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1. Introduction

Let Z and P denote the set of integers and primes, respectively. In order to generalize Lehmer’s
congruence (see [4] or [7]) for modulo prime squares to be modulo integer squares, Cai et al. [1]
defined the following generalized Euler function for a positive integer n related to a given positive
integer e:

φe(n) =
[ n

e ]∑
i=1, gcd(i,n)=1

1,

where [x] is the greatest integer not more than x, i.e., φe(n) is the number of positive integers not greater
than [n

e ] and prime to n. It is clear that φ1(n) = φ(n) is just the Euler function of n, φ2(n) = 1
2φ(n), and

φe(n) =
∑
d|n

µ
(n
d

)[d
e

]
, (1.1)

where µ(n) is the Möbius function. There are some good results for the generalized Euler function and
its applications, especially those concerning φe(n) (e = 2, 3, 4, 6), which can be seen in [3].

In 2013, Cai et al [2] gave the explicit formula for φ3(n) and obtained a criterion regarding the parity
for φ2(n) or φ3(n), respectively. In [8], the authors derived the explicit formulae for φ4(n) and φ6(n),

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024609


12459

and then they obtained some sufficient and necessary conditions for the case that φe(n) or φe(n + 1) is
odd or even, respectively.

Recently, Wang and Liao [9] gave the formula for φ5(n) in some special cases and then obtained
some sufficient conditions for the case that φ5(n) is even. Liao and Luo [5] gave a computing formula
for φe(n) (e = p, p2, pq), where p and q are distinct primes, and n satisfies some certain conditions.
Liao [6] obtained the explicit formula for a special class of generalized Euler functions. However, the
explicit formula for φe(n) (e , 3, 4, 6) was not obtained in the general case.

In this paper, utilizing the methods and techniques given in [2, 5, 8], we study the explicit formula
and the parity for φe(n) (e = 8, 12), obtain the corresponding computing formula, and then give a
sufficient and necessary condition for the case that φe(n) (e = 8, 12) is odd or even, respectively.

For convenience, throughout the paper, we denote Ω(n) and ω(n) to be the number of prime factors
and distinct prime factors of a positive integer n, respectively. And for k primes p1, . . . , pk, set Pk =

{p1, . . . , pk},
RPk = {ri | pi ≡ ri(mod 8), 0 ≤ ri ≤ 7, pi ∈ Pk, 1 ≤ i ≤ k},

and
R′Pk
= {ri | pi ≡ ri(mod 12), 0 ≤ ri ≤ 11, pi ∈ Pk, 1 ≤ i ≤ k}.

We have organized this paper as follows. In Section 2, we obtain the obvious formulas for [m
8 ]

and [ m
12 ] based on Jacobi symbol, and some important lemmas are given. In Sections 3 and 4, according

to (1.1), and by using the property of the Möbius function µ(n), we derive the expressions for φe(8)
and φe(12). In Section 5, we give the parities of φ8(n) and φ12(n), respectively. In the last section, we
summarize the main advantage of the proposed method, and propose a further problem to be studied.

2. Preliminaries

In this section, we first present Lemmas 2.1 and 2.2, which are necessary for the derivations of
both [m

8 ] and [ m
12 ].

Lemma 2.1. For any odd positive integer m, we have[m
8

]
=

1
8

(
m − 4 + 2

(−2
m

)
+
(−1

m

))
. (2.1)

Furthermore, if gcd(m, 6) = 1, then we have[ m
12

]
=

1
12

(
m − 6 + 3

(−1
m

)
+ 2
(−3

m

))
, (2.2)

where ( a
m ) is the Jacobi symbol.

Proof. For any odd positive integer m, by properties of the Jacobi symbol, we have

(−1
m

)
=

1, m ≡ 1(mod 4),
−1, m ≡ 3(mod 4),

and
(−2

m

)
=

1, m ≡ 1, 3(mod 8),
−1, m ≡ 5, 7(mod 8).

Thus from m ≡ 1(mod 8), we can get that 1
8 (m − 4 + 2(−2

m ) + (−1
m )) = 1

8 (m − 1) and [m
8 ] = 1

8 (m − 1),
namely, (2.1) is true. Similarly, if m ≡ 3, 5, 7 (mod 8), by direct computation, (2.1) holds.
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Furthermore, if gcd(m, 6) = 1, then by the properties for the Jacobi symbol and the quadratic
reciprocity law, we have

(−3
m

)
=
(−1

m

)(m
3

)
(−1)

1
4 (3−1)(m−1) =

1, m ≡ 1, 7(mod 12),
−1, m ≡ 5, 11(mod 12).

Thus by m ≡ 1 (mod 12), we have that 1
12 (m − 6 + 3(−1

m ) + 2(−3
m )) = 1

12 (m − 1) = [ m
12 ], i.e., (2.2) is true.

Similarly, if m ≡ 5, 7, 11 (mod 12), one can get (2.2) also.
This completes the proof of Lemma 2.1.
Now, we give a property for the Möbius function, which unifies the cases of Lemma 1.5 in [2] and

Lemmas 1.4 and 1.5 in [8].
Lemma 2.2. Let a be a nonzero integer, p1, . . . , pk be distinct odd primes, and α1, . . . , αk be positive
integers. Suppose that n =

∏k
i=1 pαi

i and gcd(pi, a) = 1 (1 ≤ i ≤ k); then,

∑
d|n

µ
(n
d

)(a
d

)
=

k∏
i=1

(( a
pi

)αi
−
( a

pi

)αi−1)
. (2.3)

Proof. For a given integer x, set fx(m) =
∑

d|m µ(m
d )( x

d ).
First, if m = pα, where p is an odd prime and α is a positive integer, then, by the definition of the

Möbius function, we have

fa(m) = µ(1)
( a

pα
)
+ µ(p)

( a
pα−1

)
=
(a

p

)α
−
(a

p

)α−1
.

Second, if m = m1 pα, where α is a positive integer, p is an odd prime with gcd(m1, p) = 1, and m1 is
an odd positive integer, then we have

fa(m) =
∑
d|m1

µ
(m1

d

)( a
dpα
)
+
∑
d|m1

µ(p)µ
(m1

d

)( a
dpα−1

)
=
(a

p

)α∑
d|m1

µ
(m1

d

)(a
d

)
−
(a

p

)α−1∑
d|m1

µ
(m1

d

)(a
d

)
.

=
((a

p

)α
−
(a

p

)α−1)
fa(m1).

This means that fa(m) is a multiplicative function. Now denote pα∥n to be the case for both pα | n and
pα+1 ∤ n; then, we can get

fa(n) =
∏
pα∥n

((a
p

)α
−
(a

p

)α−1)
=

k∏
i=1

(( a
pi

)αi
−
( a

pi

)αi−1)
.

This completes the proof of Lemma 2.2.
The following lemmas are necessary for proving our main results.

Lemma 2.3. [2] Let p1, . . . , pk be distinct primes and α, α1, . . . , αk be non-negative integers. If n =
3α
∏k

i=1 pαi
i > 3 and gcd(pi, 3) = 1 (1 ≤ i ≤ k), then

φ3(n) =

1
3 φ(n) + 1

3 (−1)Ω(n)2ω(n)−α−1, if α = 0 or 1, pi ≡ 2(mod 3),
1
3 φ(n), otherwise.
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Lemma 2.4. [8] Let p1, . . . , pk be distinct odd primes and α, α1, . . . , αk be non-negative integers. If
n = 2α

∏k
i=1 pαi

i > 4, then

φ4(n) =

1
4 φ(n) + 1

4 (−1)Ω(n)2ω(n)−α, if α = 0 or 1, pi ≡ 3(mod 4),
1
4 φ(n), otherwise.

Lemma 2.5. [8] Let p1, . . . , pk be distinct primes and α, β, α1, . . . , αk be non-negative integers. If
n = 2α 3β

∏k
i=1 pαi

i > 6 and gcd(pi, 6) = 1 (1 ≤ i ≤ k), then

φ6(n) =


1
6 φ(n) + 1

6 (−1)Ω(n) 2 ω(n)+1−β, if α = 0 and β = 0 or 1, pi ≡ 5(mod 6),
1
6 φ(n) + 1

6 (−1)Ω(n) 2 ω(n)−1−β, if α = 1 and β = 0 or 1, pi ≡ 5(mod 6),
1
6 φ(n) − 1

6 (−1)Ω(n) 2 ω(n)−β, if α ≥ 2 and β = 0 or 1, pi ≡ 5(mod 6),
1
6 φ(n), otherwise.

Lemma 2.6. [6] Let p1, . . . , pk be distinct primes and α1, . . . , αk be positive integers. If n =
∏k

i=1 pαi
i

and e =
∏k

i=1 pβi
i with 0 ≤ βi ≤ αi − 1 (1 ≤ i ≤ k), then

φe(n) =
1
e
φ(n). (2.4)

3. The explicit formula for φ8(n)

First, for a fixed positive integer α and n = 2α, by Lemma 2.6 we can obtain the following:

φ8(2α) =


0, if α = 1, 2,
1, if α = 3,
2α−4, if α ≥ 4.

(3.1)

Next, we consider the case that n = 2αn1, where n1 > 1 is an odd integer. We have the following
theorem.
Theorem 3.1. Suppose that α is a non-negative integer, p1, . . . , pk are distinct odd primes, and n =
2α
∏k

i=1 pαi
i > 8. Then we have the following:

φ8(n) =



1
8 φ(n) + 1

4 (−1)Ω(n) 2 ω(n)−α,

if α = 0, 1, and RPk = {5, 7}, {5};
1
8 φ(n) + 1

8 (−1)Ω(n)−[ α+1
2 ] 2 ω(n)− 1

2 (1−(−1)α),

if α = 0, 1, 2, and RPk = {3, 7}, {3};
1
8 φ(n) + 1

8 (−1)Ω(n)−[ α2 ] 2 ω(n)− 1
2 (1−(−1)α)

+
1−[ α+1

2 ]
4 (−1)Ω(n) 2ω(n),

if α = 0, 1, 2, and RPk = {7};
1
8 φ(n), otherwise.

(3.2)

Proof. For n = 2α
∏k

i=1 pαi
i > 8, set n1 =

∏k
i=1 pαi

i ; then, gcd(n1, 2) = 1. There are 4 cases as follows.
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Case 1. α = 0, i.e., n = n1 > 8. By (1.1), (2.1) and Lemmas 2.1 and 2.2, we have

φ8(n) =
∑
d | n1

µ
(n1

d

)[d
8

]
=

1
8

∑
d | n1

µ
(n1

d

)(
d − 4 + 2

(−2
d

)
+
(−1

d

))
=

1
8

∑
d | n1

µ
(n1

d

)
d −

1
2

∑
d | n1

µ
(n1

d

)
+

1
4

∑
d | n1

µ
(n1

d

)(−2
d

)
+

1
8

∑
d | n1

µ
(n1

d

)(−1
d

)
=

1
8
φ(n1) +

1
4

k∏
i=1

((−2
pi

)αi
−
(−2

pi

)αi−1)
+

1
8

k∏
i=1

((−1
pi

)αi
−
(−1

pi

)αi−1)
. (3.3)

If 1 ∈ RPk , i.e., there exists an i (1 ≤ i ≤ k) such that pi ≡ 1 (mod 8), then (−2
pi

) = (−1
pi

) = 1. Now by (3.3)
we have

φ8(n) =
1
8
φ(n1) =

1
8
φ(n). (3.4)

If {3, 5} ⊆ RPk , i.e., there exist i , j such that pi ≡ 3 (mod 8) and p j ≡ 5 (mod 8), which means
that (−2

pi
) = (−1

p j
) = 1 , then, by (3.3) we also have

φ8(n) =
1
8
φ(n1) =

1
8
φ(n).

If RPk = {5, 7} or {5}, i.e., for any p ∈ Pk, we have that p ≡ 5, 7 (mod 8) or p ≡ 5 (mod 8), respectively.
This means that there exists a prime p such that (−2

p ) = −1 and (−1
p ) = 1. Thus by (3.3) we can obtain

φ8(n) =
1
8
φ(n1) +

1
4

k∏
i=1

(
2 · (−1)αi

)
=

1
8
φ(n) +

1
4

(−1)Ω(n) 2 ω(n). (3.5)

If RPk = {3, 7} or {3}, i.e., for any p ∈ Pk, p ≡ 3, 7 (mod 8) or p ≡ 3 (mod 8), respectively. This implies
that for any p ∈ Pk, (−1

p ) = −1, and there exists a prime p′ ∈ Pk such that p′ ≡ 3 (mod 8) ; then, (−2
p′ ) = 1.

Thus by (3.3) we have

φ8(n) =
1
8
φ(n1) +

1
8

k∏
i=1

(
2 · (−1)αi

)
=

1
8
φ(n) +

1
8

(−1)Ω(n) 2 ω(n). (3.6)

If RPk = {7}, i.e., for any p ∈ Pk, p ≡ 7 (mod 8), then (−2
p ) = (−1

p ) = −1. Thus by (3.3) we have

φ8(n) =
1
8
φ(n1) +

3
8

k∏
i=1

(
2 · (−1)αi

)
=

1
8
φ(n) +

3
8

(−1)Ω(n) 2 ω(n). (3.7)

Now from (3.5)–(3.7) we know that Theorem 3.1 is true.
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Case 2. α = 1, i.e., n = 2n1 > 8. Then from the definition we have

φ8(n) =
∑
d|n1

µ
(2n1

d

)[d
8

]
+
∑
d|n1

µ
(2n1

2d

)[2d
8

]
= −φ8(n1) + φ4(n1).

Now by Lemma 2.4 and the proof for Case 1, we can get the following:

φ8(n) =


1
8 φ(n) + 1

4 (−1)Ω(n) 2 ω(n)−1, if RPk = {5, 7}, {5};
1
8 φ(n) + 1

8 (−1)Ω(n)−1 2 ω(n)−1, if RPk = {3, 7}, {3};
1
8 φ(n) + 1

8 (−1)Ω(n) 2 ω(n)−1, if RPk = {7};
1
8 φ(n), otherwise.

(3.8)

This means that Theorem 3.1 is true in this case.
Case 3. α = 2, i.e., n = 4n1 > 8. Then from the definition we have

φ8(n) =
∑
d | n1

µ
(4n1

d

)[d
8

]
+
∑
d | n1

µ
(4n1

2d

)[2d
8

]
+
∑
d | n1

µ
(4n1

4d

)[4d
8

]
=
∑
d | n1

µ
(2n1

d

)[d
4

]
+
∑
d | n1

µ
(n1

d

)[d
2

]
= φ2(n1) − φ4(n1) =

1
2
φ(n1) − φ4(n1).

Now from Lemma 2.4 and the proof for Case 1, we can also get the following:

φ8(n) =


1
8 φ(n), if RPk = {5, 7}, {5},
1
8 φ(n) + 1

8 (−1)Ω(n)−1 2 ω(n), if RPk = {3, 7}, {3};
1
8 φ(n) + 1

8 (−1)Ω(n)−1 2 ω(n), if RPk = {7};
1
8 φ(n), otherwise.

(3.9)

This means that Theorem 3.1 holds in this case.
Case 4. α ≥ 3. Note that µ(2γ) = 0 for any positive integer γ ≥ 2 ; thus, by (1.1) and Lemma 2.4 we
have

φ8(n) =
∑
d | n1

µ
(2n1

d

)[2α−1d
8

]
+
∑
d | n1

µ
(n1

d

)[2αd
8

]
. (3.10)

If α = 3, then

φ8(n) = −
∑
d | n1

µ
(n1

d

)[d
2

]
+
∑
d | n1

µ
(n1

d

)
d = −

1
2
φ(n1) + φ(n1) =

1
2
φ(n1) =

1
8
φ(n)

If α ≥ 4, then φ8(n) = −2α−4φ(n1) + 2α−3φ(n1) = 2α−4φ(n1) = 1
8 φ(n), which means that Theorem 3.1

also holds.
From the above, we have completed the proof of Theorem 3.1.
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4. The explicit formula for φ12(n)

In this section, we give the explicit formula for φ12(n). Obviously, φ12(n) = 0 when n < 12, and
φ12(n) = 1 when n = 12 or 24 ; then, we consider n > 12 and n , 24.
Theorem 4.1. Let α and β be non-negative integers. If n = 2α 3β > 12 and n , 24, then the following
holds:

φ12(n) =


1
2 (3β−2 − (−1)α+β), if α = 0, or α ≥ 1, β ≥ 2;
2α−2 · 3β−2, if α ≥ 2, β ≥ 2;
1
3 (2α+β−3 + (−1)α+β), if α ≥ 4, β = 0, 1.

(4.1)

Proof. (1) For the case that α = 0, i.e., n = 3β > 12, and β ≥ 3, then we have

φ12(3β) =
∑
d | 3β
µ
(3β

d

)[ d
12

]
=
[ 3β
12

]
−
[3β−1

12

]
=
[3β−1

4

]
−
[3β−2

4

]
=

1
4
(
3β−1 − 2 + (−1)β−1) − 1

4
(
3β−2 − 2 + (−1)β−2)

=
1
2
(
3β−2 − (−1)β

)
.

(2) For the case that α = 1, i.e., n = 2 · 3β > 12, and β ≥ 2, by Lemma 2.5,

φ12(2 · 3β) =
∑
d | 3β
µ
(2 · 3β

d

)[ d
12

]
+
∑
d | 3β
µ
(2 · 3β

2d

)[2d
12

]
= −φ12(3β) + φ6(3β) = −

1
12
φ(3β) +

1
2

(−1)β +
1
6
φ(3β)

=
1
2
(
3β−2 − (−1)β+1).

(3) For the case that α = 2, i.e., n = 4 · 3β > 12, and so β ≥ 2, then we have

φ12(4 · 3β) =
∑

d | 4·3β
µ
(4 · 3β

d

)[ d
12

]
= µ(1)

[4 · 3β
12

]
+ µ(2)

[2 · 3β
12

]
+ µ(3)

[4 · 3β−1

12

]
+ µ(6)

[2 · 3β−1

12

]
= 3β−1 −

[3β−1

2

]
− 3β−2 +

[3β−2

2

]
= 3β−2.

(4) For the case that α = 3, i.e., n = 8 · 3β > 12 and n , 24, and β ≥ 2, then

φ12(8 · 3β) =
∑

d | 8·3β
µ
(8 · 3β

d

)[ d
12

]
= µ(1)

[8 · 3β
12

]
+ µ(2)

[4 · 3β
12

]
+ µ(3)

[8 · 3β−1

12

]
+ µ(6)

[4 · 3β−1

12

]
AIMS Mathematics Volume 9, Issue 5, 12458–12478.
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= 2 · 3β−1 − 3β−1 − 2 · 3β−2 + 3β−2

= 2 · 3β−2.

(5) For the case that α ≥ 4, i.e., n = 2α · 3β > 12, and so β ≥ 0, if β = 0, i.e., n = 2α(α ≥ 4), then we
have

φ12(2α) =
∑
d | 2α
µ
(2α

d

)[ d
12

]
=
[2α−2

3

]
−
[2α−3

3

]
=

1
3

(
2α−2 −

1
2
(
3 − (−1)α−2)) − 1

3

(
2α−3 −

1
2
(
3 − (−1)α−3))

=
1
3

(
2α−3 + (−1)α

)

If β = 1, i.e., n = 3 · 2α, then we have

φ12(3 · 2α) =
∑

d | 3·2α
µ
(3 · 2α

d

)[ d
12

]
= 2α−2 − 2α−3 −

[2α−2

3

]
+
[2α−3

3

]
=

1
3

(
2α−2 + (−1)α+1

)
.

If β ≥ 2, we have

φ12(2α · 3β) =
∑

d | 2α·3β
µ
(2α · 3β

d

)[ d
12

]
= µ(1)

[2α · 3β
12

]
+ µ(2)

[2α−1 · 3β

12

]
+ µ(3)

[2α · 3β−1

12

]
+ µ(6)

[2α−1 · 3β−1

12

]
= 2α−2 · 3β−1 −

[2α−2 · 3β−1

2

]
− 2α−2 · 3β−2 +

[2α−2 · 3β−2

2

]
= 2α−2 · 3β−2.

