Research article Special Issues

$ H_\infty $ deployment of nonlinear multi-agent systems with Markov switching topologies over a finite-time interval based on T–S fuzzy PDE control

  • Received: 24 September 2023 Revised: 28 December 2023 Accepted: 02 January 2024 Published: 12 January 2024
  • MSC : 35R13, 93A16, 93D40

  • The deployment of multi-agent systems (MASs) is widely used in the fields of unmanned agricultural machineries, unmanned aerial vehicles, intelligent transportation, etc. To make up for the defect that the existing PDE-based results are overly idealistic in terms of system models and control strategies, we study the PDE-based deployment of clustered nonlinear first-order and second-order MASs over a finite-time interval (FTI). By designing special communication protocols, the collective dynamics of numerous agents are modeled by simple fist-order and second-order PDEs. Two practical factors, external disturbance and Markov switching topology, are considered in this paper to better match actual situations. Besides, T–S fuzzy technology is used to approximate the unknown nonlinearity of MASs. Then, by using boundary control scheme with collocated measurements, two theorems are obtained to ensure the finite-time $ H_\infty $ deployment of first-order and second-order agents, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the proposed approaches.

    Citation: Hongbo Wei, Xuerong Cui, Yucheng Zhang, Jingyao Zhang. $ H_\infty $ deployment of nonlinear multi-agent systems with Markov switching topologies over a finite-time interval based on T–S fuzzy PDE control[J]. AIMS Mathematics, 2024, 9(2): 4076-4097. doi: 10.3934/math.2024199

    Related Papers:

  • The deployment of multi-agent systems (MASs) is widely used in the fields of unmanned agricultural machineries, unmanned aerial vehicles, intelligent transportation, etc. To make up for the defect that the existing PDE-based results are overly idealistic in terms of system models and control strategies, we study the PDE-based deployment of clustered nonlinear first-order and second-order MASs over a finite-time interval (FTI). By designing special communication protocols, the collective dynamics of numerous agents are modeled by simple fist-order and second-order PDEs. Two practical factors, external disturbance and Markov switching topology, are considered in this paper to better match actual situations. Besides, T–S fuzzy technology is used to approximate the unknown nonlinearity of MASs. Then, by using boundary control scheme with collocated measurements, two theorems are obtained to ensure the finite-time $ H_\infty $ deployment of first-order and second-order agents, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the proposed approaches.



    加载中


    [1] K. K. Oh, M. C. Park, H. S. Ahn, A survey of multi-agent formation control, Automatica, 53 (2015), 424–440. http://doi.org/10.1016/j.automatica.2014.10.022 doi: 10.1016/j.automatica.2014.10.022
    [2] H. Li, Event-triggered bipartite consensus of multi-agent systems in signed networks, AIMS Mathematics, 7 (2022), 5499–5526. http://dx.doi.org/10.3934/math.2022305 doi: 10.3934/math.2022305
    [3] Z. Wang, H. Xue, Y. Pan, H. Liang, Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems, AIMS Mathematics, 5 (2020), 2780–2800. http://doi.org/10.3934/math.2020179 doi: 10.3934/math.2020179
    [4] X. Guo, P. Liu, Z. Wu, D. Zhang, C. K. Ahn, Hybrid event-triggered group consensus control for heterogeneous multi-agent systems with TVNUD faults and stochastic FDI attacks, IEEE Trans. Automat. Control, 68 (2023), 8013–8020. http://doi.org/10.1109/TAC.2023.3254368 doi: 10.1109/TAC.2023.3254368
    [5] M. Davoodi, S. Faryadi, J. M. Velni, A graph theoretic-based approach for deploying heterogeneous multi-agent systems with application in precision agriculture, J. Intell. Robot Syst., 101 (2021), 10. http://doi.org/10.1007/s10846-020-01263-4 doi: 10.1007/s10846-020-01263-4
    [6] G. Ferrari-Trecate, A. Buffa, M. Gati, Analysis of coordination in multi-agent systems through partial difference equations, IEEE Trans. Autom. Control, 51 (2006), 1058–1063. http://doi.org/10.1109/TAC.2006.876805 doi: 10.1109/TAC.2006.876805
    [7] J. Wei, E. Fridman, K. H. Johansson, A PDE approach to deployment of mobile agents under leader relative position measurements, Automatica, 106 (2019), 47–53. http://doi.org/10.1016/j.automatica.2019.04.040 doi: 10.1016/j.automatica.2019.04.040
    [8] J. Qi, S. Wang, J. Fang, M. Diagne, Control of multi-agent systems with input delay via PDE-based method, Automatica, 106 (2019), 91–100. http://doi.org/10.1016/j.automatica.2019.04.032 doi: 10.1016/j.automatica.2019.04.032
    [9] G. Freudenthaler, T. Meurer, PDE-based multi-agent formation control using flatness and backstepping: Analysis, design and robot experiments, Automatica, 115 (2020), 108897. http://doi.org/10.1016/j.automatica.2020.108897 doi: 10.1016/j.automatica.2020.108897
    [10] J. Qi, R. Vazquez, M. Krstic, Multi-agent deployment in 3-D via PDE control, IEEE Trans. Autom. Control, 60 (2014), 891–906. http://doi.org/10.1109/TAC.2014.2361197 doi: 10.1109/TAC.2014.2361197
    [11] A. Selivanov, E. Fridman, PDE-based deployment of multiagents measuring relative position to one neighbor, IEEE Control Syst. Lett., 6 (2022), 2563–2568. http://doi.org/10.1109/LCSYS.2022.3169999 doi: 10.1109/LCSYS.2022.3169999
    [12] M. Terushkin, E. Fridman, Network-based deployment of nonlinear multi agents over open curves: A PDE approach, Automatica, 129 (2021), 109697. http://doi.org/10.1016/j.automatica.2021.109697 doi: 10.1016/j.automatica.2021.109697
    [13] H. Su, Q. Xu, Deployment of second-order networked mobile agents over a smooth curve, Automatica, 146 (2022), 110645. http://doi.org/10.1016/j.automatica.2022.110645 doi: 10.1016/j.automatica.2022.110645
    [14] D. Tran, T. Yucelen, Finite-time control of perturbed dynamical systems based on a generalized time transformation approach, Syst. Control Lett., 136 (2020), 104605. http://doi.org/10.1016/j.sysconle.2019.104605 doi: 10.1016/j.sysconle.2019.104605
    [15] R. Nie, W. Du, Z. Li, S. He, Sliding mode-based finite-time consensus tracking control for multi-agent systems under actuator attacks, Inf. Sci., 640 (2023), 118971. http://doi.org/10.1080/00207721.2020.1814895 doi: 10.1080/00207721.2020.1814895
    [16] Y. Luo, W. Zhu, J. Cao, L. Rutkowski, Event-triggered finite-time guaranteed cost H-infinity consensus for nonlinear uncertain multi-agent systems, IEEE Trans. Network Sci. Eng., 9 (2022), 1527–1539. http://doi.org/10.1109/TNSE.2022.3147254 doi: 10.1109/TNSE.2022.3147254
    [17] H. Li, H-infinity bipartite consensus of multi-agent systems with external disturbance and probabilistic actuator faults in signed networks, AIMS Mathematics, 7 (2022), 2019–2043. http://dx.doi.org/2010.3934/math.2022116
    [18] T. Meng, Z. Lin, Leader-following almost output consensus for discrete-time heterogeneous multi-agent systems in the presence of external disturbances, Syst. Control Lett., 169 (2022), 105380. http://doi.org/10.1016/j.sysconle.2022.105380 doi: 10.1016/j.sysconle.2022.105380
    [19] X. Mu, M. He, $H\infty$ consensus of multi-agent systems with semi-Markovian switching topologies and mode-dependent delays, Int. J. Syst. Sci., 52 (2021), 173–184. http://doi.org/10.1080/00207721.2020.1823048 doi: 10.1080/00207721.2020.1823048
