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Euler’s beta function (EBF), which we call the extended logarithmic mean (ELmean) and the extended
Euler’s beta-logarithmic function (EEBLF), respectively. Also, we discussed various properties,
including functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial
derivative representations, along with the Mellin transform for the EEBLF. Furthermore, we gave
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distribution and acquired some of its characteristics as an application in statistics. The outcomes
produced here are generic and can give known and novel results.
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1. Introduction

The logarithmic mean (Lmean) of θ, φ ∈ R+, which is of interest in many fields such as engineering,
statistics, geometry, and thermodynamics (for more details, see [1–3]), is defined in the following
integral formula

Lmean
(
θ, φ

)
=

∫ 1

0
θ1−x φxdx =


θ−φ

ln(θ)−ln(φ) , θ , φ,

θ, otherwise.
(1.1)
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We can rewrite Eq (1.1) as

Lmean
(
θ, φ

)
=

( ∫ 1

0

du
(1 − u)θ + uφ

)−1

=

( ∫ ∞

0

du
(θ + u)(u + φ)

)−1

, (θ, φ ∈ R+).

Following [1], the Lmean
(
θ, φ

)
is continuous when θ = φ and homogeneous and symmetric in θ and φ.

Further, for θ, φ ∈ R+, we have

√
θ φ < Lmean

(
θ, φ

)
<
θ + φ

2
. (1.2)

Recently, various studies and generalizations for the Lmean have been presented by several researchers
(see e.g., [1–6]).

The Euler’s beta function and the gamma function are defined by (see [7] and [8, Chapter 5, p.215])

B(u, v) =

∫ 1

0
wu−1(1 − w)v−1dw, u, v > 0, (1.3)

and

Γ(σ) =

∫ ∞

0
e−w wσ−1 dw (Re(σ) > 0), (1.4)

respectively.
An essential characteristic of the beta function is its tight relationship to the gamma function in

the form

B(u, v) =
Γ(u) Γ(v)
Γ(u + v)

. (1.5)

In recent years, the Euler’s beta function has been a hotly disputed research area. Many authors have
examined various extensions of the beta function (see, for example, [9–14]). The factor exp

(
−`

w(1−w)

)
has been used to extend the domain of the beta function to the entire complex plane. This function is
called the extended beta function, which is defined by Choudhary et al. [9] and (see also [8, Chapter 5,
p.244]) in the form

EB (u, v; `) =

∫ 1

0
wu−1(1 − w)v−1 exp

( −`

w(1 − w)
)
dw, (1.6)(

Re(u) > 0, Re(v) > 0, and Re(`) > 0
)
. (1.7)

Moreover, this extension yields an exciting connection with several special functions such as Meijer
G-function, Bessel function, Macdonald function, generalized hypergeometric function, Whittaker
function, and Laguerre polynomial (see [8, Chapter 5, p.241–253]). Furthermore, this extension has
applications in several fields, such as mathematics, engineering, or physics, (see, for instance, [15–17]).
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In mathematics, it has mainly been used to derive certain probability distributions archived by
Good [18] and other applications in fractional operators [8].

Recently, Raı̈ssouli and Chergui [19] used the concept of a logarithmic mean in presenting the
beta-logarithmic function (BLmean) as follows

BLmean (θ, φ; δ1, δ2) =

∫ 1

0
θ1−u φu uδ1−1(1 − u)δ2−1du,(

Re(δ1) > 0, Re(δ2) > 0, θ, φ ∈ R+ such that θ , φ
)
.

(1.8)

Moreover, they proved that this integral satisfies several properties. It is clear that BLmean (θ, φ; δ1, δ2)
is an extension of both the logarithmic mean (1.1) and the beta function (1.3).

Motivated by the preceding literature, we offer new generalizations of the logarithmic mean and
the extended beta function, along with supplying some of its features and applications. The article’s
organization is as follows: Section 2 introduces the extended logarithmic mean and the extended
Euler’s beta-logarithmic function based on the logarithmic mean in (1.1). Also, we provide the Mellin
transform for the latter, besides proving several properties such as functional relations, inequalities,
infinite sums, finite sums, integral formulas, and partial derivative representations. In Section 3, the
numerical values of the comparison results and their graphical explanations are interpreted to study
the behavior of the new generalizations using MATLAB. In Section 4, we give a new extension of the
conventional beta distribution by using the extended Euler’s beta-logarithmic function as an application
in statistics. Eventually, we exhibit some concluding remarks in Section 5.

2. The extended Euler’s beta-logarithmic function

In this section, we propose the following novel generalization of the standard Euler’s beta function.

EBL
[
α, β; u, v; `

]
=

∫ 1

0
α1−w βw wu−1(1 − w)v−1 exp

(
−

`

w(1 − w)

)
dw,(

α, β ∈ R+ with α , β,Re(u) > 0,Re(v) > 0, and Re(`) > 0
)
,

(2.1)

which we call the extended Euler’s beta-logarithmic function (EEBLF).

Remark 2.1. Since

0 ≤ α1−w βw wu−1(1 − w)v−1 exp
(
−

`

w(1 − w)

)
≤ κ wu−1(1 − w)v−1 exp

(
−

`

w(1 − w)

)
for all w ∈ (0, 1),

where κ > 0 for any fixed α, β ∈ R+, the function w → α1−w βw is continuous and bounded on [0, 1],

and
∣∣∣∣ exp

(
− `

w(1−w)

)∣∣∣∣ ≤ exp
(∣∣∣∣ − `

w(1−w)

∣∣∣∣) ≤ 1 for all ` ∈ R+. Therefore, the integral (2.1) exists and is
convergent for all w ∈ (0, 1).

Remark 2.2. The following relationships can be acquired straightway from (2.1):

EBL
[
α, β; u, v; `

]
= EBL

[
β, α; v, u; `

]
, (2.2)
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EBL
[
α, α; u, v; `

]
= α EB

(
u, v; `

)
, (2.3)

EBL
[
cα, cβ; u, v; `

]
= c EBL

[
α, β; u, v; `

]
, c > 0. (2.4)

Remark 2.3. We see certain particular cases of the EBL
[
α, β; u, v; `

]
as follows:

(i) If α = β = 1, then Eq (2.1) reduces to the extended beta function (EBF) defined in (1.6).

(ii) When ` = 0 in (2.1), we obtain the beta-logarithmic function (BLF) given in (1.8).

(iii) If u = v = 1, then Eq (2.1) reduces to a new extension of Lmean, which is called the extended
logarithmic mean (ELmean) as

ELmean

[
α, β; `

]
=

∫ 1

0
α1−w βw exp

(
−

`

w(1 − w)

)
dw,(

α, β ∈ R+ with α , β, and Re(`) > 0
)
.

(2.5)

(iv) If we choose ` = 0 in (2.5), then we get the Lmean defined in (1.1).

(v) Taking α = β = 1 and ` = 0 in (2.1), we have the classical beta function defined in (2.1).

2.1. Some properties of the EEBLF

In this section, we establish essential characteristics of the EEBLF.

Theorem 2.1. The EBL
[
α, β; u, v; `

]
satisfies the following functional relation:

EBL
[
α, β; u + 1, v; `

]
+ EBL

[
α, β; u, v + 1; `

]
= EBL

[
α, β; u, v; `

]
. (2.6)

Proof. From (2.1) into the LHS of (2.6), we obtain

LHS =

∫ 1

0
α1−w βw

[
wu (1 − w)v−1 + wu−1 (1 − w)v

]
exp

(
−

`

w(1 − w)

)
dw. (2.7)

After simple calculations, we get the RHS of (2.6).

We state the following corollaries as direct results from (2.6), which were proved in previous
works [8, 9, 19].

Corollary 2.1. In case ` = 0 in (2.6), we have

BLmean

[
α, β; u + 1, v

]
+ BLmean

[
α, β; u, v + 1

]
= BLmean

[
α, β; u, v

]
. (2.8)

Corollary 2.2. Choosing α = β = 1 in (2.6), yields

EB (u + 1, v; `) + EB (u, v + 1; `) = EB (u, v; `) . (2.9)

Corollary 2.3. When ` = 0 and α = β = 1 in (2.6), we get

B(u, v) = B(u + 1, v) + B(u, v + 1). (2.10)
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Theorem 2.2. The following inequality holds for the EBL
[
α, β; u, v; `

]
:

min(α, β) ≤ EBL
[
α, β; u, v; `

]
≤ max(α, β),(

α, β ∈ R+ with α , β,Re(u) > 0,Re(v) > 0, and Re(`) > 0
)
.

(2.11)

Proof. From (1.2) and (1.6), we observe that

min(α, β) ≤
√
αβ ≤ Lmean(α, β) ≤

(
α + β

2

)
≤ max(α, β),

and
EB

[
u, v; `

]
> 0.

Thus, we obtain

min(α, β) ≤ EBL
[
α, β; u, v; `

]
. (2.12)

According to Young’s inequality

α1−τ βτ ≤ α(1 − τ) + βτ, for all τ ∈ [0, 1],

and Eq (2.9), we find that

EBL
[
α, β; u, v; `

]
≤αEB

[
u, v + 1; `

]
+ βEB

[
u + 1, v; `

]
≤max(α, β)

[
EB

[
u, v + 1; `

]
+ EB

[
u + 1, v; `

]]
≤max(α, β).

(2.13)

From (2.12) and (2.13), we arrive at the desired assertion in (2.6).

Corollary 2.4. Let α = β = 1 in Theorem (2.2), the following inequality holds:

EB
[
u, v; `

]
≤ exp(−4`) B(u, v),

(
u > 0, v > 0, and ` ≥ 0

)
. (2.14)

Proof. [8, Theorem 5.5, p.224] is available to view as proof.

Corollary 2.5. For ` = 0 in Theorem (2.2), we have

min(α, β) B(u, v) ≤ BLmean

[
α, β; u, v

]
≤ max(α, β) B(u, v),

(
u > 0, v > 0, and α, β > 0

)
. (2.15)

Proof. The proof can be viewed in [19, Proposition 2.2, p.133].

Theorem 2.3. For α, β ∈ R+ such that α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0, the following
finite sum holds:

EBL
[
α, β; u, v; `

]
=

m∑
=0

(
m


)
EBL

[
α, β; u + , v + m − ; `

]
. (2.16)
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Proof. From (2.1), we consider

EBL
[
α, β; u, v; `

]
=

∫ 1

0
α1−w βw [

w + (1 − w)
]

wu−1(1 − w)v−1 exp
(
−

`

w(1 − w)

)
dw

= EBL
[
α, β; u + 1, v; `

]
+ EBL

[
α, β; u, v + 1; `

]
.

(2.17)

Similarly, we arrive at

EBL
[
α, β; u, v; `

]
=

∫ 1

0
α1−w βw [

w + (1 − w)
]

wu−1(1 − w)v−1 exp
(
−

`

w(1 − w)

)
dw

= EBL
[
α, β; u + 2, v; `

]
+ EBL

[
α, β; u, v + 2; `

]
+ 2 EBL

[
α, β; u + 1, v + 1; `

]
.

(2.18)

Using mathematical induction, we attain the desired result (2.16).

Corollary 2.6. The following finite sum holds:

EB
[
u, v; `

]
=

m∑
=0

(
m


)
EBL

[
u + , v + m − ; `

]
. (2.19)

Proof. This directly results from (2.16) when α = β = 1.

Theorem 2.4. For α, β ∈ R+ such that α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0, the
EBL

[
α, β; u, v; `

]
satisfies the following infinite sums:

(I)

EBL
[
α, β; u, v; `

]
=

∞∑
=0

EBL
[
α, β; u + , v + 1; `

]
. (2.20)

(II)

EBL
[
α, β; u, v; `

]
=

∞∑
ı, =0

EBL
[
α, β; u + ı, v + ; `

] (ln(α))ı(ln(β)) 

!ı!
. (2.21)

(III)

EBL
[
α, β; u, 1 − v; `

]
=

∞∑
=0

(v) 
!

EBL
[
α, β; u + , 1; `

]
, (2.22)

where (v)  denotes the Pochhammer symbol, which is defined in terms of the gamma function
Γ(v) as

(v)  =
Γ(v + )

Γ(v)
= v(v + 1)(v + 2)...(v + (  − 1)),  ≥ 1, (v)0 = 1, Re(v) > 0.
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Proof. To prove (2.20), we use the relation

(1 − w)v−1 = (1 − w)v
∞∑

r=0

wr |w| < 1,

in the Definition (2.1). Thus, we get

EBL
[
α, β; u, v; `

]
=

∞∑
r=0

∫ 1

0
α1−w βw wu+r−1(1 − w)v exp

(
−

`

w(1 − w)

)
dw,

which, given (2.1), we obtain the result (2.20).

To prove (2.21), substitute

α1−w =

∞∑
r=0

(lnα)r

r!
(1 − w)r, |1 − w| < ∞,

and

βw =

∞∑
s=0

(ln β)s

s!
wr, |w| < ∞,

in (2.1) yields

EBL
[
α, β; u, v; `

]
=

∫ 1

0

∞∑
r,s=0

(lnα)r (ln β)s

r! s!
wu+s−1(1 − w)v+r−1 exp

(
−

`

w(1 − w)

)
dw.

Thus, in light of (2.1) and after simplification, we get the infinite sum in (2.21).

To demonstrate (2.22), we observe that

EBL
[
α, β; u, 1 − v; `

]
=

∫ 1

0
α1−w βw wu−1(1 − w)−v exp

(
−

`

w(1 − w)

)
dw.

Using the Binomial relation

(1 − w)−v =

∞∑
r=0

(v)r

r!
wr, |w| < 1,

we thus achieve

EBL
[
α, β; u, 1 − v; `

]
=

∞∑
r=0

(v)r

r!

∫ 1

0
α1−w βw wu+r−1 exp

(
−

`

w(1 − w)

)
dw.

After simple calculation, we get the infinite sum in (2.22).

Corollary 2.7. For α = β = 1 in Theorem 2.4, the following infinite sums hold:
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(i)

EB
[
u, v; `

]
=

∞∑
=0

EB
[
u + , v + 1; `

]
. (2.23)

(ii)

EB
[
u, v; `

]
=

∞∑
ı, =0

EB
[
u + ı, v + ; `

]
. (2.24)

(iii)

EB
[
u, 1 − v; `

]
=

∞∑
=0

(v) 
!

EB
[
u + , 1; `

]
. (2.25)

Proof. [8, 9] are accessible for inspection as proof.

Corollary 2.8. For ` = 0 in Theorem 2.4, the following infinite sums hold:

•

BLmean

[
α, β; u, v

]
=

∞∑
=0

BLmean

[
α, β; u + , v + 1

]
. (2.26)

•

BLmean

[
α, β; u, v

]
=

∞∑
ı, =0

BLmean

[
α, β; u + ı, v + 

] (ln(α))ı(ln(β)) 

!ı!
. (2.27)

•

BLmean

[
α, β; u, 1 − v

]
=

∞∑
=0

(v) 
!

BLmean

[
α, β; u + , 1

]
. (2.28)

Proof. [19] is available for inspection as evidence.

Theorem 2.5. For α, β ∈ R+ such that α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0, the
EBL

[
α, β; u, v; `

]
satisfies the following integral representations:

(I)

EBL
[
α, β; u, v; `

]
=2α

∫ π
2

0

(
β

α

)cos2(ϕ)

cos2u−1(ϕ) sin2v−1(ϕ)

× exp
(
−` sec2(ϕ) csc2(ϕ)

)
dϕ.

(2.29)

(II)

EBL
[
α, β; u, v; `

]
= e−2`

∫ ∞

0
(α)

τ
τ+1 (β)

1
τ+1

τv−1

(1 + τ)u+v exp
(
−`(τ + τ−1)

)
dτ. (2.30)
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(III)

EBL
[
α, β; u, v; `

]
=

√
αβ 21−u−v

∫ ∞

0

(
β

α

) τ
2

(1 + τ)u−1(1 − τ)v−1

× exp
(
−4`/(1 − τ2)

)
dτ.

(2.31)

Proof. Every situation is straightforward. Taking w = cos(ϕ) in (2.1) yields (2.29) after calculations.
Also, replacing w = τ

τ+1 in (2.1) provides (2.30). Similarly, substituting w = 1+τ
2 in (2.1) gives

the result (2.31).

Corollary 2.9. When ` = 0 in Theorem 2.5, the following integral formulas hold:

•

BLmean

[
α, β; u, v

]
= 2α

∫ π
2

0

(
β

α

)cos2(ϕ)

cos2u−1(ϕ) sin2v−1(ϕ) dϕ.

•

EBL
[
α, β; u, v

]
=

∫ ∞

0
(α)

τ
τ+1 (β)

1
τ+1

τv−1

(1 + τ)u+v dτ.

•

EBL
[
α, β; u, v

]
=

√
αβ 21−u−v

∫ ∞

0

(
β

α

) τ
2

(1 + τ)u−1(1 − τ)v−1dτ.

Proof. The reference [19] is available to view as evidence.

Remark 2.4. Applying the results in Remark 2.3 for Theorems 2.3–2.5 generates other correspondent
results in [8, 9, 19].

Theorem 2.6. For α, β ∈ R+ such that α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0, the Mellin
transform of EEBLF is

M
{
EBL

[
α, β; u, v; `

]
;σ

}
= Γ(σ) BLmean

[
α, β; u + σ, v + σ

]
, (2.32)

where the Mellin transform is defined in [8] by

M{ f (x);σ} =

∫ ∞

0
xσ−1 f (x) dx, Re(σ) > 0, (2.33)

provided that the integral (2.33) exists.

Proof. Applying (2.33) to (2.1), we observe that

M
{
EBL

[
α, β; u, v; `

]
;σ

}
=

∫ ∞

0
`σ−1EBL

[
α, β; u, v; `

]
d`

=

∫ ∞

0
`σ−1

( ∫ 1

0
α1−w βw wu−1(1 − w)v−1 exp

(
−

`

w(1 − w)

)
dw

)
d`

AIMS Mathematics Volume 9, Issue 5, 12072–12089.
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=

∫ 1

0
α1−w βw wu−1(1 − w)v−1

( ∫ ∞

0
`σ−1 exp

(
−

`

w(1 − w)

)
d`

)
dw.

Replacing the inner integral by z = `
w(1−w) and after simplification, we have

M
{
EBL

[
α, β; u, v; `

]
;σ

}
= Γ(σ)

∫ 1

0
α1−w βw wu+σ−1(1 − w)v+σ−1 dw. (2.34)

Inserting (1.8) into (2.34), we arrive at (2.32).

Setting α = β = 1 in (2.32), we get a desired Mellin transform involving the extended beta
function (cf., [8, 9]), which is archived in the following corollary.

Corollary 2.10. Let ` ∈ R+, Re(u) > 0, and Re(v) > 0. Then

M
{
EB

[
u, v; `

]
;σ

}
= Γ(σ) B

[
u + σ, v + σ

]
, Re(σ) > 0. (2.35)

Theorem 2.7. For k, h ∈ N0, the following higher-order derivatives are valid for the EBL
[
α, β; u, v; `

]
:

(I)
∂k

∂`k

{
EBL

[
α, β; u, v; `

]}
= (−1)k EBL

[
α, β; u − k, v − k; `

]
, Re(`) > 0. (2.36)

(II)
∂k

∂αk

{
EBL

[
α, β; u, v; `

]}
=

∞∑
r=0

1
αk(r − k)!

(ln(α))r−kEBL
[
1, β; u, v + r; `

]
, Re(α) > 0, r > k.

(2.37)

(III)
∂k

∂βk

{
EBL

[
α, β; u, v; `

]}
=

∞∑
r=0

1
βk(r − k)!

(ln(β))r−k EBL
[
α, 1; u + r, v; `

]
, Re(β) > 0, r > k.

(2.38)

(IV)
∂k+h

∂vh ∂uk

{
EBL

[
α, β; u, v; `

]}
=

∫ 1

0
α1−w βw wu−1(1 − w)v−1

× lnk(w) lnh(1 − w) exp
(
−

`

w(1 − w)

)
dw,(

α, β ∈ R+ with α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0
)
.

(2.39)

Proof. The proof is direct by the differentiation of (2.1) for the parameters `, α, β, u, and v, respectively.
Thus, we obtain the results in (2.36)–(2.39) applying mathematical induction.

Remark 2.5. We can attain several outcomes in the literature using the results considered in
Remark 2.3 for Theorem 2.7 (e.g., [1, 7–9, 17, 19–21]).
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3. Numerical representations and graphs

The numerical representations of the values of the new generalizations of the logarithmic mean
and Euler’s beta logarithmic function, besides some of its exceptional cases, are given in the form of
tabulated data and graphical outcomes utilizing the MATLAB program in this section.

First, Table 1 shows tabular expressions of the ELmean for various values of the parameters α, β,
and `. For different ranges of values of these parameters, one can note the increase in the ELmean

values as the value of ` decreases. As evident, the last column corresponds to Lmean since ` = 0. That
explains the agreement of the values in the last two columns in this table when ` is close to zero.
Figure 1 depicts the plots of the difference in the infinity norm, ‖z‖∞ := max



∣∣∣z ∣∣∣, between the ELmean

and Lmean where the fixed values of the parameters α and β are chosen to be {0.1, 0.825, 2.275, 3}
and {0.25, 0.5625, 1.1875, 1.5}, respectively, against the values of the parameter ` ∈ {10−3, 8.9 ×
10−4, 7.7 × 10−4, 6.7 × 10−4, 5.5 × 10−4, 4.4 × 10−4, 3.3 × 10−4, 2.2 × 10−4, 1.1 × 10−4, 10−8}.
The graph assures that the infinity norm ‖ELmean − Lmean‖∞ tends to zero when ` approaches 0 and
increases otherwise.

Second, Table 2 shows tabular representations of the EEBLF for the different values of α, β, u, v,
and `. Here, we chose the thier values as u ∈ {0.1, 0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1},
v ∈ {0.25, 0.5, 0.75, 1}, ` ∈ {0, 0.4, 0.80}, and α = β ∈ {1, 3, 6, 9}. It should be mentioned
that the values of EEBLF increase as ` decreases while fixing the values of other parameters. Choosing
α = β = 1 and v = 0.25 allows the reader to compare the values of EEBLF in this table with those
presented for extended beta function in [8, Chapter 5, p.268–278].

By selecting fixed values of α = 0.1, 0.825, 2.275, 3 and β = 0.25, 0.5625, 1.1875, 1.5 versus equal
values of u = v ∈ [0.1, 0.99], Figure 2 illustrates the behavior of the ‖EBL − ELmean‖∞ for distinct
values of ` = 0, 10−3, 7.5 × 10−4, 5 × 10−4, 2.5 × 10−4, 10−8. The concluded results can be interpreted
as the difference in the infinity norm decreasing to zero as both u and v approach one for any chosen
value of `.

Finally, as is seen in Tables 1 and 2 and Figures 1 and 2, one can conclude that EEBLF is a
more generalized form than those presented in the previous studies for the extensions of the beta
function [8, 10, 22].
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Table 1. Comparison of numerical values of ELmean in (2.5) for different values for all α, β,
and `.

N α β ELmean

` = 10−3 ` = 7.5 × 10−4 ` = 5 × 10−4 ` = 2.5 × 10−4 ` = 10−8 ` = 0
1 0.1 0.25 0.16121 0.16176 0.16233 0.16296 0.1637 0.1637
2 0.1 0.5625 0.2633 0.26427 0.26531 0.26642 0.26777 0.26777
3 0.1 0.875 0.35094 0.35232 0.35378 0.35537 0.3573 0.3573
4 0.1 1.1875 0.4313 0.43307 0.43495 0.437 0.43949 0.43949
5 0.1 1.5 0.50698 0.50913 0.51142 0.51392 0.51698 0.51698
6 0.825 0.25 0.47407 0.47572 0.47746 0.47935 0.48161 0.48161
7 0.825 0.5625 0.67528 0.67751 0.67985 0.68238 0.68539 0.68539
8 0.825 0.875 0.83731 0.84005 0.84294 0.84605 0.84975 0.84975
9 0.825 1.1875 0.9806 0.98383 0.98723 0.9909 0.99527 0.99527
10 0.825 1.5 1.1122 1.1159 1.1198 1.1241 1.1291 1.1291
11 1.55 0.25 0.70045 0.70307 0.70585 0.70887 0.7125 0.7125
12 1.55 0.5625 0.95925 0.96254 0.96601 0.96975 0.97423 0.97423
13 1.55 0.875 1.1629 1.1668 1.1709 1.1753 1.1805 1.1805
14 1.55 1.1875 1.3407 1.3451 1.3498 1.3548 1.3607 1.3607
15 1.55 1.5 1.5025 1.5074 1.5126 1.5182 1.5249 1.5249
16 2.275 0.25 0.9006 0.90415 0.90793 0.91203 0.91701 0.91701
17 2.275 0.5625 1.2059 1.2102 1.2147 1.2196 1.2255 1.2255
18 2.275 0.875 1.4428 1.4477 1.4529 1.4585 1.4652 1.4652
19 2.275 1.1875 1.6477 1.6532 1.659 1.6653 1.6727 1.6727
20 2.275 1.5 1.8332 1.8392 1.8456 1.8525 1.8607 1.8607
21 3 0.25 1.086 1.0905 1.0952 1.1004 1.1067 1.1067
22 3 0.5625 1.432 1.4372 1.4428 1.4488 1.4561 1.4561
23 3 0.875 1.6975 1.7035 1.7097 1.7165 1.7246 1.7246
24 3 1.1875 1.9259 1.9324 1.9394 1.9468 1.9557 1.9557
25 3 1.5 2.1316 2.1387 2.1463 2.1544 2.164 2.164
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Table 2. Comparison of numerical values of EEBLF in (2.1) for different values for all
α, β, u, v, and `.

N α = β u v EEBLF
` = 0 ` = 0.40 ` = 0.80

1 1 0.1 0.25 13.547 0.3861 0.058419
2 1 0.25 0.25 7.4163 0.34229 0.05213
3 1 0.4 0.25 5.8075 0.30491 0.046648
4 1 0.55 0.25 5.0329 0.27285 0.041855
5 1 0.7 0.25 4.5627 0.2452 0.037651
6 1 0.85 0.25 4.2397 0.22123 0.033953
7 1 1 0.25 4 0.20035 0.030691
8 3 0.1 0.5 33.969 0.96446 0.14647
9 3 0.25 0.5 15.732 0.84903 0.13015
10 3 0.4 0.5 11.037 0.75113 0.11597
11 3 0.55 0.5 8.8274 0.66763 0.10363
12 3 0.7 0.5 7.5174 0.59602 0.092838
13 3 0.85 0.5 6.638 0.53431 0.083383
14 3 1 0.5 6 0.48085 0.075074
15 6 0.1 0.75 62.876 1.6251 0.24658
16 6 0.25 0.75 26.657 1.421 0.21819
17 6 0.4 0.75 17.479 1.2488 0.19363
18 6 0.55 0.75 13.24 1.1028 0.17232
19 6 0.7 0.75 10.776 0.97823 0.15376
20 6 0.85 0.75 9.1543 0.87145 0.13756
21 6 1 0.75 8 0.77946 0.12337
22 9 0.1 1 90 2.0755 0.31341
23 9 0.25 1 36 1.8032 0.27622
24 9 0.4 1 22.5 1.5747 0.24415
25 9 0.55 1 16.364 1.3818 0.21642
26 9 0.7 1 12.857 1.2182 0.19236
27 9 0.85 1 10.588 1.0786 0.17142
28 9 1 1 9 0.95902 0.15315
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Figure 1. Graphical representation of ‖ELmean − Lmean‖∞ various values of `.

Figure 2. Plots of ‖EBL − ELmean‖∞ with equal values of u, v, and various values of `.
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4. An application

The beta distribution is a type of continuous probability distribution defined on the interval [0, 1]
by any two positive parameters, which appear as exponents of the random variable and control the
shape of the distribution (see [23–26]). As a helpful distribution, it can be rescaled and shifted to
produce distributions with diverse shapes over any finite range. The beta function can take on various
shapes depending on the values of the two parameters. Later, typical beta distributions were introduced
in [8, 10, 13, 14, 16] using expanded beta functions. They suggested that these distributions could
be useful for analyzing and reviewing techniques employed in specific circumstances during project
evaluation and review.

In this section, we define a random variable associated with EBL
[
α, β; u, v; `

]
and discuss some of

their properties.

Definition 4.1. For α, β ∈ R+ such that α , β, Re(u) > 0, Re(v) > 0, and Re(`) > 0, the extended
Euler’s beta logarithmic distribution (EEBLD) is defined as

f (w) =


1

EBL
[
α,β;u,v;`

]α1−wβwwu−1(1 − w)v−1 exp
(
− `

w(1−w)

)
, (0 < w < 1),

0, otherwise.

(4.1)

We have the $th moment of a random variable χ as for any real number $.

E (χ$) =
EBL

[
α, β; u +$, v; `

]
EBL

[
α, β; u, v; `

] ,

(
α, β ∈ R+such that α , β,Re(u) > 0,Re(v) > 0, and Re(`) > 0

)
.

(4.2)

When $ = 1, the mean is obtained as a special case of (4.2) given by

µ = E(χ) =
EBL

[
α, β; u + 1, v; `

]
EBL

[
α, β; u, v; `

] . (4.3)

The variance of a distribution is discussed as follows:

σ2 = E
(
χ2

)
− {E(χ)}2

=
EBL

[
α, β; u, v; `

]
EBL

[
α, β; u + 2, v; `

]
−

{
EBL

[
α, β; u + 1, v; `

]}2

{
EBL

[
α, β; u, v; `

]}2 .
(4.4)

The moment generating function (MGF) of the distribution is defined as

M(w) =

∞∑
m=0

wm

m!
E (χm) =

1

EBL
[
α, β; u, v; `

] ∞∑
m=0

EBL
[
α, β; u + m, v; `

]wm

m!
. (4.5)
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Proposition 4.1. Let χ represent the extended Euler’s beta logarithmic random variable with
parameters (α, β ; u, v). Then, for any $, ε > 0, the following suppositions are true:∣∣∣∣∣∣∣∣P

(
χ ≤ ε

)
−

EBL
[
α, β; u, v + 1; `

]
EBL

[
α, β; u, v; `

]
∣∣∣∣∣∣∣∣ ≤ 1

2
+

∣∣∣∣∣ε − 1
2

∣∣∣∣∣ , (4.6)

and

P (χ$ ≥ ε) ≤
EBL

[
α, β; u +$, v; `

]
εEBL

[
α, β; u, v; `

] . (4.7)

Proof. By invoking (2.6) and (4.3), we have

E(χ) = 1 −
EBL

[
α, β; u, v + 1; `

]
EBL

[
α, β; u, v; `

] , (4.8)

using Lemma 3.1 in [19, 24], we arrive at the required result (4.6).

The second inequality (4.7) can be easily obtained by an application of Markov’s inequality, namely

P (χ$ ≥ ε) ≤
E (χ$)
ε

, (4.9)

and the definition of E (χ$) , we obtain the coveted result (4.7).

Remark 4.1. As special cases of the results in this part,

• we get Proposition 3.2 in [19, pp.137] from (4.1) when ` = 0;
• we can reduce the symmetric results in [8, Chapter 5, p.258] and [16] when α = β = 1 in (4.1);
• we can obtain the previous results in [23–26] when α = β = 1 and ` = 0 in (4.1)−(4.5).

5. Conclusions

Recently, a great variety of extensions of the beta function have been broadly and usefully
employed in describing and solving several vital problems of statistics, physics, probability theory,
and astrophysics [10–14, 22–26]. In particular, it should be mentioned that further generalizations of
classical beta function and logarithmic mean have been introduced and investigated in [19], and their
properties and applications have been archived. The works above will motivate the new studies, where
the authors can introduce a more general definition of the beta function and logarithmic mean defined
in (2.1) of this manuscript. This newly defined function, which is called EEBLF, will have many
prospects and applications in different fields.
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