The uncertainty principle for vector-valued functions of $ L^2({\mathbb{R}}^n, {\mathbb{R}}^m) $ with $ n\ge 2 $ are studied. We provide a stronger uncertainty principle than the existing one in literature when $ m\ge 2 $. The phase and the amplitude derivatives in the sense of the Fourier transform are considered when $ m = 1 $. Based on these definitions, a generalized uncertainty principle is given.
Citation: Feifei Qu, Xin Wei, Juan Chen. Uncertainty principle for vector-valued functions[J]. AIMS Mathematics, 2024, 9(5): 12494-12510. doi: 10.3934/math.2024611
The uncertainty principle for vector-valued functions of $ L^2({\mathbb{R}}^n, {\mathbb{R}}^m) $ with $ n\ge 2 $ are studied. We provide a stronger uncertainty principle than the existing one in literature when $ m\ge 2 $. The phase and the amplitude derivatives in the sense of the Fourier transform are considered when $ m = 1 $. Based on these definitions, a generalized uncertainty principle is given.
[1] | L. Cohen, The uncertainty principle in signal analysis, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994,182–185. http://dx.doi.org/10.1109/TFSA.1994.467263 |
[2] | L. Cohen, Time-frequency analysis: theory and application, New Jersey: Prentice-Hall Inc., 1995. |
[3] | P. Dang, Tighter uncertainty principles for periodic signals in terms of frequency, Math. Method. Appl. Sci., 38 (2015), 365–379. http://dx.doi.org/10.1002/mma.3075 doi: 10.1002/mma.3075 |
[4] | P. Dang, G. Deng, T. Qian, A sharper uncertainty principle, J. Funct. Anal., 265 (2013), 2239–2266. http://dx.doi.org/10.1016/j.jfa.2013.07.023 doi: 10.1016/j.jfa.2013.07.023 |
[5] | P. Dang, W. Mai, W. Pan, Uncertainty principle in random quaternion domains, Digit. Signal Process., 136 (2023), 103988. http://dx.doi.org/10.1016/j.dsp.2023.103988 doi: 10.1016/j.dsp.2023.103988 |
[6] | P. Dang, T. Qian, Y. Yang, Extra-string uncertainty principles in relation to phase derivative for signals in euclidean spaces, J. Math. Anal. Appl., 437 (2016), 912–940. http://dx.doi.org/10.1016/j.jmaa.2016.01.039 doi: 10.1016/j.jmaa.2016.01.039 |
[7] | P. Dang, T. Qian, Z. You, Hardy-Sobolev spaces decomposition in signal analysis, J. Fourier Anal. Appl., 17 (2011), 36–64. http://dx.doi.org/10.1007/s00041-010-9132-7 doi: 10.1007/s00041-010-9132-7 |
[8] | P. Dang, S. Wang, Uncertainty principles for images defined on the square, Math. Method. Appl. Sci., 40 (2017), 2475–2490. http://dx.doi.org/10.1002/mma.4170 doi: 10.1002/mma.4170 |
[9] | Y. Ding, Modern analysis foundation (Chinese), Beijing: Beijing Normal University Press, 2008. |
[10] | D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers-Part Ⅲ: Radio and Communication Engineering, 93 (1946), 429–457. |
[11] | S. Goh, C. Micchelli, Uncertainty principle in Hilbert spaces, J. Fourier Anal. Appl., 8 (2002), 335–374. http://dx.doi.org/10.1007/s00041-002-0017-2 doi: 10.1007/s00041-002-0017-2 |
[12] | Y. Katznelson, An introduction to harmonic analysis, 3 Eds., Cambridge: Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9781139165372 |
[13] | K. Kou, Y. Yang, C. Zou, Uncertainty principle for measurable sets and signal recovery in quaternion domains, Math. Method. Appl. Sci., 40 (2017), 3892–3900. http://dx.doi.org/10.1002/mma.4271 doi: 10.1002/mma.4271 |
[14] | F. Qu, G. Deng, A shaper uncertainty principle for $L^2({\mathbb{R}}^n)$ space (Chinese), Acta Math. Sci., 38 (2018), 631–640. |
[15] | X. Wei, F. Qu, H. Liu, X. Bian, Uncertainty principles for doubly periodic functions, Math. Method. Appl. Sci., 45 (2022), 6499–6514. http://dx.doi.org/10.1002/mma.8182 doi: 10.1002/mma.8182 |
[16] | Y. Yang, P. Dang, T. Qian, Stronger uncertainty principles for hypercomplex signals, Complex Var. Elliptic, 60 (2015), 1696–1711. http://dx.doi.org/10.1080/17476933.2015.1041938 doi: 10.1080/17476933.2015.1041938 |
[17] | Y. Yang, P. Dang, T. Qian, Tighter uncertainty principles based on quaternion Fourier transform, Adv. Appl. Clifford Algebras, 26 (2016), 479–497. http://dx.doi.org/10.1007/s00006-015-0579-0 doi: 10.1007/s00006-015-0579-0 |