This paper aimed to obtain generalizations of both the logarithmic mean ($ \text{L}_{mean} $) and the Euler's beta function (EBF), which we call the extended logarithmic mean ($ \text{EL}_{mean} $) and the extended Euler's beta-logarithmic function (EEBLF), respectively. Also, we discussed various properties, including functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial derivative representations, along with the Mellin transform for the EEBLF. Furthermore, we gave numerical comparisons between these generalizations and the previous studies using MATLAB R2018a in the form of tables and graphs. Additionally, we presented a new version of the beta distribution and acquired some of its characteristics as an application in statistics. The outcomes produced here are generic and can give known and novel results.
Citation: Mohammed Z. Alqarni, Mohamed Abdalla. Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean[J]. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590
This paper aimed to obtain generalizations of both the logarithmic mean ($ \text{L}_{mean} $) and the Euler's beta function (EBF), which we call the extended logarithmic mean ($ \text{EL}_{mean} $) and the extended Euler's beta-logarithmic function (EEBLF), respectively. Also, we discussed various properties, including functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial derivative representations, along with the Mellin transform for the EEBLF. Furthermore, we gave numerical comparisons between these generalizations and the previous studies using MATLAB R2018a in the form of tables and graphs. Additionally, we presented a new version of the beta distribution and acquired some of its characteristics as an application in statistics. The outcomes produced here are generic and can give known and novel results.
[1] | B. C. Carlson, The logarithmic mean, Amer. Math. Monthly., 79 (1972), 615–618. https://doi.org/10.2307/2317088 doi: 10.2307/2317088 |
[2] | R. Bhatia, Positive definite matrices, Princeton University Press, 2007. https://doi.org/10.1515/9781400827787 |
[3] | F. Tan, A. Xie, On the logarithmic mean of accretive matrices, Filomat, 33 (2019), 4747–4752. https://doi.org/10.2298/FIL1915747T doi: 10.2298/FIL1915747T |
[4] | M. Raïssouli, S. Furuichi, The logarithmic mean of two convex functionals, Open Math., 18 (2020), 1667–1684. https://doi.org/10.1515/math-2020-0095 doi: 10.1515/math-2020-0095 |
[5] | W. Luo, Logarithmic mean of multiple accretive matrices, Bull. Iran. Math. Soc., 48 (2022), 1229–1236. https://doi.org/10.2298/FIL1915747T doi: 10.2298/FIL1915747T |
[6] | B. Jin Choi, S. Kim, Logarithmic mean of positive invertible operators, Banach. J. Math. Anal., 20 (2023), 1–17. https://doi.org/10.1007/s43037-022-00244-z doi: 10.1007/s43037-022-00244-z |
[7] | W. Gautschi, Leonhard Euler: His life, the man, and his works, SIAM Rev., 50 (2008), 3–33. https://doi.org/10.1137/070702710 doi: 10.1137/070702710 |
[8] | M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, Boca Raton, 2002. |
[9] | M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Mathe., 78 (1997), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1 doi: 10.1016/S0377-0427(96)00102-1 |
[10] | M. Chand, H. Hachimi, R. Rani, New extension of beta function and its application, Inter. J. Mathe. Mathe. Scie., 2018 (2018), 1–25. https://doi.org/10.1155/2018/6451592 doi: 10.1155/2018/6451592 |
[11] | E. Özergin, M. A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions, J. Computat. Appli. Mathe., 235 (2011), 4601–4610. https://doi.org/10.1016/j.cam.2010.04.019 doi: 10.1016/j.cam.2010.04.019 |
[12] | S. Mubeen, G. Rahman, K. S. Nisar, J. Choi, M. Arshad, An extended beta function and its properties, Far East. J. Mathe. Scie., 102 (2017), 1545–1557. http://dx.doi.org/10.17654/MS102071545 doi: 10.17654/MS102071545 |
[13] | M. Ali, M. Ghayasuddin, Extensions of beta and related functions. J. Anal., 30 (2022), 717–729. https://doi.org/10.1007/s41478-021-00363-0 doi: 10.1007/s41478-021-00363-0 |
[14] | M. Abdalla, A. Bakhet, Extension of beta matrix function, A. J. Math. Comput. Resear., 9 (2016), 253–264. Available from: http://public.paper4promo.com/id/eprint/1672 |
[15] | M. A. Chaudhry, S. M. Zubair, Analytic syudy of temperature solution due to gamma type moving point-heat sources, Int. J. Heat. Mass. Transfer., 36 (1993), 1633–1637. https://doi.org/10.1016/S0017-9310(05)80072-9 doi: 10.1016/S0017-9310(05)80072-9 |
[16] | A. Chandola, R. M. Pandey, R. Agarwal, S. D. Purohit, An extension of beta function, its statistical distribution, and associated fractional operator, Advan. Differ. Equat., 2020. https://doi.org/10.1186/s13662-020-03142-6 |
[17] | B. Fisher, A. Kilicman, D. Nicholas, On the beta function and the neutrix product of distributions, Integral Trans. Spec. Funct., 7 (1998), 35–42. https://doi.org/10.1080/10652469808819184 doi: 10.1080/10652469808819184 |
[18] | I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika., 40 (1953), 237–260. https://doi.org/10.2307/2333344 doi: 10.2307/2333344 |
[19] | M. Raïssouli, M. Chergui, On a new parametrized beta functions, Proce. Insti. Math. Mechan. Natio. Acad. Scie. Azerba., 48 (2022), 132–139. https://doi.org/10.30546/2409-4994.48.1.2022.132 doi: 10.30546/2409-4994.48.1.2022.132 |
[20] | N. Shang, A. Li, Z. Sun, H. Qin, A note on the beta function and some properties of its partial derivatives, IAENG Int. J. Appl. Math., 44 (2014), 200–205. |
[21] | A. Li, Z. Sun, H. Qin, The algorithm and application of the beta function and its partial derivatives, Eng. Lett., 23 (2015), 140–144. |
[22] | S. A. Yükçü, The numerical evaluation methods for beta function, Univ. Facult. Art. Scie. J. Scie., 17 (2022), 288–302. |
[23] | R. A. Bakoban, H. H. Abu-Zinadah, The beta generalized inverted exponential distribution with real data applications, Revstat. Stat. J., 15 (2017), 65–88. https://doi.org/10.57805/revstat.v15i1.204 doi: 10.57805/revstat.v15i1.204 |
[24] | N. S. Barnett, S. S. Dragomir, An inequality of Ostrowski's type for cumulative distribution functions, RGMIA Resea. Repo. Collec., 1 (1998), 3–12. |
[25] | R. S. Prasad, K. Mukesh, Properties and application of beta function, IJSR., 9 (2020), 1372–1374. Available from: https://www.ijsr.net/archive/v9i11/SR201122201029.pdf |
[26] | E. A. Alhassan, L. Albert, O. Louis, On some applications of beta function in some statistical distributions, Researcher, 7 (2015), 50–54. https://doi.org/10.7537/marsrsj070715.08 doi: 10.7537/marsrsj070715.08 |