    [20] J. Peng, J. Li, K. Wang, S. Xiao, C. Li, Prescribed performance control of nonlinear multi-agent systems under switching topologies, Syst. Control Lett., 180 (2023), 105609. https://doi.org/10.1016/j.sysconle.2023.105609 doi: 10.1016/j.sysconle.2023.105609
    [21] W. Li, L. Xie, J. Zhang, Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises, Automatica, 51 (2015), 263–267. http://doi.org/10.1016/j.automatica.2014.10.070 doi: 10.1016/j.automatica.2014.10.070
    [22] M. Li, F. Deng, Cluster consensus of nonlinear multi-agent systems with Markovian switching topologies and communication noises, ISA Trans., 116 (2021), 113–120. https://doi.org/10.1016/j.isatra.2021.01.034 doi: 10.1016/j.isatra.2021.01.034
    [23] X. Jiang, G. Xia, Z. Feng, Z. Jiang, $H_\infty$ delayed tracking protocol design of nonlinear singular multi-agent systems under Markovian switching topology, Inf. Sci., 545 (2021), 280–297. http://doi.org/10.1016/j.ins.2020.08.020 doi: 10.1016/j.ins.2020.08.020
    [24] J. Man, Z. Zeng, Y. Sheng, Finite-time fuzzy boundary control for 2-D spatial nonlinear parabolic PDE systems, IEEE Trans. Fuzzy Syst., 31 (2023), 3278–3289. https://doi.org/10.1109/TFUZZ.2023.3251366 doi: 10.1109/TFUZZ.2023.3251366
    [25] Z. Ye, D. Zhang, C. Deng, G. Feng, Finite-time resilient sliding mode control of nonlinear UMV systems subject to DoS attacks, Automatica, 156 (2023), 111170. http://doi.org/10.1016/j.automatica.2023.111170 doi: 10.1016/j.automatica.2023.111170
    [26] D. Zhang, Z. Ye, G. Feng, H. Li, Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under DoS attack, IEEE Trans. Cybern., 52 (2021), 13486–13499. http://doi.org/10.1109/TCYB.2021.3128170 doi: 10.1109/TCYB.2021.3128170
    [27] J. Li, G. Zhang, Q. Shan, W. Zhang, A novel cooperative design for USV-UAV systems: 3D mapping guidance and adaptive fuzzy control, IEEE Trans. Control Network Syst., 10 (2023), 564–574. http://doi.org/10.1109/TCNS.2022.3220705 doi: 10.1109/TCNS.2022.3220705
    [28] X. Fan, X. Zhang, L. Wu, M. Shi, Finite-time stability analysis of reaction-diffusion genetic regulatory networks with time-varying delays, IEEE/ACM Trans. Comput. Biol. Bioinform., 14 (2016), 868–879. http://doi.org/10.1109/TCBB.2016.2552519 doi: 10.1109/TCBB.2016.2552519
    [29] Y. Zhang, C. Liu, X. Mu, Robust finite-time $H \infty$ control of singular stochastic systems via static output feedback, Appl. Math. Comput., 218 (2012), 5629–5640. http://doi.org/10.1016/j.amc.2011.11.057 doi: 10.1016/j.amc.2011.11.057
    [30] D. W. Kammler, A first course in Fourier analysis, Cambridge: Cambridge University Press, 2007.
    [31] H. He, W. Qi, Z. Liu, M. Wang, Adaptive attack-resilient control for Markov jump system with additive attacks, Nonlinear Dyn., 103 (2021), 1585–1598. http://doi.org/10.1007/s11071-020-06085-5 doi: 10.1007/s11071-020-06085-5
    [32] Y. Xu, Z. Wu, J. Sun, Security-based passivity analysis of Markov jump systems via asynchronous triggering control, IEEE Trans. Cybern., 53 (2021), 151–160. http://doi.org/10.1109/TCYB.2021.3090398 doi: 10.1109/TCYB.2021.3090398
    [33] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy Markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 31 (2023), 3906–3920. http://doi.org/10.1109/TFUZZ.2023.3271348 doi: 10.1109/TFUZZ.2023.3271348
    [34] J. Wang, H. Wu, Exponential pointwise stabilization of semilinear parabolic distributed parameter systems via the Takagi–Sugeno fuzzy PDE model, IEEE Trans. Fuzzy Syst., 26 (2016), 155–173. http://doi.org/10.1109/TFUZZ.2016.2646745 doi: 10.1109/TFUZZ.2016.2646745
    [35] T. Li, X. Chang, J. H. Park, Control design for parabolic PDE systems via T–S fuzzy model, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 3671–3679. http://doi.org/10.1109/TSMC.2021.3071502 doi: 10.1109/TSMC.2021.3071502
    [36] J. Cheng, L. Xie, D. Zhang, H. Yan, Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems, Automatica, 151 (2023), 110906. http://doi.org/10.1016/j.automatica.2023.110906 doi: 10.1016/j.automatica.2023.110906
    [37] J. Wang, T. Ru, J. Xia, Y. Wei, Z. Wang, Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An $H\infty$ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235–251. http://doi.org/10.1109/TSMC.2021.3062378 doi: 10.1109/TSMC.2021.3062378
    [38] K. Liang, W. He, J. Xu, F. Qian, Impulsive effects on synchronization of singularly perturbed complex networks with semi-Markov jump topologies, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3163–3173. http://doi.org/10.1109/TSMC.2021.3062378 doi: 10.1109/TSMC.2021.3062378
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(890) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog