Citation: Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal. On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative[J]. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312
[1] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World., 35 (2000), 87-130. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional di fferential equations, Elsevier Science Limited., 204, 2006. |
[3] | I. Podlubny, Fractional di fferential equations: an introduction to fractional derivatives, fractional di fferential equations, to methods of their solution and some of their applications, Elsevier., 198, 1998. |
[4] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Theory and applications, Yverdon: Gordon and Breach., 1, 1993. |
[5] | R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional di fferential equations and inclusions, Acta. Appl. Math., 109 (2010), 973-1033. Available from: https://doi.org/10.1007/s10440-008-9356-6. doi: 10.1007/s10440-008-9356-6 |
[6] | B. Ahmad, J. J. Nieto, Riemann-Liouville fractional di fferential equations with fractional boundary conditions, Fixed Point Theory., 13 (2012), 329-336. Available from: https://doi.org/10.1186/1687-2770-2011-36. |
[7] | M. Benchohra, R. Graef, J. S. Hamani, Existence results for boundary value problems with nonlinear fractional di fferential equations, Appl. Anal., 87 (2008), 851-863. Available from: https://doi.org/10.1080/00036810802307579. doi: 10.1080/00036810802307579 |
[8] | I. Podlubny, Fractional Differential equation, Academic Press, San Diego, 1999. |
[9] | S. Zhang, Existence of solution for a boundary value problem of fractional order. Acta Math. Sc. Ser. B (Engl. Ed.), 26 (2006), 220-228. Available from: https://doi.org/10.1016/S0252-9602(06)60044-1. |
[10] | M. A. Almalahi, S. K. Panchal, Eα-Ulam-Hyers stability result for ψ-Hilfer Nonlocal Fractional Differential Equation, Discontinuity Nonlinearity and Complexity, 10, 2021. |
[11] | M. S. Abdo, S. K. Panchal, Fractional integro-di fferential equations involvinψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338-359. doi: 10.4208/aamm.OA-2018-0143 |
[12] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of ψ-Hilfer nonlocal Cauchy problem. Rend. Circ. Mat. Palermo, II. Ser (2020). Available from: https://doi.org/10.1007/s12215-020-00484-8. |
[13] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, ψ-Hilfer Fractional functional di fferential equation by Picard operator method, J. Appl. Nonlinear Dyn., 9 (2020), 685-702. Available from: https: //doiI:10.5890/JAND.2020.12.011. |
[14] | M. Benchohra, S. Bouriah, J. J. Nieto, Terminal value problem for di fferential equations with Hilfer-Katugampola fractional derivative, Symmetry, 11 (2019), 672. Available from: https://doi.org/10.3390/sym11050672. |
[15] | M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit di fferential equations of fractional order. Moroccan J. Pure Appl. Anal., 1 (2015), 22-37. Available from: https://doi.org/10.7603/s40956-015-0002-9. |
[16] | N. J. Ford, M. L. Morgado, M. Rebelo, A nonpolynomial collocation method for fractional terminal value problems, J. Comput. Appl. Math., 275 (2015), 392-402. Available from: https://doi.org/10.1016/j.cam.2014.06.013. doi: 10.1016/j.cam.2014.06.013 |
[17] | S. H. Shah, M. ur Rehman, A note on terminal value problems for fractional di fferential equations on infinite interval, Appl. Math. Lett., 52 (2016), 118-125. Available from: https://doi.org/10.1016/j.aml.2015.08.008. doi: 10.1016/j.aml.2015.08.008 |
[18] | W. E. Shreve, Boundary Value Problems for y" = f (x, y, λ) on (a,∞), SIAM. J. Appl. Math., 17 (1969), 84-97. Available from: https://doi.org/10.1137/0117009. |
[19] | M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 2019. Available from: https://doi.org/10.1016/j.apnum.2019.05.008. |
[20] | M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103-122. Available from: https://doi.org/10.1016/j.cam.2019.01.046. doi: 10.1016/j.cam.2019.01.046 |
[21] | A. R. Aftabizadeh, V. Lakshmikantham, On the theory of terminal value problems for ordinary di fferential equations, Nonlinear Anal.: Theory Methods Appl., 5 (1981), 1173-1180. doi: 10.1016/0362-546X(81)90011-0 |
[22] | W. E. Shreve, Terminal value problems for second order nonlinear di fferential equations, SIAM. J. Appl. Math., 18 (1970): 783-791. Available from: https://doi.org/10.1137/0118071. |
[23] | V. Lakshmikantham, S. Leela, Di fferential and Integral Inequalities; Academic Press: New York, NY, USA, 1969; Volume I. |
[24] | T. G. Hallam, A comparison principle for terminal value problems in ordinary di fferential equations, Trans. Am. Math. Soc,. 169 (1972), 49-57. Available from: https://doi.org/10.1090/S0002-9947-1972-0306611-3. doi: 10.1090/S0002-9947-1972-0306611-3 |
[25] | J. V. D. C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul,. 60 (2018), 72-91. Available from: https://doi.org/10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005 |
[26] | K. M. Furati, M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626. Available from: https://doi.org/10.1016/j.camwa.2012.01.009. doi: 10.1016/j.camwa.2012.01.009 |
[27] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Communications Commun Nonlinear Sci Numer Simulat., 44 (2017), 460-481. Available from: https://doi.org/10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006 |
[28] | T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85-88. |
[29] | A. G. Dugundji, J. Fixed Point Theory, Springer-Verlag: New York, NY, USA, 2003. |
[30] | J. V. D. C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl,. 11 (2019), 87-106. |