Utilizing elementary methods and techniques, the explicit formula for the generalized Euler function $ \varphi_{e}(n)(e = 8, 12) $ has been developed. Additionally, a sufficient and necessary condition for $ \varphi_{8}(n) $ or $ \varphi_{12}(n) $ to be odd has been obtained, respectively.
Citation: Shichun Yang, Qunying Liao, Shan Du, Huili Wang. The explicit formula and parity for some generalized Euler functions[J]. AIMS Mathematics, 2024, 9(5): 12458-12478. doi: 10.3934/math.2024609
Utilizing elementary methods and techniques, the explicit formula for the generalized Euler function $ \varphi_{e}(n)(e = 8, 12) $ has been developed. Additionally, a sufficient and necessary condition for $ \varphi_{8}(n) $ or $ \varphi_{12}(n) $ to be odd has been obtained, respectively.
[1] | T. X. Cai, X. D. Fu, X. Zhou, A congruence involving the quotients of Euler and its applications (II), Acta Arith., 130 (2007), 203–214. https://doi.org/10.4064/aa130-3-1 doi: 10.4064/aa130-3-1 |
[2] | T. X. Cai, Z. Y. Shen, M. J. Hu, On the parity of the generalized Euler function (I), Adv. Math., 42 (2013), 505–510. |
[3] | T. X. Cai, H. Zhong, S. Chern, A congruence involving the quotients of Euler and its applications (III), Acta Math. Sinica. Chin. Ser., 62 (2019), 529–540. |
[4] | E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math., 39 (1938), 350–360. https://doi.org/10.2307/1968791 doi: 10.2307/1968791 |
[5] | Q. Y. Liao, W. L. Luo, The computing formula for two classes of generalized Euler functions, J. Math., 39 (2019), 97–110. |
[6] | Q. Y. Liao, The explicit formula for a special class of generalized Euler functions (Chinese), Journal of Sichuan Normal University (Natural Science Edition), 42 (2019), 354–357. 10.3969/j.issn.1001-8395.2019.03.010 doi: 10.3969/j.issn.1001-8395.2019.03.010 |
[7] | P. Ribenboim, 13 Lectures on Fermat's last theorem, New York: Springer, 1979. https://doi.org/10.1007/978-1-4684-9342-9 |
[8] | Z. Y. Shen, T. X. Cai, M. J. Hu, On the parity of the generalized Euler function (II), Adv. Math., 45 (2016), 509–519. |
[9] | R. Wang, Q. Y. Liao, On the generalized Euler function $\varphi_{5}(n)$ (Chinese), Journal of Sichuan Normal University (Natural Science Edition), 42 (2018), 445-449. 10.3969/j.issn.1001-8395.2018.04.003 doi: 10.3969/j.issn.1001-8395.2018.04.003 |