Let $ R $ be a ring and $ U(R) $ be the set of unit elements of $ R $. The unit graph $ G(R) $ of $ R $ is the graph whose vertices are all the elements of $ R $, defining distinct vertices $ x $ and $ y $ to be adjacent if and only if $ x + y \in U(R) $. The Laplacian spectrum of $ G(\mathbb{Z}_n) $ was studied when $ n = p^{m} $, where $ p $ is a prime and $ m $ is a positive integer. Consequently, in this paper, we study the Laplacian spectrum of $ G(\mathbb{Z}_n) $, for $ n = p_1p_2...p_k $, where $ p_i $ are distinct primes and $ i = 1, 2, ..., k $.
Citation: Wafaa Fakieh, Amal Alsaluli, Hanaa Alashwali. Laplacian spectrum of the unit graph associated to the ring of integers modulo $ pq $[J]. AIMS Mathematics, 2024, 9(2): 4098-4108. doi: 10.3934/math.2024200
Let $ R $ be a ring and $ U(R) $ be the set of unit elements of $ R $. The unit graph $ G(R) $ of $ R $ is the graph whose vertices are all the elements of $ R $, defining distinct vertices $ x $ and $ y $ to be adjacent if and only if $ x + y \in U(R) $. The Laplacian spectrum of $ G(\mathbb{Z}_n) $ was studied when $ n = p^{m} $, where $ p $ is a prime and $ m $ is a positive integer. Consequently, in this paper, we study the Laplacian spectrum of $ G(\mathbb{Z}_n) $, for $ n = p_1p_2...p_k $, where $ p_i $ are distinct primes and $ i = 1, 2, ..., k $.
[1] | S. Akbari, E. Estaji, M. R. Khorsandi, On the unit graph of a noncommutative ring, Algebra Colloq., 22 (2015), 817–822. https://doi.org/10.1142/S100538671500070X |
[2] | N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Commun. Algebra, 38 (2010), 2851–2871. https://doi.org/10.1080/00927870903095574 |
[3] | S. Banerjee, Laplacian spectrum of comaximal graph of the ring $\mathbb{Z}_n$, Spec. Matrices, 10 (2022), 285–298. https://doi.org/10.1515/spma-2022-0163 doi: 10.1515/spma-2022-0163 |
[4] | D. K. Basnet, A. Sharma, R. Dutta, Nilpotent graph, Theory Appl. Graphs, 8 (2021), 2. https://doi.org/10.20429/tag.2021.080102 doi: 10.20429/tag.2021.080102 |
[5] | S. Chattopadhyay, K. L. Patra, B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring $\mathbb{Z}_n$, Linear Algebra Appl., 584 (2020), 267–286. https://doi.org/10.1016/j.laa.2019.08.015 doi: 10.1016/j.laa.2019.08.015 |
[6] | D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, 1980. |
[7] | D. Cvetkovic, P. Rowlinson, S. Simic, An introduction to the theory of graph spectra, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511801518 |
[8] | R. P. Grimaldi, Graphs from rings, In: Proceedings of the 20th southeastern conference on combinatorics, graph theory, and computing, Boca Raton, 1989, 95–103. |
[9] | R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, 2 Eds., CRC Press, 2011. https://doi.org/10.1201/b10959 |
[10] | A. Kaveh, B. Alinejad, Laplacian matrices of product graphs: Applications in structural mechanics, Acta Mech., 222 (2011), 331–350. https://doi.org/10.1007/s00707-011-0540-9 doi: 10.1007/s00707-011-0540-9 |
[11] | H. R. Maimani, M. R. Pournaki, S. Yassemi, Necessary and sufficient conditions for unit graphs to be Hamiltonian, Pacific J. Math., 249 (2011), 419–429. http://doi.org/10.2140/pjm.2011.249.419 doi: 10.2140/pjm.2011.249.419 |
[12] | A. C. Martinez, D. Kuziak, I. Peterin, I. G. Yero, Dominating the direct product of two graphs through total roman strategies, Mathematics, 8 (2020), 1438. http://doi.org/10.3390/math8091438 doi: 10.3390/math8091438 |
[13] | S. Pirzada, H. A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl., 486 (2015), 454–468. https://doi.org/10.1016/j.laa.2015.08.032 doi: 10.1016/j.laa.2015.08.032 |
[14] | M. Rezagholibeigi, G. Aalipour, A. R. Naghipour, On the spectrum of the closed unit graphs, Linear Multilinear Algebra, 70 (2020), 1871–1885. http://doi.org/10.1080/03081087.2020.1777250 doi: 10.1080/03081087.2020.1777250 |
[15] | K. H. Rosen, Discrete mathematics and its applications, 8 Eds., McGraw Hill, 2018. |
[16] | S. Shen, W. Liu, W. Jin, Laplacian eigenvalues of the unit graph of the ring $\mathbb{Z}_n$, Appl. Math. Comput., 459 (2023), 128268. https://doi.org/10.1016/j.amc.2023.128268 doi: 10.1016/j.amc.2023.128268 |
[17] | H. Su, L. Yang, Domination number of unit graph of $\mathbb{Z}_n$, Discrete Math. Algorithms Appl., 12 (2020), 2050059. https://doi.org/10.1142/S1793830920500597 doi: 10.1142/S1793830920500597 |
[18] | H. Su, Y. Zhou, On the girth of the unit graph of a ring, J. Algebra Appl., 13 (2014), 1350082. https://doi.org/10.1142/S0219498813500825 doi: 10.1142/S0219498813500825 |