Research article

On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative

  • Received: 30 December 2019 Accepted: 12 May 2020 Published: 03 June 2020
  • MSC : 34A08, 34B15, 34A12, 47H10

  • In this paper, we prove the existence and uniqueness of solutions of a new class of boundary value problems of terminal type for ψ-Hilfer fractional differential equations. The technique used in the analysis relies on the Banach contraction principle and Krasnosleskii fixed point theorem. Moreover, we use generalized Gronwall inequality with singularity to establish uniqueness and continuous dependence of the δ-approximate solution. Finally, we demonstrate some examples to illustrate our main results.

    Citation: Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal. On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative[J]. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312

    Related Papers:

  • In this paper, we prove the existence and uniqueness of solutions of a new class of boundary value problems of terminal type for ψ-Hilfer fractional differential equations. The technique used in the analysis relies on the Banach contraction principle and Krasnosleskii fixed point theorem. Moreover, we use generalized Gronwall inequality with singularity to establish uniqueness and continuous dependence of the δ-approximate solution. Finally, we demonstrate some examples to illustrate our main results.


    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, Singapore: World., 35 (2000), 87-130.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional di fferential equations, Elsevier Science Limited., 204, 2006.
    [3] I. Podlubny, Fractional di fferential equations: an introduction to fractional derivatives, fractional di fferential equations, to methods of their solution and some of their applications, Elsevier., 198, 1998.
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Theory and applications, Yverdon: Gordon and Breach., 1, 1993.
    [5] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional di fferential equations and inclusions, Acta. Appl. Math., 109 (2010), 973-1033. Available from: https://doi.org/10.1007/s10440-008-9356-6. doi: 10.1007/s10440-008-9356-6
    [6] B. Ahmad, J. J. Nieto, Riemann-Liouville fractional di fferential equations with fractional boundary conditions, Fixed Point Theory., 13 (2012), 329-336. Available from: https://doi.org/10.1186/1687-2770-2011-36.
    [7] M. Benchohra, R. Graef, J. S. Hamani, Existence results for boundary value problems with nonlinear fractional di fferential equations, Appl. Anal., 87 (2008), 851-863. Available from: https://doi.org/10.1080/00036810802307579. doi: 10.1080/00036810802307579
    [8] I. Podlubny, Fractional Differential equation, Academic Press, San Diego, 1999.
    [9] S. Zhang, Existence of solution for a boundary value problem of fractional order. Acta Math. Sc. Ser. B (Engl. Ed.), 26 (2006), 220-228. Available from: https://doi.org/10.1016/S0252-9602(06)60044-1.
    [10] M. A. Almalahi, S. K. Panchal, Eα-Ulam-Hyers stability result for ψ-Hilfer Nonlocal Fractional Differential Equation, Discontinuity Nonlinearity and Complexity, 10, 2021.
    [11] M. S. Abdo, S. K. Panchal, Fractional integro-di fferential equations involvinψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338-359. doi: 10.4208/aamm.OA-2018-0143
    [12] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of ψ-Hilfer nonlocal Cauchy problem. Rend. Circ. Mat. Palermo, II. Ser (2020). Available from: https://doi.org/10.1007/s12215-020-00484-8.
    [13] M. A. Almalahi, M. S. Abdo, S. K. Panchal, ψ-Hilfer Fractional functional di fferential equation by Picard operator method, J. Appl. Nonlinear Dyn., 9 (2020), 685-702. Available from: https: //doiI:10.5890/JAND.2020.12.011.
    [14] M. Benchohra, S. Bouriah, J. J. Nieto, Terminal value problem for di fferential equations with Hilfer-Katugampola fractional derivative, Symmetry, 11 (2019), 672. Available from: https://doi.org/10.3390/sym11050672.
    [15] M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit di fferential equations of fractional order. Moroccan J. Pure Appl. Anal., 1 (2015), 22-37. Available from: https://doi.org/10.7603/s40956-015-0002-9.
    [16] N. J. Ford, M. L. Morgado, M. Rebelo, A nonpolynomial collocation method for fractional terminal value problems, J. Comput. Appl. Math., 275 (2015), 392-402. Available from: https://doi.org/10.1016/j.cam.2014.06.013. doi: 10.1016/j.cam.2014.06.013
    [17] S. H. Shah, M. ur Rehman, A note on terminal value problems for fractional di fferential equations on infinite interval, Appl. Math. Lett., 52 (2016), 118-125. Available from: https://doi.org/10.1016/j.aml.2015.08.008. doi: 10.1016/j.aml.2015.08.008
    [18] W. E. Shreve, Boundary Value Problems for y" = f (x, y, λ) on (a,∞), SIAM. J. Appl. Math., 17 (1969), 84-97. Available from: https://doi.org/10.1137/0117009.
    [19] M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 2019. Available from: https://doi.org/10.1016/j.apnum.2019.05.008.
    [20] M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103-122. Available from: https://doi.org/10.1016/j.cam.2019.01.046. doi: 10.1016/j.cam.2019.01.046
    [21] A. R. Aftabizadeh, V. Lakshmikantham, On the theory of terminal value problems for ordinary di fferential equations, Nonlinear Anal.: Theory Methods Appl., 5 (1981), 1173-1180. doi: 10.1016/0362-546X(81)90011-0
    [22] W. E. Shreve, Terminal value problems for second order nonlinear di fferential equations, SIAM. J. Appl. Math., 18 (1970): 783-791. Available from: https://doi.org/10.1137/0118071.
    [23] V. Lakshmikantham, S. Leela, Di fferential and Integral Inequalities; Academic Press: New York, NY, USA, 1969; Volume I.
    [24] T. G. Hallam, A comparison principle for terminal value problems in ordinary di fferential equations, Trans. Am. Math. Soc,. 169 (1972), 49-57. Available from: https://doi.org/10.1090/S0002-9947-1972-0306611-3. doi: 10.1090/S0002-9947-1972-0306611-3
    [25] J. V. D. C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul,. 60 (2018), 72-91. Available from: https://doi.org/10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [26] K. M. Furati, M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626. Available from: https://doi.org/10.1016/j.camwa.2012.01.009. doi: 10.1016/j.camwa.2012.01.009
    [27] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Communications Commun Nonlinear Sci Numer Simulat., 44 (2017), 460-481. Available from: https://doi.org/10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006
    [28] T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85-88.
    [29] A. G. Dugundji, J. Fixed Point Theory, Springer-Verlag: New York, NY, USA, 2003.
    [30] J. V. D. C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl,. 11 (2019), 87-106.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3509) PDF downloads(249) Cited by(11)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog