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1. Introduction

In the recent years, scientific community renders more attention on fractional differential
equations, since their are effective tools in modeling many phenomena in applied sciences and
engineering application such as acoustic control, rheology, polymer physics, porous media, medicine,
electrochemistry, proteins, electromagnetics, economics, astrophysics, chemical engineering, signal
processing, optics, chaotic dynamics, statistical physics and so on for more details, see [1-4]. Since
boundary value problems of fractional differential equations represent an important class of applied
analysis, therefore the said area was given more importance, see [S—10] and references therein.

Terminal value problems for differential equation nowadays play an essential part in the modeling
of numerous phenomena in physical science, engineering, and so forth. Also, it arise naturally in the
simulation of techniques that are watched at a later point, eventually after the methodology has started.

Existence theory for classical terminal value problems have been investigated by several
researchers [11-22]. It is well known [23] that the comparison principle for initial value problems of
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ordinary differential equations is a very useful tool in the study of qualitative and quantitative theory.
Recently, attempts have been made to study the corresponding comparison principle for terminal
value problems (TVP) [24]. Benchohra et. al. [14], studied the existence results and uniqueness of
solutions for a class of boundary value problems of terminal type for fractional differential equations
with the Hilfer—Katugampola fractional derivative by using different types of classical fixed point
theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem.

Motivated by the above-mentioned works, the objective of this work is to study conditions for
the existence and uniqueness of the solutions for terminal value problem for fractional differential
equations of the type

Dy = f(ty@. Dy y0), 1€ @Tl,a>0 (L.1)
WT) = weR, (1.2)

where DZf ;w(-) is the y-Hilfer fractional derivative of order a € (0, 1), type 5 € [0,1] and f : (a,T] X
R xR — R s a given function. Moreover, we study the uniqueness and continuous dependence of the
o-approximate solution by generalized Gronwall inequality. To our knowledge, no papers on terminal
value problem for implicit fractional differential equations exist in the literature, in particular for those
involving the y-Hilfer fractional derivative.

The rest of the paper is organized as follows. In section 2, we present some necessary definitions
and results which are used throughout this paper. In section 3, we study the existence and uniqueness
results of y-Hilfer fractional differential equation with the terminal condition by using some fixed
point theorems such as Banach and Krasnoselskii. In section 4, we study the 6-approximate solution
of the problem (1.1),(1.2). Also, four examples are included to illustrate the applicability of the results
obtained.

2. Preliminaries

In this section, we recall some notations, definitions of the fractional differential equation which are
using throughout this paper. Let [a,T] € R* with (0 < a < T < o), and let C [a, T] be the Banach
space of continuous function y : [a,T] — R with the norm |lyllcf, 71 = max{|y(?)| : a < ¢ < T}. The
weighted space C;_,., [a, T] of continuous function y is defined by [25]

Ciywla,TI={y: @ Tl - R [y(t) - y(@] 7 yt) e Cla, T}, 0<y <1
Obviously, Ci_,., [a, T] is a Banach space endowed with the norm
_ 1=y
Il = max |[w() = (@] y(o)].

Definition 2.1. /26] Leta > 0,y € L, [a, b] and ¢ € C" [a, b] be an increasing function with /' (t) # 0,
forallt € [a,b]. Then, the left-sided y-Riemann-Liouville fractional integral of a function y is defined
by

1 !
LYy = @ f W ()W) = Y(5))* y(s)ds,

where I'(:) is the Euler gamma function defined by I'(a) = fooo s le=sds, a > 0.
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Definition 2.2. [27] Letn -1 < a < n,(n = [a] + 1), and y,¥ € C"[a,b] be two functions with
an increasing ¥ and ' (t) # 0, for all t € [a, b]. Then, the left-sided y-Riemann-Liouville fractional
(¥-Caputo) derivative of a function y of order « is defined by

W _ 1 i n ay
D) = (5]

and

C oy n(u//
D,"y@) =1, (w'(t)dt) y(®),

respectively.

