The deployment of multi-agent systems (MASs) is widely used in the fields of unmanned agricultural machineries, unmanned aerial vehicles, intelligent transportation, etc. To make up for the defect that the existing PDE-based results are overly idealistic in terms of system models and control strategies, we study the PDE-based deployment of clustered nonlinear first-order and second-order MASs over a finite-time interval (FTI). By designing special communication protocols, the collective dynamics of numerous agents are modeled by simple fist-order and second-order PDEs. Two practical factors, external disturbance and Markov switching topology, are considered in this paper to better match actual situations. Besides, T–S fuzzy technology is used to approximate the unknown nonlinearity of MASs. Then, by using boundary control scheme with collocated measurements, two theorems are obtained to ensure the finite-time H∞ deployment of first-order and second-order agents, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the proposed approaches.
Citation: Hongbo Wei, Xuerong Cui, Yucheng Zhang, Jingyao Zhang. H∞ deployment of nonlinear multi-agent systems with Markov switching topologies over a finite-time interval based on T–S fuzzy PDE control[J]. AIMS Mathematics, 2024, 9(2): 4076-4097. doi: 10.3934/math.2024199
[1] | Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214 |
[2] | Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277 |
[3] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[4] | Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719 |
[5] | Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464 |
[6] | Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279 |
[7] | Shuang Li, Xiao-mei Wang, Hong-ying Qin, Shou-ming Zhong . Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays. AIMS Mathematics, 2021, 6(8): 8044-8063. doi: 10.3934/math.2021467 |
[8] | Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262 |
[9] | Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666 |
[10] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172 |
The deployment of multi-agent systems (MASs) is widely used in the fields of unmanned agricultural machineries, unmanned aerial vehicles, intelligent transportation, etc. To make up for the defect that the existing PDE-based results are overly idealistic in terms of system models and control strategies, we study the PDE-based deployment of clustered nonlinear first-order and second-order MASs over a finite-time interval (FTI). By designing special communication protocols, the collective dynamics of numerous agents are modeled by simple fist-order and second-order PDEs. Two practical factors, external disturbance and Markov switching topology, are considered in this paper to better match actual situations. Besides, T–S fuzzy technology is used to approximate the unknown nonlinearity of MASs. Then, by using boundary control scheme with collocated measurements, two theorems are obtained to ensure the finite-time H∞ deployment of first-order and second-order agents, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the proposed approaches.
Let q≥3 be an integer, and χ be a Dirichlet character modulo q. The characters of the rational polynomial are defined as follows:
N+M∑x=N+1χ(f(x)), |
where M and N are any given positive integers, and f(x) is a rational polynomial. For example, when f(x)=x, for any non-principal Dirichlet character χ mod q, Pólya [1] and Vinogradov [2] independently proved that
|N+M∑x=N+1χ(x)|<√qlnq, |
and we call it Pólya-Vinogradov inequality.
When q=p is an odd prime, χ is a p-th order character modulo p, Weil [3] proved
N+M∑x=N+1χ(f(x))≪p12lnp, |
where f(x) is not a perfect p-th power modulo p, A≪B denotes |A|<kB for some constant k, which in this case depends on the degree of f.
Many authors have obtained numerous results for various forms of f(x). For example, W. P. Zhang and Y. Yi [4] constructed a special polynomial as f(x)=(x−r)m(x−s)n and deduced
|q∑a=1χ((a−r)m(a−s)n)|=√q, |
where (r−s,q)=1, and χ is a primitive character modulo q. This shows the power of q in Weil's result is the best possible!
Also, when χ is a primitive character mod q, W. P. Zhang and W. L. Yao [5] obtained
q∑a=1χ(am(1−a)m)=√q¯χ(4m), |
where q is an odd perfect square and m is any positive integer with (m,q)=1.
When q=pα11pα22⋯pαss is a square full number with pi≡3mod4, χ=χ1χ2…χs with χi being any primitive even character mod pαii(i=1,2,…,s), W. P. Zhang and T. T. Wang [6] obtained the identity
|q∑a=1′χ(ma2k−1+n¯a)|=√q∏p|q(1+(mn(2k−1)p)), | (1.1) |
where a⋅¯a≡1modq, and (∗p) denotes the Legendre symbol. Besides, k, m and n also satisfying some special conditions. Other related work about Dirichlet characters of the rational polynomials can be found in references [7,8,9,10,11,12,13,14]. Inspired by these, we will study the sum
q∑a=1′χ(ma+¯a). |
Following the way in [6], we obtain W. P. Zhang and T. T. Wang's identity (1.1) under a more relaxed situation. Then by adding some new ingredients, we derive some new identities for the fourth power mean of it.
Noting that if χ is an odd character modulo q, m is a positive integer with (m,q)=1, we can get
q∑a=1′χ(ma+¯a)=q∑a=1′χ(−ma+¯(−a))=−q∑a=1′χ(ma+¯a). |
That is to say, under this condition,
q∑a=1′χ(ma+¯a)=0. |
So, we will only discuss the case of χ an even character. To the best of our knowledge, the following identities dealing with arbitrary odd square-full number cases are new and have not appeared before.
Theorem 1.1. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
|q∑a=1′χ(ma+¯a)|=√q∏p∣q(1+(mp)), |
where ∏p∣q denotes the product over all distinct prime divisors p of q.
Remark 1.1. It is obvious that Theorem 1.1 is W. P. Zhang and T. T. Wang's identity (1.1) with k=n=1 by removing the condition pi≡3mod4 (i=1,2,…,s). Besides, using our results, we can directly obtain the absolute values of the sums of Dirichlet characters satisfying some conditions, which avoids complex calculations. What's more, the result of Theorem 1.1 also shows that the order of q in Weil's result can not be improved.
To understand the result better, we give the following examples:
Example 1.1. Let q=32, χ be a Dirichlet character modulo 9 defined as follows:
χ(n)={e2πi⋅ind2n3,if (n,9)=1;0,if (n,9)>1. |
Obviously, χ is a primitive even character modulo 9. Taking m=1,2, then we have
|9∑a=1′χ(ma+¯a)|=|9∑a=1′χ(a+¯a)|=|3χ(2)+3χ(7)|=|3e2πi3+3e2πi⋅43|=6,|9∑a=1′χ(ma+¯a)|=|9∑a=1′χ(2a+¯a)|=|2χ(3)+2χ(6)+2χ(9)|=0. |
Example 1.2. Let q=52, χ be a primitive even character modulo 25 defined as follows:
χ(n)={e2πi⋅ind2n5,if (n,25)=1;0,if (n,25)>1. |
Taking m=1,2, then we have
|25∑a=1′χ(ma+¯a)|=|25∑a=1′χ(a+¯a)|=|5χ(2)+5χ(23)|=|5e2πi5+5e2πi⋅115|=10,|25∑a=1′χ(ma+¯a)|=|25∑a=1′χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(7)+4χ(8)+4χ(12)|=|4e2πi5+4e2πi⋅75+4e2πi⋅55+4e2πi⋅35+4e2πi⋅95|=0. |
Example 1.3. Let q=132, χ be a primitive even character modulo 169 defined as follows:
χ(n)={e2πi⋅ind2n13,if (n,169)=1;0,if (n,169)>1. |
Taking m=1,2, then we have
|169∑a=1′χ(ma+¯a)|=|169∑a=1′χ(a+¯a)|=|4χ(1)+26χ(2)+4χ(4)+4χ(9)+4χ(12)+4χ(14)+4χ(17)+4χ(22)+4χ(25)+4χ(27)+4χ(30)+4χ(35)+4χ(38)+4χ(40)+4χ(43)+4χ(48)+4χ(51)+4χ(53)+4χ(56)+4χ(61)+4χ(64)+4χ(66)+4χ(69)+4χ(74)+4χ(77)+4χ(79)+4χ(82)|=|8+8eπi13+34e2πi13+8e3πi13+8e4πi13+8e5πi13+8e6πi13+8e7πi13+8e8πi13+8e9πi13+8e10πi13+8e11πi13+8e12πi13|=26, |
|169∑a=1′χ(ma+¯a)|=|169∑a=1′χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(5)+4χ(8)+4χ(10)+4χ(11)+4χ(15)+4χ(16)+4χ(18)+4χ(21)+4χ(23)+4χ(24)+4χ(28)+4χ(29)+4χ(31)+4χ(34)+4χ(36)+4χ(37)+4χ(41)+4χ(42)+4χ(44)+4χ(47)+4χ(49)+4χ(50)+4χ(54)+4χ(55)+4χ(57)+4χ(60)+4χ(62)+4χ(63)+4χ(67)+4χ(68)+4χ(70)+4χ(73)+4χ(75)+4χ(76)+4χ(80)+4χ(81)+4χ(83)|=|12+12eπi13+12e2πi13+12e3πi13+12e4πi13+12e5πi13+12e6πi13+12e7πi13+12e8πi13+12e9πi13+12e10πi13+12e11πi13+12e12πi13|=0. |
The above examples can be easily achieved by our Theorem 1.1. From Theorem 1.1, we may immediately obtain the following two corollaries:
Corollary 1.1. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαi (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
|q∑a=1′χ(ma+¯a)|={2ω(q)√q, if m is a quadratic residue modulo q;0, otherwise, |
where ω(q) denotes the number of all distinct prime divisors of q.
Corollary 1.2. Let q=pα11pα22⋯pαss be an odd number with αi≥1 (i=1,2,…,s), χi be any primitive even character mod pαii and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the inequality
|q∑a=1′χ(ma+¯a)|≤2ω(q)√q. |
Theorem 1.2. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integers k and m with k≥1 and (m,q)=1, we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|2k=qk2ω(q)J(q)∏p∣q(1+(mp))2k, |
where J(q) denotes the number of primitive characters modulo q, and ∑χmodq∗ denotes the summation over all primitive characters modulo q.
Example 1.4. Taking q=52, m=1,2, then we have
∑∗χmod25χ(−1)=1|25∑a=1′χ(ma+¯a)|2k=∑∗χmod25χ(−1)=1|25∑a=1′χ(a+¯a)|2k=8⋅102k,∑∗χmod25χ(−1)=1|25∑a=1′χ(ma+¯a)|2k=∑∗χmod25χ(−1)=1|25∑a=1′χ(2a+¯a)|2k=0, |
which can be easily achieved by our Theorem 1.2.
Taking k=2 in Theorem 1.2, we may immediately obtain the followings:
Corollary 1.3. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|4=q22ω(q)J(q)∏p∣q(1+(mp))4. |
Corollary 1.4. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|4={8ω(q)q2J(q), if m is a quadratic residue modulo q;0, otherwise. |
Theorem 1.3. Let p be an odd prime, χ be any non-principal character mod p. Then for any integer m with (m,p)=1, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−6p2+4−4(p2−3p+2)(mp)+(p−1)E,if p≡3mod4;2p3−6p2+4−4(p2+p−2)(mp)+(p−1)E,if p≡1mod4, |
where
E=p−1∑a=1p−1∑b=1((a2b−1)(b−1)bp)p−1∑d=1((¯a2d−1)(d−1)dp). |
Remark 1.2. From [8], we know that when f(x) is a polynomial of odd degree n≥3, Weil's estimate ([15,16])
|p−1∑x=0(f(x)p)|≤(n−1)√p, |
implies that E<4p2−8p. Noting that q∑a=1′χ(ma+¯a) can be regarded as a dual form of Kloosterman sums, which defined as q∑a=1′e2πima+ˉaq, we can obtain some distributive properties of q∑a=1′χ(ma+¯a) from Theorem 1.2 and 1.3.
From Theorem 1.3, we also have the following corollaries:
Corollary 1.5. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic residue m mod p, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−10p2+12p−4+(p−1)E,if p≡3mod4;2p3−10p2−4p+12+(p−1)E,if p≡1mod4. |
Corollary 1.6. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic non-residue m mod p, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−2p2−12p+4+(p−1)E,if p≡3mod4;2p3−2p2+4p−4+(p−1)E,if p≡1mod4. |
To prove our Theorems, we need some Lemmas as the following:
Lemma 2.1. Let q, q1, q2 be integers with q=q1q2 and (q1,q2)=1, χi be any non-principal character mod qi (i=1,2). Then for any integer m with (m,q)=1 and χ=χ1χ2, we have the identity
q∑a=1′χ(ma+¯a)=q1∑b=1′χ1(mb+¯b)q2∑c=1′χ2(mc+¯c). |
Proof. From the properties of Dirichlet characters, we have
q∑a=1′χ(ma+¯a)=q1q2∑a=1′χ1χ2(ma+¯a)=q1∑b=1′q2∑c=1′χ1χ2(m(bq2+cq1)+¯bq2+cq1)=q1∑b=1′q2∑c=1′χ1(m(bq2+cq1)+¯bq2+cq1)χ2(m(bq2+cq1)+¯bq2+cq1)=q1∑b=1′χ1(mbq2+¯bq2)q2∑c=1′χ2(mcq1+¯cq1)=q1∑b=1′χ1(mb+¯b)q2∑c=1′χ2(mc+¯c). |
This completes the proof of Lemma 2.1.
Lemma 2.2. Let p be an odd prime, α and m be integers with α≥1 and (m,p)=1. Then for any primitive even character χ mod pα, we have the identity
pα∑a=1′χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)), |
where χ02=(∗p), τ(χ)=pα∑a=1χ(a)e(apα), χ1 is a primitive character mod pα and χ=χ21.
Proof. For any primitive even character χ mod pα, there exists one primitive character χ1 mod pα such that χ=χ21. From the properties of Gauss sum, we can obtain
pα∑a=1′χ(ma+¯a)=1τ(¯χ)pα∑a=1′pα∑b=1¯χ(b)e(b(ma+¯a)pα)=1τ(¯χ)pα∑a=1¯χ(a)pα∑b=1¯χ(b)e(b(ma2+1)pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ(a)e(bma2pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a2)e(bma2pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1(1+χ02(a))¯χ1(a)e(bmapα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a)e(bmapα)+1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1χ02(a)¯χ1(a)e(bmapα):=B1+B2. |
Now we compute B1 and B2 respectively.
B1=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a)e(bmapα)=1τ(¯χ)pα∑b=1¯χ(b)χ1(bm)e(bpα)pα∑a=1¯χ1(bma)e(bmapα)=χ1(m)τ(¯χ1)τ(¯χ)pα∑b=1¯χ(b)χ1(b)e(bpα)=χ1(m)τ(¯χ1)τ(¯χ)pα∑b=1¯χ1(b)e(bpα)=χ1(m)τ2(¯χ1)τ(¯χ). |
Similarly, we have
B2=χ1(m)χ02(m)τ2(χ02¯χ1)τ(¯χ). |
Therefore, we can obtain
pα∑a=1′χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)). |
Lemma 2.3. Let p be an odd prime. Then for any integer n, we have the identity
p∑a=1(a2+np)={−1,if (n,p)=1;p−1,if (n,p)=p. |
Proof. See Theorem 8.2 of [17].
Lemma 2.4. Let p be an odd prime. Then we have the identity
p−2∑a=2p−1∑b=1((a2b−1)(b−1)bp)=2×(−1)p−12+2. |
Proof. From the properties of character sum, we have
p−2∑a=2p−1∑b=1((a2b−1)(b−1)bp)=p−1∑b=1(b−1p)p−2∑a=2((a2b−1)bp)=p−1∑b=1(b−1p)p−2∑a=2(b2(a2−¯b)p)=p−1∑b=1(b−1p)p−2∑a=2(a2−¯bp)=p−1∑b=1(b−1p)(p∑a=1(a2−¯bp)−(1−¯bp)−((p−1)2−¯bp)−(p2−¯bp))=p−1∑b=1(b−1p)(−1−2(1−¯bp)−(−¯bp))=−p−1∑b=1(b−1p)−2p−1∑b=1(b−1p)(1−¯bp)−p−1∑b=1(b−1p)(−¯bp)=−p−2∑b=0(bp)−2p−1∑b=1(b−1p)((1−¯b)b2p)−p−1∑b=1(¯b−1p)=−2p−2∑b=0(bp)−2p−1∑b=1((b−1)2bp)=−2(p−1∑b=0(bp)−(p−1p))−2×(−1)=2×(−1)p−12+2. |
This completes the proof of Lemma 2.4.
Now we come to prove our Theorems.
Firstly, we prove Theorem 1.1. With the help of Lemma 2 in [6], when α≥2, we have
τ2(χ02¯χ1)τ2(¯χ1)=(1p)2=1, |
which implies from Lemma 2.2, we can obtain
|pα∑a=1′χ(ma+¯a)|=|χ1(m)τ2(¯χ1)τ(¯χ)(1+(mp))|=√pα(1+(mp)). |
Then, applying Lemma 2.1, we can obtain
|q∑a=1′χ(ma+¯a)|=|pα11∑a1=1′χ1(ma1+¯a1)|⋯|pαss∑as=1′χs(mas+¯as)|=√q∏p∣q(1+(mp)). |
This completes the proof of Theorem 1.1.
Then, from Lemma 2.1 and Lemma 2.2, we can prove Theorem 1.2 as following:
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|2k=∑∗χ1modpα11χ1(−1)=1|pα11∑a1=1′χ1(ma1+¯a1)|2k⋯∑∗χsmodpαssχs(−1)=1|pαss∑as=1′χs(mas+¯as)|2k=s∏i=1[12J(pαii)pkαii|1+(mpi)|2k]=qk2ω(q)J(q)∏p∣q(1+(mp))2k. |
Finally, we prove Theorem 1.3. For any integer m with (m,p)=1, we have
p−1∑a=1χ(ma+¯a)=p−1∑u=1χ(u)p−1∑a=1am+¯a≡umodp1=p−1∑u=1χ(u)p−1∑a=1a2m2−amu+m≡0modp1=p−1∑u=1χ(u)p−1∑a=0(2am−u)2≡u2−4mmodp1=p−1∑u=1χ(u)p−1∑a=0a2≡u2−4mmodp1=p−1∑u=1χ(u)(1+(u2−4mp))=p−1∑u=1χ(u)(u2−4mp)=χ(2)p−1∑u=1χ(u)(u2−mp). |
So from the orthogonality of Dirichlet characters and the properties of reduced residue system modulo p, we have
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4=∑χmodpχ(−1)=1|χ(2)p−1∑u=1χ(u)(u2−mp)|2|χ(2)p−1∑u=1χ(u)(u2−mp)|2=∑χmodpχ(−1)=1p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1χ(ac¯bd)(a2−mp)(b2−mp)(c2−mp)(d2−mp)=∑χmodpχ(−1)=1p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1χ(ac)(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)=p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)∑χmodpχ(−1)=1χ(ac)=p−12p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1a≡¯cmodp(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)+p−12p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1a≡−¯cmodp(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)=(p−1)p−1∑a=1p−1∑b=1p−1∑d=1(a2b2−mp)(b2−mp)(¯a2d2−mp)(d2−mp)=(p−1)p−1∑a=1p−1∑b=1(1+(bp))(a2b−mp)(b−mp)p−1∑d=1(1+(dp))(¯a2d−mp)(d−mp)=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(¯a2d−1p)(d−1p)+(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(mp)((¯a2d−1)(d−1)dp)+(p−1)p−1∑a=1p−1∑b=1(mp)((a2b−1)(b−1)bp)p−1∑d=1(¯a2d−1p)(d−1p)+(p−1)p−1∑a=1p−1∑b=1(mp)((a2b−1)(b−1)bp)p−1∑d=1(mp)((¯a2d−1)(d−1)dp):=A1+A2+A3+A4. |
Now we compute A1, A2, A3, A4 respectively. Noticing that χ(−1)=1, from the properties of the complete residue system modulo p, we have
p−1∑b=1(a2b−1p)(b−1p)=p−1∑b=0(a2b−1p)(b−1p)−1=p−1∑b=0(4a2p)((a2b−1)(b−1)p)−1=p−1∑b=0((2a2b−a2−1)2−(a2−1)2p)−1=p−1∑b=0(b2−(a2−1)2p)−1. |
Applying Lemma 2.3, we can get
A1=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(¯a2d−1p)(d−1p)=(p−1)p−1∑a=1(p−1∑b=0(b2−(a2−1)2p)−1)(p−1∑d=0(d2−(¯a2−1)2p)−1)=(p−1)[2p−1∑b=0(b2p)p−1∑d=0(d2p)+p−2∑a=2p−1∑b=0(b2−(a2−1)2p)p−1∑d=0(d2−(¯a2−1)2p)]−2(p−1)p−1∑a=1p−1∑b=0(b2−(a2−1)2p)+(p−1)2=2p3−6p2+4. |
Then, we compute A2. With the aid of Lemma 2.4, we have
A2=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p−1)p−1∑a=1[p−1∑b=0(b2−(a2−1)2p)−1]p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p−1)2p−1∑d=1(mp)((d−1)2dp)−(p−1)p−2∑a=2p−1∑d=1(mp)((¯a2d−1)(d−1)dp)+(p−1)2p−1∑d=1(mp)(((p−1)2d−1)(d−1)dp)−(p−1)p−1∑a=1p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p2−3p+2)[p−1∑d=1(mp)((d−1)2dp)+p−1∑d=1(mp)(((p−1)2d−1)(d−1)dp)]−2(p−1)p−2∑a=2p−1∑d=1(mp)((a2d−1)(d−1)dp)=2(p2−3p+2)(mp)p−1∑d=1((d−1)2dp)−4(p−1)[(−1)p−12+1](mp)=2(p2−3p+2)(mp)p−1∑b=2(bp)−4(p−1)[(−1)p−12+1](mp)=−2(p2−3p+2)(mp)−4(p−1)[(−1)p−12+1](mp). |
Similarly, we have
A3=−2(p2−3p+2)(mp)−4(p−1)[(−1)p−12+1](mp). |
Note that
A4=(p−1)p−1∑a=1p−1∑b=1((a2b−1)(b−1)bp)p−1∑d=1((¯a2d−1)(d−1)dp), |
which completes the proof of Theorem 1.3.
Three Theorems are stated in the main results. The Theorem 1.1 obtains an exact computational formula for q∑a=1′χ(ma+¯a), which broadens the scope of q by removing the condition p≡3mod4 in the previous article, where p is the prime divisor of q. The Theorem 1.2 derives a new identity for the mean value of it by adding some different ingredients. What's more, the Theorem 1.3 bridges the fourth power of Dirichlet characters with Legendre symbols of certain polynomials, which may be useful in the related future research. However, due to some technical reasons, we can only deal with the odd square-full number q case.
The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work is supported by the National Natural Science Foundation of China (No. 11871317), and the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2021JC-29).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
K. K. Oh, M. C. Park, H. S. Ahn, A survey of multi-agent formation control, Automatica, 53 (2015), 424–440. http://doi.org/10.1016/j.automatica.2014.10.022 doi: 10.1016/j.automatica.2014.10.022
![]() |
[2] |
H. Li, Event-triggered bipartite consensus of multi-agent systems in signed networks, AIMS Mathematics, 7 (2022), 5499–5526. http://dx.doi.org/10.3934/math.2022305 doi: 10.3934/math.2022305
![]() |
[3] |
Z. Wang, H. Xue, Y. Pan, H. Liang, Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems, AIMS Mathematics, 5 (2020), 2780–2800. http://doi.org/10.3934/math.2020179 doi: 10.3934/math.2020179
![]() |
[4] |
X. Guo, P. Liu, Z. Wu, D. Zhang, C. K. Ahn, Hybrid event-triggered group consensus control for heterogeneous multi-agent systems with TVNUD faults and stochastic FDI attacks, IEEE Trans. Automat. Control, 68 (2023), 8013–8020. http://doi.org/10.1109/TAC.2023.3254368 doi: 10.1109/TAC.2023.3254368
![]() |
[5] |
M. Davoodi, S. Faryadi, J. M. Velni, A graph theoretic-based approach for deploying heterogeneous multi-agent systems with application in precision agriculture, J. Intell. Robot Syst., 101 (2021), 10. http://doi.org/10.1007/s10846-020-01263-4 doi: 10.1007/s10846-020-01263-4
![]() |
[6] |
G. Ferrari-Trecate, A. Buffa, M. Gati, Analysis of coordination in multi-agent systems through partial difference equations, IEEE Trans. Autom. Control, 51 (2006), 1058–1063. http://doi.org/10.1109/TAC.2006.876805 doi: 10.1109/TAC.2006.876805
![]() |
[7] |
J. Wei, E. Fridman, K. H. Johansson, A PDE approach to deployment of mobile agents under leader relative position measurements, Automatica, 106 (2019), 47–53. http://doi.org/10.1016/j.automatica.2019.04.040 doi: 10.1016/j.automatica.2019.04.040
![]() |
[8] |
J. Qi, S. Wang, J. Fang, M. Diagne, Control of multi-agent systems with input delay via PDE-based method, Automatica, 106 (2019), 91–100. http://doi.org/10.1016/j.automatica.2019.04.032 doi: 10.1016/j.automatica.2019.04.032
![]() |
[9] |
G. Freudenthaler, T. Meurer, PDE-based multi-agent formation control using flatness and backstepping: Analysis, design and robot experiments, Automatica, 115 (2020), 108897. http://doi.org/10.1016/j.automatica.2020.108897 doi: 10.1016/j.automatica.2020.108897
![]() |
[10] |
J. Qi, R. Vazquez, M. Krstic, Multi-agent deployment in 3-D via PDE control, IEEE Trans. Autom. Control, 60 (2014), 891–906. http://doi.org/10.1109/TAC.2014.2361197 doi: 10.1109/TAC.2014.2361197
![]() |
[11] |
A. Selivanov, E. Fridman, PDE-based deployment of multiagents measuring relative position to one neighbor, IEEE Control Syst. Lett., 6 (2022), 2563–2568. http://doi.org/10.1109/LCSYS.2022.3169999 doi: 10.1109/LCSYS.2022.3169999
![]() |
[12] |
M. Terushkin, E. Fridman, Network-based deployment of nonlinear multi agents over open curves: A PDE approach, Automatica, 129 (2021), 109697. http://doi.org/10.1016/j.automatica.2021.109697 doi: 10.1016/j.automatica.2021.109697
![]() |
[13] |
H. Su, Q. Xu, Deployment of second-order networked mobile agents over a smooth curve, Automatica, 146 (2022), 110645. http://doi.org/10.1016/j.automatica.2022.110645 doi: 10.1016/j.automatica.2022.110645
![]() |
[14] |
D. Tran, T. Yucelen, Finite-time control of perturbed dynamical systems based on a generalized time transformation approach, Syst. Control Lett., 136 (2020), 104605. http://doi.org/10.1016/j.sysconle.2019.104605 doi: 10.1016/j.sysconle.2019.104605
![]() |
[15] |
R. Nie, W. Du, Z. Li, S. He, Sliding mode-based finite-time consensus tracking control for multi-agent systems under actuator attacks, Inf. Sci., 640 (2023), 118971. http://doi.org/10.1080/00207721.2020.1814895 doi: 10.1080/00207721.2020.1814895
![]() |
[16] |
Y. Luo, W. Zhu, J. Cao, L. Rutkowski, Event-triggered finite-time guaranteed cost H-infinity consensus for nonlinear uncertain multi-agent systems, IEEE Trans. Network Sci. Eng., 9 (2022), 1527–1539. http://doi.org/10.1109/TNSE.2022.3147254 doi: 10.1109/TNSE.2022.3147254
![]() |
[17] | H. Li, H-infinity bipartite consensus of multi-agent systems with external disturbance and probabilistic actuator faults in signed networks, AIMS Mathematics, 7 (2022), 2019–2043. http://dx.doi.org/2010.3934/math.2022116 |
[18] |
T. Meng, Z. Lin, Leader-following almost output consensus for discrete-time heterogeneous multi-agent systems in the presence of external disturbances, Syst. Control Lett., 169 (2022), 105380. http://doi.org/10.1016/j.sysconle.2022.105380 doi: 10.1016/j.sysconle.2022.105380
![]() |
[19] |
X. Mu, M. He, H∞ consensus of multi-agent systems with semi-Markovian switching topologies and mode-dependent delays, Int. J. Syst. Sci., 52 (2021), 173–184. http://doi.org/10.1080/00207721.2020.1823048 doi: 10.1080/00207721.2020.1823048
![]() |
[20] |
J. Peng, J. Li, K. Wang, S. Xiao, C. Li, Prescribed performance control of nonlinear multi-agent systems under switching topologies, Syst. Control Lett., 180 (2023), 105609. https://doi.org/10.1016/j.sysconle.2023.105609 doi: 10.1016/j.sysconle.2023.105609
![]() |
[21] |
W. Li, L. Xie, J. Zhang, Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises, Automatica, 51 (2015), 263–267. http://doi.org/10.1016/j.automatica.2014.10.070 doi: 10.1016/j.automatica.2014.10.070
![]() |
[22] |
M. Li, F. Deng, Cluster consensus of nonlinear multi-agent systems with Markovian switching topologies and communication noises, ISA Trans., 116 (2021), 113–120. https://doi.org/10.1016/j.isatra.2021.01.034 doi: 10.1016/j.isatra.2021.01.034
![]() |
[23] |
X. Jiang, G. Xia, Z. Feng, Z. Jiang, H∞ delayed tracking protocol design of nonlinear singular multi-agent systems under Markovian switching topology, Inf. Sci., 545 (2021), 280–297. http://doi.org/10.1016/j.ins.2020.08.020 doi: 10.1016/j.ins.2020.08.020
![]() |
[24] |
J. Man, Z. Zeng, Y. Sheng, Finite-time fuzzy boundary control for 2-D spatial nonlinear parabolic PDE systems, IEEE Trans. Fuzzy Syst., 31 (2023), 3278–3289. https://doi.org/10.1109/TFUZZ.2023.3251366 doi: 10.1109/TFUZZ.2023.3251366
![]() |
[25] |
Z. Ye, D. Zhang, C. Deng, G. Feng, Finite-time resilient sliding mode control of nonlinear UMV systems subject to DoS attacks, Automatica, 156 (2023), 111170. http://doi.org/10.1016/j.automatica.2023.111170 doi: 10.1016/j.automatica.2023.111170
![]() |
[26] |
D. Zhang, Z. Ye, G. Feng, H. Li, Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under DoS attack, IEEE Trans. Cybern., 52 (2021), 13486–13499. http://doi.org/10.1109/TCYB.2021.3128170 doi: 10.1109/TCYB.2021.3128170
![]() |
[27] |
J. Li, G. Zhang, Q. Shan, W. Zhang, A novel cooperative design for USV-UAV systems: 3D mapping guidance and adaptive fuzzy control, IEEE Trans. Control Network Syst., 10 (2023), 564–574. http://doi.org/10.1109/TCNS.2022.3220705 doi: 10.1109/TCNS.2022.3220705
![]() |
[28] |
X. Fan, X. Zhang, L. Wu, M. Shi, Finite-time stability analysis of reaction-diffusion genetic regulatory networks with time-varying delays, IEEE/ACM Trans. Comput. Biol. Bioinform., 14 (2016), 868–879. http://doi.org/10.1109/TCBB.2016.2552519 doi: 10.1109/TCBB.2016.2552519
![]() |
[29] |
Y. Zhang, C. Liu, X. Mu, Robust finite-time H∞ control of singular stochastic systems via static output feedback, Appl. Math. Comput., 218 (2012), 5629–5640. http://doi.org/10.1016/j.amc.2011.11.057 doi: 10.1016/j.amc.2011.11.057
![]() |
[30] | D. W. Kammler, A first course in Fourier analysis, Cambridge: Cambridge University Press, 2007. |
[31] |
H. He, W. Qi, Z. Liu, M. Wang, Adaptive attack-resilient control for Markov jump system with additive attacks, Nonlinear Dyn., 103 (2021), 1585–1598. http://doi.org/10.1007/s11071-020-06085-5 doi: 10.1007/s11071-020-06085-5
![]() |
[32] |
Y. Xu, Z. Wu, J. Sun, Security-based passivity analysis of Markov jump systems via asynchronous triggering control, IEEE Trans. Cybern., 53 (2021), 151–160. http://doi.org/10.1109/TCYB.2021.3090398 doi: 10.1109/TCYB.2021.3090398
![]() |
[33] |
J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy Markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 31 (2023), 3906–3920. http://doi.org/10.1109/TFUZZ.2023.3271348 doi: 10.1109/TFUZZ.2023.3271348
![]() |
[34] |
J. Wang, H. Wu, Exponential pointwise stabilization of semilinear parabolic distributed parameter systems via the Takagi–Sugeno fuzzy PDE model, IEEE Trans. Fuzzy Syst., 26 (2016), 155–173. http://doi.org/10.1109/TFUZZ.2016.2646745 doi: 10.1109/TFUZZ.2016.2646745
![]() |
[35] |
T. Li, X. Chang, J. H. Park, Control design for parabolic PDE systems via T–S fuzzy model, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 3671–3679. http://doi.org/10.1109/TSMC.2021.3071502 doi: 10.1109/TSMC.2021.3071502
![]() |
[36] |
J. Cheng, L. Xie, D. Zhang, H. Yan, Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems, Automatica, 151 (2023), 110906. http://doi.org/10.1016/j.automatica.2023.110906 doi: 10.1016/j.automatica.2023.110906
![]() |
[37] |
J. Wang, T. Ru, J. Xia, Y. Wei, Z. Wang, Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An H∞ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235–251. http://doi.org/10.1109/TSMC.2021.3062378 doi: 10.1109/TSMC.2021.3062378
![]() |
[38] |
K. Liang, W. He, J. Xu, F. Qian, Impulsive effects on synchronization of singularly perturbed complex networks with semi-Markov jump topologies, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3163–3173. http://doi.org/10.1109/TSMC.2021.3062378 doi: 10.1109/TSMC.2021.3062378
![]() |
1. | Donghui Wu, Ying Zhao, Hong Sang, Shuanghe Yu, Reachable set estimation for switched T-S fuzzy systems with a switching dynamic memory event-triggered mechanism, 2024, 490, 01650114, 109050, 10.1016/j.fss.2024.109050 |