopf bifurcation is detected by
numerical simulation. Interestingly, by choosing suitable groups of parameter values, the chaotic
solutions appear via a cascade of period-doubling bifurcations, which is also detected. The theoretical
analysis and numerical conclusions demonstrate that the delay mechanism plays a crucial role in the
exploration of chaotic solutions.
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1. Introduction

Investigating the dynamic interaction and interplay between species is essential in mathematical
ecology [1, 2]. Modeling such systems and analyzing their dynamical behavior may give a prediction
on the evolution of populations. Particularly, two-species predator-prey models have led to enthusiasm
among many scholars [3–5]. The Gause type two-species predator-prey model is given by

dx(t)
dt

= rx(t)(1 −
x(t)
K

) − y(t) f (x(t)), (1.1)
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dy(t)
dt

= −sy(t) + Yy(t) f (x(t)),

where x(t) and y(t) denote the density of the prey and predator species at time t, respectively.
Parameters r,K, s, and Y are positive constants, which denote the intrinsic reproduction rate of the
prey, the carrying capacity for the prey species, the death rate of the predator species, and the growth
yield constant for the conversion of prey to predator density, respectively [6, 7].

The initial values are x(0) ≥ 0, y(0) ≥ 0 due to their biological meanings. In the absence of y(t) in
the model (1.1), the prey increases according to the logistic growth ẋ(t) = rx(t)(1 − x(t)

K ). The predator
y(t) declined exponentially as ẏ(t) = −sy(t) and will eventually die in the long-term if the model lacks
prey x(t).

The function f (x) represents the prey-dependent functional response, which is the Ivlev-type
functional response [8, 9], and takes the form

f (x) = α(1 − e−βx), (1.2)

where α > 0 is the consumption rate and β > 0 is the physiological rate at which saturation is achieved.
It is a monotone increasing function that saturates, that is, it has a finite positive limit α as x approaches
infinity [1] (see Figure 1).

Figure 1. The graph of f (x) = α(1 − e−βx).

This type functional response is both monotonically increasing and uniformly bounded, which was
classified to the Holling-II functional response by Garvie [10, 11]. Biologically, it was first proposed
to describe the increase of the fish. Hence, our results are useful in designing fishing policies for the
fishery industry. Other forms of functional responses can be seen in [12, 13].

Considering the Ivlev-type trophic response (1.2) in system (1.1), it changes to

dx(t)
dt

= rx(t)(1 −
x(t)
K

) − αy(t)(1 − e−βx(t)), (1.3)

dy(t)
dt

= −sy(t) + Yαy(t)(1 − e−βx(t)).

The dynamical behaviors of the model (1.3) have been investigated extensively. It has the only
coexistence equilibrium (x∗, y∗) if

αY > s, 1 − e−Kβ <
s
αY

, (1.4)
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where

x∗ = −
1
β

ln(1 −
s
αY

), y∗ =
rY
s

x∗(1 −
x∗

K
).

After applying rescalings in x, y, and t, it can be assumed that K = α = Y = 1. Under the
assumption (1.4), if

β > −
2s + (1 − s) ln(1 − s)
s + (1 − s) ln(1 − s)

ln(1 − s),

then there exists a unique stable limit cycle. Otherwise, it has no limit cycles. If (1.4) fails, then
system (1.3) has no existence equilibrium. Therefore, no limit cycles of system (1.3) exist.

In 1925, to investigate fish population under harvesting, the predator-prey model with delay was
proposed by Volterra. It is described by an integro-differential equation as

dx(t)
dt

= rx(t)
[
1 −

1
K

∫ T

−∞

G(t − s)x(s)ds
]
.

The above delayed equation is called an integro-differential equation, and such delays are called
distributed delays. We can use the linear chain trick to convert systems into systems with discrete delay.
Since then, delayed differential equations (DDEs) have been extensively used to model population
dynamics [14], neural network [15, 16], engineering, the life sciences, etc., including predator-
prey interactions.

By [17], assume the growth rate of the predator species y(t) is proportional to the number of
individuals in the population t − τ time units in the past that manage to survive until time t. In order
to obtain an expression that describes how many predator individuals alive at time t − τ are still alive
at time t, where τ is the delay due to the gestation of the y(t) [18], we need to solve the following
first-order ordinary differential equation for y(t),

ẏ(t) = −sy(t).

It implies that ∫ y(t)

y(t−τ)

1
sy(t)

dy = −

∫ t

t−τ
dt,

hence

y(t) = y(t − τ)e−sτ, (1.5)

where the factor e−sτ denotes the survival rate of the predator y(t) which was born at time t − τ and still
remains alive at the time t. When the time delay τ = 0, the right side of (1.5) reduces to its prototype
y(t). The main difference between y(t − τ) and y(t − τ)e−sτ is shown in Figure 2.
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Figure 2. The difference of consideration of the time delay or not.

When the time delay τ is small, they are close [19]. However, as the delay increases, the expression
y(t−τ)e−sτ could describe practical problems better than the expression y(t−τ). Although the predator-
prey interaction with y(t − τ) has been extensively investigated since its proposal, such systems with
the delay term y(t − τ)e−sτ are scarce and are not frequently reported. Therefore, compared to existing
studies on the predator-prey system [20–22], this is the main contribution and the novelty of this paper
in the aspect of establishing the model.

Similarly, with the well-known Wangersky-Cunningham model, we assume that the change rate
of predators depends on the number of prey and of predators present at τ previous time, that is, the
delay τ in the interaction term y(t)(1 − e−βx(t)) of the second equation. Therefore, we replace y(t) with
the Eq (1.5) in model (1.3), and system (1.3) is reduced to

dx(t)
dt

= rx(t)(1 −
x(t)
K

) − αy(t)(1 − e−βx(t)), (1.6)

dy(t)
dt

= −sy(t) + Yαy(t − τ)e−sτ(1 − e−βx(t−τ)).

System (1.6) has the initial data

x(η) = φ(η) ≥ 0, y(η) = ψ(η) ≥ 0, η ∈ [−τ, 0], (1.7)
φ(0) > 0, ψ(0) > 0,

where (φ(η), ψ(η)) ∈ C
(
[−τ, 0],R2

+0

)
is the Banach space of continuous functions mapping the interval

[−τ, 0] into R2
+0, where R2

+0 = {(x, y) : x ≥ 0, y ≥ 0} [23]. By the fundamental theory of DDEs,
system (1.6) has a unique solution x(t), y(t) satisfying initial data (1.7).

The main goal of this paper is to show how the delay τ affects the dynamics of model (1.6).
This paper is organized as follows. In Section 2, we prove the positivity and boundedness for the
solution of system (1.6). In Section 3, when time delay is accounted as a bifurcation parameter, the
stability analysis is given for the coexistence equilibrium for model (1.6). We analytically prove that the
local Hopf bifurcation critical values are neatly paired. In Section 4, numerical explorations using the
numerical continuation software XPPAUT and DDE-Biftool are carried out in order to substantiate the
obtained theoretical results. Simulations indicated that as the delay increases, the positive equilibrium
loses its stability and bifurcates a family of orbitally asymptotically stable periodic solutions. The
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coexistence equilibrium undergoes stability switches. For large enough delay, the predator will die
out. Before the extinction of the predator, rich dynamics such as Hopf bifurcation, period doubling
bifurcation and strange attractor have been demonstrated when time delay is accounted as bifurcation
parameter, and the abundance of steady-state chaotic solutions appears via a cascade of period-doubling
bifurcations is also detected. The coexistence equilibrium undergos transcritical bifurcation at the die
out critical value. We summarize our conclusions in Section 5, especially on the impact of time delay
from the biological aspect.

2. Positivity and boundedness

For the system (1.6) with positive initial data (1.7), we first prove the following two theorems
concerning the positivity and boundedness of the solution [24].

Theorem 2.1. Solutions of system (1.6) with positive initial data (1.7) remain positive for t > 0.

Proof. Assume (x(t), y(t)) is a solution of system (1.6) satisfying initial data (1.7). By the Theorem 2.1
of [25], we solve the following ordinary differential equation (ODE):

dx(t)
x(t)

=
[
r(1 −

x(t)
K

) − α(1 − e−βx(t))
y(t)
x(t)

]
dt.

Integrating between the limit from 0 to t, the solution is

x(t) = φ(0) exp
( ∫ t

0

[
r(1 −

x(s̃)
K

) − α(1 − e−βx(s̃))
y(s̃)
x(s̃)

]
ds̃

)
.

Obviously, the exponential function is always positive, regardless of the integrand. It implies that x(t)
is positive for t > 0 and φ(0) > 0.

Next, we show that y(t) is positive on t ∈ [0,+∞). Based on the theory of Hale [26], it is obvious
that y(t) is well-defined on [−τ,+∞) and

y(t) = ϕ(0)e−st +

∫ t

0
Yαϕ(0)y(s̃ − τ)e−s(t−s̃+τ)(1 − e−βx(s̃−τ))ds̃.

Since ϕ(0) > 0 and initial data (1.7), we have y(t) > 0 when t ∈ [0, τ], therefore y(t) > 0 for t ∈ [0,+∞].
Positivity implies that the cone of the solutions is invariant in the system. �

Theorem 2.2. Solutions of system (1.6) with positive initial data (1.7) are uniformly
ultimately bounded.

Proof. Define the following function:

ω(t) = Ye−sτx(t) + y(t + τ).

The derivative of ω(t) with respect to t is

ω̇(t) = Ye−sτ ẋ(t) + ẏ(t + τ).
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Substituting ẋ(t) and ẏ(t + τ) into the above expression, we obtain

ω̇(t) = Ye−sτ
[
rx(t)(1 −

x(t)
K

) − αy(t)(1 − e−βx(t))
]
− sy(t + τ) + Yαy(t)e−sτ(1 − e−βx(t))

= Ye−sτrx(t)(1 −
x(t)
K

) − sy(t + τ)

≤ Ye−sτrx(t) − sy(t + τ)
= 2Ye−sτrx(t) − sy(t + τ) − Ye−sτrx(t)
≤ 2Ye−sτr(x0 + ε) − sy(t + τ) − Ye−sτrx(t)

≤ 2Ye−sτr(x0 + ε) −min{s, r}
[
y(t + τ) + Ye−sτx(t)

]
= 2Ye−sτr(x0 + ε) −min{s, r}ω(t),

where x0 is the upper bound of x(t). By the Lemma 2.1 of [27, 28], we obtain

ω(t) ≤
2Ye−sτr(x0 + ε)

min{s, r}
,

when t is sufficiently big. It implies that x(t) and y(t) are ultimately bounded. The boundedness of the
model ensures that there is a restriction on the growth of the species due to limited resources in nature.
This completes the proof. �

3. Local stability and bifurcation analysis

To begin, we consider the possible equilibria of model (1.6).

Proposition 3.1. (i) System (1.6) has two distinct equilibria, the trivial equilibrium E0 = (0, 0) and the
semi-trivial equilibrium Ē = (K, 0).

(ii) If

(H1) τ < τc =
1
s

ln
αY(1 − e−βK)

s
, (3.1)

holds, the τc is the critical value, then system (1.6) has a coexistence equilibrium E∗ = (x∗, y∗), where

x∗ = −
1
β

ln(1 −
sesτ

αY
), y∗ =

rY x∗

sesτ (1 −
x∗

K
).

The existence of E∗ ensures that 1 − e−βK > 0. Note that the equilibrium value depends on τ: x∗

is an increasing function with respect to the delay τ, while y∗ is a decreasing function when x∗ > K
2 ,

that is: The larger the delay, the higher the number of the prey population, and the lower the number
of predators at the equilibrium.

3.1. Linear stability of E0 and Ē

The characteristic equation corresponding to E0 = (0, 0) is

(λ − r)(λ + s − αYe−(λ+s)τ) = 0,

whose roots are obtained as λ1 = r > 0.
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Lemma 3.1. For all τ ≥ 0, the trivial equilibrium E0 is always unstable.

The characteristic equation with respect to Ē = (K, 0) is

(λ + r)
[
λ + s − αYe−(λ+s)τ(1 − e−βK)

]
= 0,

implying that λ1 = −r < 0 and

λ + s − αYe−(λ+s)τ(1 − e−βK) = 0.

Let

f (λ) = λ + s − αYe−(λ+s)τ(1 − e−βK).

Therefore,

f ′(λ) = 1 + ταYe−(λ+s)τ(1 − e−βK) > 0,
f (0) = s − αYe−sτ(1 − e−βK),

lim
λ→∞

f (λ) = ∞,

for any τ ≥ 0. Thus, if τ < τc, f (0) < 0, and f (λ) = 0 has at least one positive root. Thus, when τ < τc,
the semi-trivial equilibrium is unstable.

Lemma 3.2. When τ < τc, Ē is unstable.

3.2. Linear stability and Hopf bifurcation of E∗

In this part, assume that (3.1) is satisfied, then the interior (coexistence) equilibrium E∗ exists.
The linearized system of (1.6) about E∗ is

Ẋ(t) = A0X(t) + A1X(t − τ), (3.2)

where X(t) = (x(t), y(t))T , X(t−τ) = (x(t−τ), y(t−τ))T , A0 =

 r(1 − 2x∗
K ) + αβy∗e−βx∗ −α(1 − e−βx∗)

0 −s

,
A1 =

 0 0

αβYy∗e−sτ−βx∗ αYe−sτ(1 − e−βx∗)

.
The linearization system (3.2) around E∗ has the following characteristic equation:

det[λI − A0 − A1e−λτ] = 0,

that is,

λ2 + p1(τ)λ + p2(τ) + e−(λ+s)τ[p3(τ)λ + p4(τ)] = 0, (3.3)

where

p1(τ) = s − r(1 −
2x∗

K
) − αβy∗e−βx∗ ,
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p2(τ) = −s
[
r(1 −

2x∗

K
) + αβy∗e−βx∗

]
,

p3(τ) = αY(e−βx∗ − 1), (3.4)

p4(τ) = αY(1 − e−βx∗)
[
r(1 −

2x∗

K
) + αβy∗(1 + Y)e−βx∗

]
.

Notice that if τ = 0, Eq (3.3) reduces to the second-order polynomial equation

λ2 + (p1(0) + p3(0))λ + p2(0) + p4(0) = 0, (3.5)

and it follows that all eigenvalues of Eq (3.5) have negative real parts if, and only if,

p1(0) + p3(0) > 0, p2(0) + p4(0) > 0. (3.6)

The transcendental Eq (3.3) has infinitely many roots. Note that polynomials pi(τ)(i = 1, 2, 3, 4)
are dependent on τ. The transcendental equation associated with (3.2) at E∗ is

D(λ) := P(λ, τ) + Q(λ, τ)e−λτ = 0, (3.7)

where

P(λ, τ) = λ2 + p1(τ)λ + p2(τ), Q(λ, τ) = e−sτ[p3(τ)λ + p4(τ)].

For the characteristic equation, before applying the criterion due to Beretta and Kuang [29] to
evaluate the existence of a purely imaginary root, we first verify the following properties for τ ∈ [0, τc),
where τc is the maximum value when E∗ exists.

(i) P(0, τ) + Q(0, τ) , 0;
(ii) P(iω, τ) + Q(iω, τ) , 0,∀ ω ∈ R;
(iii) lim

|λ|→∞
sup

{
|
Q(λ,τ)
P(λ,τ) |; Reλ ≥ 0

}
< 1;

(iv) F(ω, τ) := |P(iω, τ)|2 − |Q(iω, τ)|2 has a finite number of zeros;
(v) Each positive root ω(τ) of F(ω, τ) = 0 is continuous and differentiable in τ whenever it

exists [18].
Obviously,

P(0, τ) + Q(0, τ) = p2(τ) + e−sτp4(τ) , 0, ∀ τ ∈ [0, τc),

(i) is satisfied. Assumption ensures that λ = 0 is not the root of Eq (3.7).
Assume that p2(τ) + e−sτp4(τ) , ω2, p1(τ) + e−sτp3(τ) , 0, then

P(iω, τ) + Q(iω, τ) , 0, ∀ ω ∈ R.

It follows from (3.7) that

lim
|λ|→∞

∣∣∣∣Q(λ, τ)
P(λ, τ)

∣∣∣∣ = lim
|λ|→∞

∣∣∣∣e−sτ[p3(τ)λ + p4(τ)]
λ2 + p1(τ)λ + p2(τ)

∣∣∣∣ = 0,

hence (iii) follows.
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For the function F defined in (iv), which follows

|P(iω, τ)|2 = ω4 +
[
p2

1(τ) − 2p2(τ)
]
ω2 + p2

2(τ),

and
|Q(iω, τ)|2 = e−2sτ(p3(τ)2ω2 + p4(τ)2),

such that
F(ω, τ) = ω4 + a1(τ)ω2 + a2(τ),

where

a1(τ) = p2
1(τ) − 2p2(τ) − e−2sτp2

3(τ), a2(τ) = p2
2(τ) − e−2sτp2

4(τ).

F(ω, τ) has at most four roots, therefore assumption (iv) is satisfied. Assume that (ω0, τ0) is a point in
its domain such that F(ω0, τ0) = 0. In a certain neighborhood of (ω0, τ0), the partial derivatives Fω and
Fτ exist and are continuous, and Fω(ω0, τ0) , 0. Assumption (v) is satisfied by the implicit function
theorem. Assumption (iv) guarantees that Eq (3.7) has at most a finite number of purely imaginary
roots [18], i.e., the roots cross the imaginary axis a finite number of times as τ varies.

Next, we assume that λ = iω(ω > 0, i =
√
−1) is the pure imaginary root of expression (3.7), then

λ = iω satisfies

|P(iω, τ)|2 = |Q(iω, τ)|2,

i.e., because |e−iωτ| = 1, ω(τ) is the positive zero root of

F(ω, τ) := |P(iω, τ)|2 − |Q(iω, τ)|2 = 0.

Define the set

I = {τ|τ ≥ 0, F(ω, τ) = 0 has positive zero points}.

Therefore,

F(ω, τ) = 0, (3.8)

has positive root ω = ω(τ) if τ ∈ I. Otherwise, F(ω, τ) = 0 does’t have a positive zero point.
Furthermore, we obtain

sin(ωτ) = Im
( P(iω, τ)
Q(iω, τ)

)
=
ωesτ[p3(τ)(ω2 − p2(τ)) − p1(τ)p4(τ)]

ω2 p3
2(τ) + p2

4(τ)
, (3.9)

cos(ωτ) = −Re
( P(iω, τ)
Q(iω, τ)

)
=

esτ[ω2 p1(τ)p3(τ) + p4(τ)(p2(τ) − ω2)]
ω2 p3

2(τ) + p2
4(τ)

.

In addition, define the function θ(τ) ∈ [0, 2π], which satisfied (3.9) for τ ∈ I, i.e.,

sin(θ(τ)) =
ωesτ[p3(τ)(ω2 − p2(τ)) − p1(τ)p4(τ)]

ω2 p3
2(τ) + p2

4(τ)
, (3.10)

AIMS Mathematics Volume 9, Issue 9, 24555–24575.



24564

cos(θ(τ)) =
esτ[ω2 p1(τ)p3(τ) + p4(τ)(p2(τ) − ω2)]

ω2 p3
2(τ) + p2

4(τ)
.

The ω(τ)τ in (3.9) and θ(τ) in (3.10) have the following relationship:

ω(τ)τ = θ(τ) + 2nτ, n ∈ N0.

Introduce map τn : I → R+
0 :

τn(τ) =
θ(τ) + 2nτ
ω(τ)

, n ∈ N0, τ ∈ I,

where ω(τ) is the positive root of (3.8). From I to R, define the continuous and differential function
S n(τ) as

S n(τ) := τ − τn(τ), n ∈ N0, τ ∈ I. (3.11)

Let λ(τ) be the eigenvalues satisfied by λ(τ∗) = iω(τ∗), and the transversality condition is
obtained as

δ(τ∗) : = sign
{dReλ(τ)

dτ

∣∣∣∣
λ(τ∗)=iω(τ∗), τ=τ∗

}
= sign

{∂F
∂ω

(ω(τ∗), τ∗)
}
× sign

{dS n(τ)
dτ

∣∣∣∣
λ(τ∗)=iω(τ∗), τ=τ∗

}
.

Theorem 3.1. (i) For model (1.6), if either the set I is empty or the function S n(τ) has no positive zero
in I, for 0 < τ < τc, the positive equilibrium E∗ is asymptotically stable.

(ii) If Eq (3.11) has positive roots in I denoted by {τ1, τ2, · · · , τm}with τ j < τ j+1 and S ′n(τ1) > 0, the
positive equilibrium E∗ is asymptotically stable for τ ∈ [0, τ1) ∪ (τm, τc) and unstable for τ ∈ (τ1, τm),
with Hopf bifurcations occurring when τ = τ j, j = 1, 2, · · · ,m.

4. Numerical simulations

To illustrate the analytical local Hopf Bifurcation results, we shall present some numerical
simulations in this section and will extend them further with the help of numerical bifurcation
analysis. The graphs are mainly drawn using DDEBifTool [30, 31]. Similar dynamics have been
numerically detected in the discrete delay system with Holling type II and Beddington-DeAngelis
trophic response [19].

4.1. Hopf bifurcation

Hereafter, parameters are fixed at the following values,

r = 1, K = 1, α = 5, s = 0.02, Y = 0.6 and β = 0.1. (4.1)

According to the biological meaning of the parameters, because r is relatively large, it indicates that the
prey has a high breeding rate. The s is relatively small which indicates that the predator has a low death
rate. In addition, r is smaller than α to some extent, and it indicates that the changes in the number of
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prey are less influenced by their own birth rate and more influenced by their ability to evade natural
enemies to prevent predation. Yα is larger than s, and it indicates that the changes of the number of
predators are more influenced by their ability to prey on food.

Under (4.1), we consider
dx(t)

dt
= x(t)(1 − x(t)) − 5y(t)(1 − e−0.1x(t)),

dy(t)
dt

= −0.02y(t) + 3y(t − τ)e−0.02τ(1 − e−0.1x(t−τ)),

(φ(0), ϕ(0)) = (0.1, 0.1).

(4.2)

The φ(0) is initial prey population, and it represents the number of prey at the start of the model (4.2).
This value can affect the food supply available to predators. If the initial number of prey is low,
predators may face a food shortage. In contrary, if the initial number of prey is high, predators may
have an abundant food supply. Furthermore, the ϕ(0) is initial predator population, and it represents
the number of predators at the start. This value can influence the initial pressure that predators exert on
prey. If the initial number of predators is low, the pressure on prey may be relatively small; conversely,
if the initial number of predators is high, the pressure on prey may be greater. The φ(0) and ϕ(0) are
chosen as 0.1 here, and they are at the median level relatively. The growth and mortality parameters
represent the biological characteristics of predators and prey, such as growth rates and mortality rates.
These parameters can influence the population dynamics of predators and prey, thereby affecting the
stability of the ecosystem.

System (4.2) has three equilibria: E0 = (0, 0), Ē = (1, 0), and the coexistence equilibrium E∗ =

(x∗, y∗) exists when τ < τc = 250.
Consider Figures 3 and 4: The blue solid line (the red dotted line) represents stable equilibrium

(unstable equilibrium) and the filled green circle (open blue circles) indicates stable periodic orbit
(unstable periodic orbits).

Figure 3 indicates that the E0 = (0, 0) is unstable. When τ ∈ [0, τ3), Ē = (1, 0) is unstable. When
τ > τ3, it is locally asymptotically stable, i.e., at τ = τ3 the predator goes extinct. The coexistence
equilibrium E∗ is stable when τ ∈ [0, τ1) ∪ (τ2, τ3) while it’s unstable when τ ∈ (τ1, τ2) ∪ (τ3, τc). At
τ = τ3, the semi-trivial equilibrium Ē = (1, 0) and positive equilibrium E∗ exchange their stability,
leading to the appearance of transcritical bifurcation. Note that τ1 = 4.4730, τ2 = 69.3061, and
τ3 = 132.9233.

Figure 3. Stability of the three equilibrium of system (4.2) in τ − x and τ − y space.
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We produced a corresponding bifurcation diagram as Figure 4, using τ as the primary bifurcation
parameter. Figure 4 shows the first critical value τ1 with ω1 = 0.1215, which the bifurcated Hopf
bifurcation and the second critical value is τ2 with ω2 = 0.0289, generating the supercritical Hopf
bifurcation at τ1 and τ2. Biologically, above phenomenon could be interpreted as there being an interval
(τ1, τ2) of survival that may exist even though the positive equilibrium is unstable.

Figure 4. The bifurcation diagram for system (4.2) in τ − x and τ − y space..

Figures 5–8 show the trajectories and phase graph of system (4.2) with τ = 4.3, τ = 4.5, τ = 50,
and τ = 70.5, respectively. Figure 5 illustrates that the coexistence equilibrium E∗ = (0.0669, 1.8724)
is locally asymptotically with τ = 4.3 < τ1. It will lose its stability and a bifurcating periodic solution
occurs once τ = 4.5 > τ1 as the time delay increases, as shown in Figure 6. Figure 7 indicates
that a stable periodic solution occurs with τ = 50. Additionally, Figure 8 shows that the coexistence
equilibrium E∗ is locally asymptotically stable with τ = 70.5 > τ2. The results are coincident with
Figures 3 and 4.

The above simulations indicate that there exists a unique global Hopf bifurcation connecting τ1

and τ2. The global Hopf bifurcation is bounded, and each global Hopf branch connects a pair of Hopf
bifurcation values. In the next subsection, we will detect the global Hopf bifurcation [32].

Figure 5. (Left) When τ = 4.3 < τ1 = 4.4730, trajectory of system (4.2) on t − y(t) space.
(Right) When τ = 4.3, phase diagram of the system (4.2) on x(t) − y(t) space.
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Figure 6. (Left) When τ = 4.5 > τ1 = 4.4730, trajectory of system (4.2) on t − y space.
(Right) When τ = 4.5, phase diagram of the system (4.2) on x − y space.

Figure 7. (Left) When τ = 50, trajectory of system (4.2) on t−y space. (Right) When τ = 50,
phase diagram of the system (4.2) on x − y space.

Figure 8. (Left) When τ = 70.5, trajectory of system (4.2) on t − y space. (Right) When
τ = 70.5, phase diagram of the system (4.2) on x − y space.
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4.2. Chaotic solutions

By the global Hopf bifurcation result of [33, 34], it shows that for the following delayed Lotka-
Volterra model,

ẋ(t) = x(t)
[
r1 − a11x(t − τ) − a12y(t)

]
,

ẏ(t) = y(t)
[
−r2 + a21x(t) − a22y(t)

]
.

After the second critical value, the local Hopf bifurcation implies a global Hopf bifurcation. However,
for the delayed model (1.6), it is not valid. We will show that as follows.

Parameters are fixed at the following values,

r = 3.1, K = 0.5, α = 1.5, s = 0.02, Y = 0.4 and β = 1.2. (4.3)

According to the biological meaning of the parameters, because r is relatively large, it indicates that
the prey has a high breeding rate. The s is relatively small, which indicates that the predator has a low
death rate. Because r is larger than α, to some extent, and it indicates that the changes in the number of
prey are more influenced by their own birth rate. In addition, Yα is larger than s, and it indicates that
the changes in the number of predator are more influenced by their ability to prey on food [35].

Under (4.3), we consider the following model:

dx(t)
dt

= 3.1x(t)(1 − 2x(t)) − 1.5y(t)(1 − e−1.2x(t)),

dy(t)
dt

= −0.02y(t) + 0.6y(t − τ)e−0.02τ(1 − e−1.2x(t−τ)),

(φ(0), ϕ(0)) = (0.1, 0.1).

(4.4)

Consider Figures 9 and 10, where the open blue circles stand for unstable periodic orbits. Figure 9
indicates that the E0 = (0, 0) is always unstable. The Ē = (1, 0) is unstable when τ ∈ [0, τ3). When
τ > τ3, it is locally asymptotically stable where τ3 = 130.2649. In τ ∈ [0, τ1) ∪ (τ2, τ3), the positive
equilibrium E∗ is stable, and unstable when τ ∈ (τ1, τ2)∪ (τ3, τc) where τ1 = 2.6330 and τ2 = 79.8515.
By Figure 10, the unstable periodic orbits appear between τ4 and τ5, where τ4 = 67.2228 and τ5 =

70.4188. Biologically, since the appearance of unstable bifurcating periodic solutions, the two species
could coexist in a chaotic mode.

Figure 9. Stability of the three equilibrium of system (4.4) in τ − x and τ − y space.
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Figure 10. (Left) The bifurcation diagram for system (4.4) on τ − x(t) space. (Right) The
larger version of Figure 10 when τ ∈ (57, 81).

To see the influence of delay τ on the dynamical behaviors of the model, we detect the complex
dynamical behavior when τ ∈ (τ4, τ5) by Figures 11–14. By Figure 11, for the system (4.4), when
τ = 65.9, the system has a limit cycle whose period is approximately 250. The periodic orbits are
always stable until τ < 66.6. When τ > 66.6, stable periodic solutions undergo period-doubling
bifurcation; as Figure 12 shows, when τ = 66.6, the system bifurcates twice the period. When τ = 69.5,
the system bifurcates with a sequence of period-doubling bifurcations. When τ continues to increase
from 65.9 to 70, by Figure 14, the system (4.4) achieves chaotic oscillation through period-doubling
bifurcation with a chaotic attractor. In a stable equilibrium, the periodic oscillation by 2, 22, 23 · · ·

cycles eventually lead to chaos. Eventually, a cascade of period doubling bifurcations leads to chaos,
which resembles the chaotic attractor of the following Mackey-Glass equation [36]

dx
dt

= β
x(t − τ)

1 + (x(t − τ))n − γx(t).

The existence of chaotic solutions implies that even a small environmental or parameter perturbation
can disrupt the dynamics of the system [37, 38]. In current research on the existence of chaos, only the
phase diagram or the time course diagram of the system is generally provided, with few discussions
on the chaotic path. In fact, the chaotic path can clearly illustrate the dynamic transition process of the
system under the influence of parameters. Therefore, compared with existing results on the dynamical
behaviors of predator-prey systems [21, 39, 40], the detection of chaos and the analysis of the chaotic
path are the main contributions of this paper in terms of dynamical behaviors.
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Figure 11. (Left) When τ = 65.9, trajectory of system (4.4) on t − y space. (Right) When
τ = 65.9, phase diagram of the system (4.4) on y(t − τ) − y(t) space.

Figure 12. (Left) When τ = 66.6, trajectory of system (4.4) on t − y space. (Right) When
τ = 66.6, phase diagram of the system (4.4) on y(t − τ) − y(t) space.

Figure 13. (Left) When τ = 69.5, trajectory of system (4.4) on t − y space. (Right) When
τ = 69.5, phase diagram of the system (4.4) on y(t − τ) − y(t) space.
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Figure 14. (Top left) When τ = 70, trajectory of system (4.4). (Top right) When τ = 70,
phase diagram embedded with time-delay terms for the system (4.4). (Bottom) When τ = 70,
projection of the attractor (4.4) into x − y sapace.

Remark 4.1. Since chaos is sensitive to initial conditions , the strange attractor is not obvious under
the parameter values as specified in (4.3), which results in the critical values τ4−τ6 in Figure 10 being
not accurate enough. Furthermore, the interval from τ4 to τ6 is not long enough, and we did not detect
the dynamical behaviors in detail within this interval. We hypothesize that within this interval, as the
delay τ increases from 70 to τ6, the system (4.4) undergoes four cycle bifurcations, doubling the period
twice, leading to a period doubling bifurcation and a limit cycle. The dynamic behavior of the system
does not change substantially.

5. Conclusions

In this paper, a delayed prey-predator model with an Ivlev-type functional response is investigated,
focusing on the effect of the delay on the dynamical behaviors of the model. The supercritical Hopf
bifurcation and period doubling types of bifurcations, as well as a strange attractor, can occur at the
positive equilibrium when time delay is considered as a bifurcation parameter. The chaotic attractor
appears, followed by a sequence of period-doubling bifurcations for small enough of the death rate of
the predator species. This study delves into the intricate interplay where time delays and nonlinear
responses converge, offering a deeper insight into the chaotic behaviors that may arise within these
complex systems.

From a biological perspective, there are intriguing explanations. If delay is minimal, predator
and prey populations stabilize. However, as delay escalates, species exhibit asymptotic, periodic, or
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quasi-periodic fluctuations, suggesting an oscillatory coexistence of predator and prey. As the time
delay continues to increase, the system will exhibit a chaotic phenomenon of ‘lose a millimeter, miss a
thousand miles’. Consequently, short-term observations can be deceptive in forecasting due to the
presence of bifurcation and chaos, highlighting the complexity of long-term ecological dynamics.
The results could be very essential for biologists who work with delayed prey-predator systems. In
conclusion, this paper makes two contributions: the introduction of an exponential delay term and the
detection of chaos.

In reality, the processing time delay rarely has the same length at every instance; instead, it follows
a distribution with some mean value. Our follow-up work will investigate the dynamical behaviors
of the model incorporating distributed delay and compare the dynamics resulting from using various
distributions, including discrete delay.
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