Definition 2.3. [25] Letn—1 < a < n, (n € N), and y, € C"[a,T] be two functions such that
is increasing and Y'(t) # 0, for all t € [a,T). Then, the left-sided y-Hilfer fractional derivative of a
function y of order a and type O < B < 1 is defined by

) 1 4\ .
aﬁt// Bln—a)y (1-B(n-a)y
H = I — |, t
(1) . (w'(t)dz) . y(0)

= IDEY0), (v=a+nB-ap). 2.1)

In this paper we consider the case n = 1, because 0 < a < 1.
Lemma 2.4. [2]Leta>0and0 <y < 1. Then IZ;”D is bounded from C,_,.,[a, b] into C,_,.,[a, b].

Now, we introduce the following spaces

C\” Ja.T1={y € Ciyyla, T1, DIy € Ci_yyla, T]), 0<y <1
and
Cl_yla,T1=1{yeCiyla, T1,D"’y e Ci_yyla, Tl}, 0<y<1. (2.2)

Lemma 2.5. [25]Lety=a+ B —aB wherea € (0,1),8€[0,1], andy € Cly_y;w[a, T). Then

I?’l//DY+ y = I(Y'// Daﬁlﬂy’

and
Yo (1-a)y
DIy = DRIy,

Lemma 2.6. [25]Leta>0,0<y<landye€ Ca,T],pBe€0,1]. Then
DRI y() = y(@).

Lemma 2.7. [2] Let t > a. Then for a > 0 and y > 0, we have

I'(y)
" Ta+y)

1% () — (@)™ W@ — y(@) ™, 1> a.

and

DY [y(t) —y(@)]*' =0, forae(0,1).
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Lemma 2.8. [25] Lety = a + 3 — af where a € (0,1),8 € [0,1], y € C7
C }_% 410, T1. Then, we have

Vla Tl and 17"y €

1 Vw
YDy = y(0) - r( y)( )(wm Y(a)’ "

Lemma 2.9. [25] Leta > 0,0 <y < aandy € Ci_yyla,T] (0 <a <T < o). Ify < a, then
IZj‘p : Ciyyla, T1 — Ci_yyla, T is continuous on [a, T] and satisfies

I;" y@) = imI2Yy(1) = 0

Theorem 2.10. [28] ( Krasnoselskii fixed point theorem). Let M be closed, convex, bounded and
nonempty subset of a Banach space X and A, B be two operators such that

(1) Au+ Bv € M forall u,v € M.

(2) A is compact and continuous.

(3) B is contraction mapping.

Then there exists z € M such that 7 = Az + Bz.

Theorem 2.11. [29] (Banach’s fixed point theorem). Let X be a Banach space and M be a nonempty
closed subset of X, then any contraction mapping T : M — M has a unique fixed point.

Lemma 2.12. [30] ( Generalized Gronwall’s Inequality Lemma) Let « > 0 and x, y be two nonnegative
function locally integrable on [a,b]. Assume that g is nonnegative and nondecreasing, and let €
C'[a, b] be an increasing function such that  (t) # 0 for all t € [a, b]. If

x(1) < y(1) + g(1) f W ()W (t) — ()™ ' x(s)ds, t € [a,b],

then

nr
x(0) < (1) + f Z g() i ) g ()W) - (s y(s)ds, 1€ [a,b].

If y be a nondecreasing function on |a, b), then

x(1) < YOE, (g0 (@) [y (@) - y(@]"}, 1 €la,bl,
where E,(-) is the Mittag-Leffler function defined by

E = _ .
a(Z) ;F(an+ 1), zeC

3. Existence of solutions

Theorem 3.1. Lety = a+B—af, where a € (0,1) and B € [0,1]. If f:(a,T] — R is a function such
that f(-) € Ci_yy [a,T], theny € C]_ i (a, T satisfies the following problem

UMy = f(1), te(@Tl,a>0 (3.1)
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W) = weR 3.2)
if and only if y satisfies the following integral equation

W(T) - y(a)' ™
<w<t> Y(a)'-r

flﬁ(S)(lﬁ(t) W) f(s)ds. (3.3)

1 T
Y1) [w— - f W (5) () = p()™ f(s)ds

"T@)

Proof. First, let y € Cy (a T'] be a solution of the problem (3.1),(3.2). We prove that y is also a
solution of Eq (3.3). From the definition of C?__  (a,T], Lemma 2.4, and using the definition 2.3, we
have

l=yy
L7yt € Ciyy [a, T] and DYy(t) = DI 7 y(1).
By the definition of the space Cq’_% " [a,T], it follows that
L7y € Ci_yyla T]. (3.4)
Using Lemma 2.8, with @ = y, we obtain

Il 2
YDy =y - H?mwm w(a), te(aT]. (3.5)

Since y € C?_W [a, T], and using Lemma 2.5 with Eq (3.1), we have
oYy = 17 DY) = 157 £(0). (3.6)
Comparing Egs (3.5) and (3.6), we see that

Il -y .
) = =5 y)(“)om) W@y + IV £(1) (3.7)

Using Eq (3.2), we get

W(T) = y(a)'™ [
W () — yla)'™ ['(a)

+$L W' (s) () = Y(s))*" f(s)ds.

y(1)

flﬁ(S)(lﬂ(T) W)™ f(s)ds

Hence y(7) satisfies the problem (3.1),(3.2).
Conversely, Let y € C;/_y, yla,T1bea function satisfying Eq (3.3). We prove that y is also a solution

of the problem (3.1),(3.2). Apply the operator Dz;f on both sides of Eq (3.3). Then, from Lemmas 2.7
and 2.5, we have
DIy = DI f() = D f (o) (3.8)

From Eq (3.4), we have Da; y € Ci_yy la,T], and hence, Eq (3.8) implies
DYyt = DLV f(1) = DX f(1) € €Ly [a, T (3.9)
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As f(t) € Ci_yy [a,T], and from Lemma 2.4, it follows that
L rec) ,la.T] (3.10)

From Eqgs (3.9) and (3.10) and the definition of the space C"__ (a,T], we get

1-yy

L7 rec),, la.T].

a

Now, by applying operator If 1=% on both sides of Eq (3.9) and using Lemmas 2.9, 2.8, we have

Py = () - M( (t) = Yy
y T = Y Y(a
£@). (3.11)
From Eq (2.1), the Eq (3.11) reduces to
"D ) = ).
that is, Eq (3.1) holds. O

Before given our main results, the following conditions must be satisfied

H, f: (@, T xRXR — R is continuous function such that f(-, x(),()) € C/"% for all x,y €
Cl—y;w [a, T] .

H, There exist two constants L > 0 and M € (0, 1) such that
|f (2, x1,y1) = f(£, %2, y2)| < L|x1 — xo| + M |y; — yal,
for all x;,y;,x2,y, € Randt € (a,T].

In the forthcoming theorem, by using the Banach fixed point theorem, we prove the unique solution
of the problem (1.1),(1.2)

Theorem 3.2. Assume that (H,) and (H;) hold. If

2LI(y) a
[(1 M) Tty W(T) - y(a)) ] <1, (3.12)
then the problem (1.1),(1.2) has a unique solution in Cy - [a,T] C C1 S [a,T].

Proof. In view of Theorem 3.1, the solution of the problem (1.1),(1.2) is given by

W(T) - ()™ [
(l//(t) Y(a))~ [(a)

f&//(s)(tll(t) W) Ky (s)ds, (3.13)

(1)

f W' () (T = ()™ Ky(s)ds

T
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where K,(t) = f(,y(1), K,(?)). Consider the operator ¥ : C\_y [a, T] — Ci_,. [a, T] defined by

W(T) — y(a)'™ [
W) — y(a)'~ I(a)

+$falﬁ'(S)(lﬂ(t)—l//(S))“_le(S)ds, (3.14)

Fy@) =

f W' (5) W(T) — ()™ Ky (s)ds

by Lemma 2.4, we deduce that ¥y € C,_,., [a, T]. The proof will be given in two steps
Step(1): We show that the operator # has a unique fixed point y in Cj_,y[a,T]. Let
v, V" €Ciyyla,T]and t € (a,T]. Then, we have

|Fy(t) — Fy" (@)
1 W(T) - y(a)'™
- r(a) W@ — y(a)'

f W () () = ()™ |Ky(s) = Kye(s)| s,

T
f W' () W(T) — p(s)" " |Ky(s) — Ky ()| ds

"T@
where K,(s), K,-(s) € Ci_,.y [a, T] such that
Ky(s) = f(s,5(s), Ky(5))
Ky (5) = f(5,y7(5), Ky (9)).
By (H;), we have

|Ky(s) = Ky (s)] | £, 3(9), Ky(5)) = £(5,¥7°(5), Ky ()]

LIy(s) = y* ()| + M |K,(s) = Ky ()|,

IA

which implies

|K,(s) = Ky (s)| < (3.15)

Then for any ¢ € (a, T], we have

|Fy() = Fy (@)

< L W(T) - y(a)'™”

T (I -M)(a) (@) —y(a)'™

+(1TL)FW) f W' (5) (1) — ()™ Iy(s) — y ()l dss

Lily =ylle,_, ytar1 (W(T) — y(a))™
(1 -MT(a) W) —y(a)

Llly =¥ lle,., a1 ) . ,
(1-MT(e) fa W' (s) (Y1) — () (Y(s) —y(0)) ds.

T
f W' () W(T) = ()" [y(s) = y*(s)lds

f W' (5) W(T) = ()™ (W(s) = Y(0) " ds

In view of Lemma 2.7, we obtain

[Fy(®) = Fy @
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LT = ¥lle, o) W(T) = g@)”  LCOW =Ylle, o -
| T mTery wo-s@= T A= mTary OO
2LI(y) X i *
< [ T T W)~ ) ] W) — @ Iy = ¥ller, tar -
Hence

W) = w(@)' ™ [Fy@) - Fy @)

2LT(y) i )
< [(1 “MT@+y) W(T) — y(a)) ]Ily =Vl e >

which implies that

2LI(y)
1-MI(a+7y)

7y = Flle,.,, < [ W(T) - wm»“] = ller -

Due to Eq (3.12), we deduce that the operator ¥ is a contraction mapping. According to Banach’s
contraction principle, we conclude that ¥ has a unique fixed pointy € C;_,, [a, T].

Step(2): We show that such a fixed point’y € Cy_,., [a, T] is actually in C ?_7; " (a,T]. Sincey is the
unique fixed point of ¥ in C_,.y [a, T], then, for each ¢ € (a, T], we have

W(T) = y(a)'™” [
W) —yla)'~ [(a)

+$ fa () W(1) = ()" K5(s)ds.

() f W (5) (W(T) — w(s)"™ llﬂs)ds]

Multiplying both sides of the last equation by DZ;””, using Lemmas 2.7 and 2.5, we have
DIy = DI I Ks(s)(0) = Dot Ks(o),

Since vy > a, by (H;), we have DB(I_“)"/’KA(I) € Ci_yyla,T], and hence Dz;w/y\ € Ciyyla,T]. It
follows from definition of CT [a,T] thaty € C” Iy [a,T]. As a consequence of the above steps, we
conclude that the problem (1. 1) (1 2) has a unique solution in Cly_y; " la,T]. O

We present now the second result, which is based on Krasnoselskii fixed point theorem.

Theorem 3.3. Assume that (H,) and (H,) hold. Then the problem (1.1),(1.2) has at least one solution

inC}_ v la T1.

Proof. Defined the closed, bounded, convex and nonempty set

ke ={ye CrylaTl: Vi, <€),

with
( )
I'la +7y)

Wl +

&> W(T) —y(a)'™

W(T) - lﬂ(a))‘”y_l] :
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Set N = sup,(,r 1f(2,0,0)|. We split the operator ¥ which defined by Eq (3.14) into two operators
F1, 2 in kg as following

W(T) = (@)™

FYO = 0o —way [ I(@)

flﬁ(S)(lﬁ(T) W) Ky (s)ds|,

and

Foy(t) = e f W (8) (W0 — ()™ Ky(s)ds.

Note that Fy(#)= F 1y(¢) + F,y(t). The proof will be divided into several steps as follows:
Step(1): We show that F,y(7) + F,v(?) € k¢ for any y,v € k..
(i) Fort € (a,T] and y € k¢, we have

| (0) — w(a)'™" Fiy()|
W(T) — y(a)'™ |w|+— f W' () W(T) — ()" |K, (s)lds]

IA

F()

IWHﬁ f W' (8) W(T) = ()™ W) = (@)™

(D) = (@) 7 Ky ()] ds]. (3.16)

IA

W(T) — y(a)' ™

From (H,), we have

| y(2), Ky ()|

|f (#, (1), Ky(1)) — f(2,0,0) + f(2,0, 0)|
|f (, y(0), Ky(1)) — f(,0, 0)| +1£(2,0,0)|
Liy®)] + M |K, ()| + N.

K, ()]

IANIA

Multiplying both sides of the last inequality by (y/(f) — y(a))' ™, we get
() = (@) K] < L|@(0) = (@) y0)] + @) = y(@)' 7 N

+M | () — (@) K, ()|
Lé + (W(T) — (@) 7 N + M|W() — y(a)' 7 Ky (1) .

IA

Then, for each t € (a,T], we have

LE+ (W(T) —y(@)' ' N

() = (@)™ Ky ()] < — =R
Thus, the Eq (3.16) and Lemma 2.7, imply that
1751 < WD) = (@) |1+ (”) W(T) = (@)™ (3.17)
(i1) In a similar manner, for r € (a,T], v € k¢, we get
RI(y) ]
F2Vll1 -y < Ta+y) W(T) = y(a)™'. (3.18)
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Linking Eqs (3.17) and (3.18), for any y, v € k., we obtain

A

IFiy + Favllyy < max{IFiylh - IF2Vliy)

RI(y)
I'a+7y)

IA

WA(T) = (@)™ [|w| + W) = Y@)™ | <€,
which implies that 7 y(¢) + Fov(?) € k.

Step(2): We show that 7 is a contraction mapping. From Theorem 3.2, we have already proved
that  is a contraction mapping and hence ¥ is a contraction mapping too in k.

Step(3): We show that 7, is a compact and continuous in k.

The continuity of 7, follows from the continuity of f. Now, we need only to prove that 7, is
compact (i.e %, uniformly bounded and equicontinuous). From Eq (3.18), for any v € k,, we have

RI(y)

a+1-
Fasy) WD - v@™.

”?Elﬂl—%w <

This means that %, is uniformly bounded in k.. Next, we show that %, is equicontinuous in k. Let
y €ksand 11,1, € (a,T] such that t; < #,. Then, we have

|(w(t2) = (@)™ Fay(ta) — (1) — (@)™ Fay(ty)|
_ I-y 53
'Wtz) #a) f V() (W(12) — )" Ko(s)ds

I@)
_ 1—y 1
—(w(“)r(w(“)) f W (5) () = ()" Ky(9)ds
@) .
W(t) —w(@)'™ (" .
< W F(Z)“) f W (5) (W(t2) = ()" |K, (9)] dis
1 h
T f |0/(9) W(t2) = (@) (W(ta) — ()"
@ Jo
W) W)~ p@)'” W) — p()" || |Ky ()| ds
1O, ., @) - w@)'~Te) .
< faT W) — (1)
150,

[(a) f [v/(5) W) = ws)™™! Wie) - wiap'”?
= W) W) = )™ W) = p@)' || Wis) —w@y ds

— 0 as > 1.

This means that %5 is equicontinuous in k. Hence % is relatively compact on k.. By Arzeld-Ascoli
Theorem, we deduce that %, is compact on k.. According to Theorem (2.10), we conclude that # has
at least a fixed

pointy € Cy_yy [a, T] and by the same way of the proof of Theorem 3.2, we can easily show that
ye C;y_y; »[a, T1. Thus the problem (1.1),(1.2) has at least one solution in C;/_y; ylaTl. m|
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4. 6-Approximat solution

Definition 4.1. A function y € C?
inequality

1—yy L@, T satisfying the Y-Hilfer implicit fractional differential

D20 - £ (120 D 20)| < 6.1 € (@, 71, (@.1)
and
«T) =
is called 6-approximate solutions of W-Hilfer implicit fractional differential (1.1), (1.2)

Theorem 4.2. Let f : (a,T] X R X R — R be a continuous function satisfies the condition (H,) for
eacht € Jand. Let z; € C|_ - (a,T),i=1,2, be a 5-approximation solutions of the following y-Hilfer
implicit fractional differential equation

1D (t) = f (L. DI (1), e (@.T)

4.2
(T) = w (*+2)

Then

llzi = Zz||c1_W

L W) - @) O L W) - y(a) !

= ' {(51+62)[ T(a+ 1) +Z‘( ) [((n + Da + 1)
+ |00 = w3) (D) — (@) 1+i( - ) Dy - w(a»m]}
— 1-M) T'(na +vy)

where

e L T) S LY T -
-{1 W(T) - p(a)" MF(a+’y)[l+nZ:;(l— ) T e 5 W0 = 4@

}

Proof. Let z; € CT_% v (a,T],i=1,2, be an -approximation solutions of the problem (4.2). Then, we
have
D2t - £ (1207 D20 <6, 1€ @ T)i=1,2 4.3)

and
z(T) =
Applying IZL‘” on both sides of the above inequality, and using lemma 2.8, we get
o_ Oi
W) — Y(a)) @+ D >
WD) =@ W) = y@)'
zi(t) — w; - N
W (@) — yla)' (t//(t) Y(a)' fa

Using the fact |x| — |[y| < |x — y| < |x| + |y| in the above inequality, we have

K (T) - I%VK, (1)

01+ 02

W0 @) (= =
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W) —y(@)' ™ WT) —d@)'™ o
WO —v@) WO —way
WD —g@)"™ (D) —g@) Ly
RO = LS Tuay T o —pay

K. (T) - I$VK., (D)

lZl(t) - WT

K, (T) - I;VK, ()

L(W(T) —y(a)'™ , (- y(a)'™ Jas o ]
- YK, (T K,
2 PO uh —w@ T o —way o Kl T K@
LW(T) = @)™ (W(T) - ()™ Ja " ]
— |20 - K.(T)- I'K.,
[12(” "0 vy T W@ —wa@y o e @
. WD) =)' () = y(a)' Jas
= (@@ =a =0 =) @ o -y e @ KD
— IV K, (1) - K, (0|
T _ 1-y T 1-y
> 1) = 2] - | = wy) $IIZ V@) T NG = V@) jaw oy Km(T)]‘

(lﬁ(t)—t/'(a))l‘7 W) —ylay'

12V (K., () - K, (0|

In consequence, we have

z1(0) = 22(0)]

W) - w@) £ ff)

() = ya))' Ja

W) —y(a ))1 =l

a + 02

W (1) — ¥(a)) ( D

UG Y(a)'™”
W(r) - w(a»l v

+ 02

W (@) — y(a)* F( A

LW - Ya)'™” L
(w(t) Y(@)'-r 1 - MTI(e)

+m f W () W) — w(s)* " Iyi(s) — ya(s)lds

(!ﬁ(T) ()™
(tﬁ(t) Y(a)'

W(T) - y(a)'™”
W (1) — yla)'~

[K.,(T) - K,(D)]| + |12 [K, (6) = K, 0]

W(T) - %l/(a))l_7
W () - y(a)'™

LYK, (T) - K,(D)| + |1 [K., (0 - K, (0)]]

W(T) - w(a»l"
W (@) - (@)™

f!ﬁ(S)(w(T) W) zi(s) = za(9)l ds

IA

. |(wT W)

IA

+ ‘(WT —w3)

IA

+ |(w] —w3)

IA

W (1) - ‘( Wi~

+(w(T)—t,//(Ut)) L I'(y)
W) - w(a))IVI MI(a+y)

L
Y MF( ) 90 (5) (1) = ()" |21 () = za(s)| s

”Zl - ZZ“l—y;xp

IA

A(r) + 5

T f V() W0 = p() far(s) = 2(s)] ds,
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where

W(T) - ()™
W@ - y(a)'-r

AW = 0= vl T |5 = w3)

L@ - @) L TI(y
W) — (@)1 -MI(a+y)

llz1 — Zz||1—y;w-

Using Lemma 2.12, we obtain

[(z1(£) = z2(D))]
A+ Y ( 1 _L ) " A(s)ds
n=1

01+ 07 - L naw
T(a+1) & (1 _ M) () - y(a)”

IA

IA

A(f) +

- ( L
Flon = )~ @)’ 3 () 1w -y
n=1

(lﬁ(T) V(@)L T(y)
=M  T@+ypr ZZ””“’Z(

) 1Y (r) - (@)

51+, °°( L )” T(a+1)

_ (n+1)a
Ta+ D ZA\T=M) T+ Da v VO V@

IA

A1) +

I'(y)

na+y—1
T 50 = w@)y”

+ [} = )| WD) - w@)' i (=)

=1

L@ - Y(a)* L r()’) "Iy
M Ta+p ™~ Zzll”‘”z( )F(na+7)

WO - @) < L\ @) —gla)™h
T+ 1) +Z‘( M) T(1+ Da+ 1) }
T () — yla) Y

LW —y@)” L T

W@ — (@) 1 - MT(a+y)

(1) = (@)

= (6 +5z)[

[

+

b+ . (1 —LM) F(;(iy: "

n

W (@) - Ll'(a))”“]

(o)

L \' T(y) e
1+;(1_ 1) Tom s W0~ v@) }

”Zl - ZZ”l—y;g[/

Hence for each t € [a, b], we have

llz1 — Zz||c1_w

W) —w@)™" (LY @) — @)
#3()

< (61 +6,) T+ 1) [((n+ Da+1)

+| 0w = wh) (T — w(@)'™| T(na +7)

N e e <w<t)—¢<a>>"“]
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I'(y)

+W(T) - ¥(a)” MF( " )||)’1 Yalli—yy

1+i(1_ ) oW - w(a»"“}

n=

Thus

llzi — Z2||C1,W

W@ —y@)™ 7 LY @) = ga) !
2 lw)

-1
< T {(61 +02) T+ 1) I((n+ Da+1)

+ (W} = w3) W(T) = y(a)' |

“i(lLM) e +) W0 - lﬁ(a))"“}}. (4.4)

n=

O

Remark 4.3. If 6, = 6, = 0 in the inequality (4.3), then z;, 7, are solutions of the problem (1.1) and
the inequality (4.4) reduces to

llz1 — Z2||c._W

- {|(WT - w3) W(T) = (@) 7|

1+i( ) b2 - w(a»"“]}

n=

which provides the continuous dependence of the problem (1.1). Also if wi = wj, we have
llz1 — zalle,_,, = O, which provides the uniqueness of a solution of problem (1.1).

5. Examples

In this section, we present illustrative examples to validate our results.

Example 5.1. Consider the following terminal value problem

), re(1,2],

3:0:¢' _ 1 ( 2.0
{Dﬁ ¥(t) = ke (1 + 1y + Dy 5.1)

y2)=weR.

Set f(t,u,v) = {5 (1 +u+v), foreachu,v € R, t € (1,2],

Cly [1.21=CY L [1.2] {f (1,21 XR? 5 R;(¢' =)' feC1 2]}

with = 1,8 =0,y = 1,y = ¢, (a,T] = (1,21, K,(t) = f(1,y(t), K\(1)). Clearly, the function

2’
fe C%;e, [1,2]. Hence condition (H,) is satisfied. For u,v,u*,v* € R, t € (1, 2], we have

1

Too-r2 4~ wl+ v =yl

lf @ u,v) = f@&u”, v

IA

< W[Iu—ulﬂv—vl]
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Hence the hypothesis (H,) is satisfied with M = L = ﬁ. By some simple calculations, the condition:

2L (y) T a\*|
[(1—M)F(cy+y)(e —e)]~0.3<1

is satisfied with T = 2 and a = 1. Thus all assumptions in Theorem 3.2 are satisfied. It follows from

1
Theorem 3.2 that the problem (5.1) has a unique solution in C;_[1,2].
3¢

Example 5.2. Consider the following terminal value problem

1,0:Int | 1 3.0:Int
{Dh 30 = gk It feos y@)l + [Py |, 1€ (1,e] 52

y(e) =weR.

Set f(t,u,v) = — (lnt% cosu+v),f0reach u,veR te(l,e],

20ec+1-t

gL a=cl,, L= (it reci.el,

l=yy

with a = %,,8 =0,y = %,;l/(t) = Int, (a,T] = (1,e]. Clearly, the function f € C%ﬂm[l,e]. Hence
condition (H,) is satisfied. For u,v,u”,v: € R, t € (1,e], we have

[u =’ + v =Vl

|f(t9 u, V) - f(t’ M*, V*)l < 20ec+1-t
1
oo = w+ v =Vl

IA

Hence the hypothesis (H,) is satisfied with M = L = 2]@' By some simple calculations, the condition:

[ 2L ) (m(z))a] —6.6427x107 < 1

1-MT(ax+7y) a

is satisfied with with T = e and a = 1. Thus all assumptions in Theorem 3.2 are satisfied. It follows

1
from Theorem 3.2 that the problem (5.2) has a unique solution in le . [1,e].
2-in

Example 5.3. Consider the following terminal value problem

], re,2l

10 1 0.
{ DI y(0) = 35| feos v + [V 53)

y2)=weR.

Set f(t,u,v) = % (t2 cosu + v) ,foreachu,v e R, t € (1,2],
L=y

C’B(]_a) [1,2] = C(l)’\ﬁ[l’z] = {f : \/5 \/;_ 1f € C[I,Z]},

with a = %,,8 =0,y = %,lﬁ(t) == %), (a,T] = (1,2]. Clearly, the function f € C%;,p [1,2]. Hence
condition (H,) is satisfied. For u,v,u*,v: € R, t € (1,2], we have

1
£ uv) = [t vl < 5l =]+ v = Vi
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Hence the hypothesis (H») is satisfied with M = L = —. By some simple calculations, the condition:

L
10°

[ 2L (y) (Tp —a )a] ~04 <1
(I-M)I'(a +7y) p

is satisfied with p = % T =2and a = 1. Thus all assumptions in Theorem 3.2 are satisfied. It follows
1

from Theorem 3.2 that the problem (5.3) has a unique solution in C,z.tp [1,2].
2

Example 5.4. Consider the following terminal value problem

Dy = K1), 1€ (a,Tl,
{ WT)=w E)R. GH

By Theorem 3.1, the implicit solution of problem (5.4) is given by

¥ =

[W(T) = y(@)]'™ [W 1
[w(®) - (@] (@)

+ﬁf W) W) — ()" Ky(s)ds, 1€ (aT1,

T
f W' () (T = ()™ Ky(s)ds

Here, we consider K,(t) = f(t,y(1),K,()) =1, w=1,a=1and T = 2.

Case (i) If y(t) = t, the exact solution of problem (5.4) is defined by

[ y-1 (t_ 1)7’1 (t_ 1)(1
y@o =@-1) Fa+ D) + Tar D) te(1,2].

Case (ii) If Y (1) = logt, the exact solution of problem (5.4) is defined by

_ ,1_ (ogoy™  (logr)”
¥ = (log ) = s+ peEas e (el

Case (iii) Ify(r) = *, p > 0, the exact solution of problem (5.4) is defined by

\5(\/5— 1)0}_’_ \/E(tp_ 1)

T(a+ 1) T(a+ 1)

y(t)=(‘/§—1)(tp—1)“[1— Cre(1,2]

Figure 1, presents the solution curves with some values of @ and vy, when Y (t) = t. Figure 2, presents
the solution curves with some values of a and vy, when y(t) = log(t). Figure 3, presents the solution
curves with some values of a and y, when y(t) = t°.
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—t+— a=1/2 ,4=3/3

—t—a=1M 4=1f2
a=1/5 ~=7M15

—t—a=1/3 =5/

0.8

141 12 13 14 1.5 16 1.7 18 19 2

Figure 1. Exact solution graph of y(¢) of Example 5.4 for ¢ € (1,2], with some values of «
and y when ¥(¢) = t.

—t+— a=1/2 ~=2/3

04 F —t—a=1M y=1/2
a=1/5 ~=7M85

—t+— a=1/3 4=5/9

11 12 13 14 1.5 16 1.7 18 19 2

Figure 2. Exact solution graph of y(¢) of Example 5.4 for ¢ € (1, e], with some values of «
and vy when ¥/(t) = log().
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0.4

——a=1/2 ~=2/3
0.3 1 |—+—a=1M 4=1/2

a=1/5 ~=7M15
—+— a=1/3 ,+=5/9

0.2

141 12 13 14 1.5 16 1.7 18 19 2

Figure 3. Exact solution graph of y(¢) of Example 5.4 for ¢ € (1, 2], with some values of «
and v when y(t) = #°.

6. Conclusions

We have provided sufficient conditions ensuring the existence and uniqueness of solutions to a
class of terminal value problem for differential equations with the -Hilfer type fractional derivative.
The arguments are based on the classical Banach contraction principle, and the Krasnoselskii’s fixed
point theorem. Moreover, we used generalized Gronwall inequality with singularity to established
uniqueness and continuous dependence of the d-approximate solution. Four examples are included to
show the applicability of our results.
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