This completes the proof of Theorem 4.1.

Now consider the case that n = 2α 3βn1, where n1 > 1 and gcd(n1, 6) = 1. We have the following
theorem.

Theorem 4.2. Let α and β be non-negative integers, k, αi (1 ≤ i ≤ k) be positive integers, and p1, . . . , pk

be distinct primes. Suppose that gcd(pi, 6) = 1 (1 ≤ i ≤ k) and n = 2α 3β
∏k

i=1 pαi
i > 12; then, we have

the following:
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φ12(n) =



1
12 φ(n) + 1

4 (−1)Ω(n) · 2 ω(n)−α,

if α = 0, 1, β = 0, and R′Pk
= {7, 11}, {7};

1
12 φ(n) + 1

4 (−1)Ω(n)+1 · 2 ω(n)−α,

if α = 0, 1, β ≥ 2, and R′Pk
= {7, 11}, {7}, {11};

1
12 φ(n) + 1

6 (−1)Ω(n)+[ α+1
2 ] · 2 ω(n)−[ α+1

2 ]−β,

if α = 0, 1, 2, β = 0, 1, and R′Pk
= {5, 11}, {5},

or α = 0, 1, β = 1, and R′Pk
= {11};

or α = 2, β = 0, 1, and R′Pk
= {11};

1
12 φ(n) + 1

6 (−1)Ω(n) · 2 ω(n)−β,

if α ≥ 3, β = 0, 1, and R′Pk
= {5, 11}, {5}, {11};

1
12 φ(n) + 5

12 (−1)Ω(n) · 2 ω(n),

if α = 0, β = 0, and R′Pk
= {11};

1
12 φ(n) + 1

12 (−1)Ω(n) · 2 ω(n)−1,

if α = 1, β = 0, and R′Pk
= {11};

1
12 φ(n), otherwise.

(4.2)

Proof. Set n1 =
∏k

i=1 pαi
i ; then, gcd(n1, 6) = 1 and n = 2α 3β n1.

Case 1. α = 0.
(A) If β = 0, then n1 > 1. Thus by (1.1), (2.2) and Lemmas 2.1 and 2.2, we have

φ12(n) = φ12(n1) =
∑
d | n1

µ
(n1

d

)[ d
12

]
=

1
12

∑
d | n1

µ
(n1

d

)(
d − 6 + 3

(−1
d

)
+ 2
(−3

d

))
=

1
12

∑
d | n1

µ
(n1

d

)
d −

1
2

∑
d | n1

µ
(n1

d

)
+

1
4

∑
d | n1

µ
(n1

d

)(−1
d

)
+

1
6

∑
d | n1

µ
(n1

d

)(−3
d

)
=

1
12
φ(n1) +

1
4

k∏
i=1

((−1
pi

)αi
−
(−1

pi

)αi−1)
+

1
6

k∏
i=1

((−3
pi

)αi
−
(−3

pi

)αi−1)
. (4.3)

If 1 ∈ R′Pk
or {5, 7} ⊆ R′Pk

, then there exists pi ≡ 1 (mod 12), or there exist p j and pl such that p j ≡

5(mod 12) and pl ≡ 7 (mod 12); then, (−1
pi

) = (−3
pi

) = 1 or (−1
p j

) = (−3
pl

) = 1, respectively. Thus by (4.3)
we can get

φ12(n) =
1

12
φ(n1) =

1
12
φ(n). (4.4)
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If R′Pk
= {7, 11} or {7}, i.e., for any p ∈ Pk, we have that p ≡ 7, 11 (mod 12) or p ≡ 7 (mod 12),

respectively. This means that (−1
p ) = −1 and there exists a prime p′ ≡ 7 (mod 12), i.e., (−3

p′ ) = 1, in
either of the two cases. Thus by (4.3) we can obtain

φ12(n) =
1
12
φ(n1) +

1
4

k∏
i=1

(
2 (−1)αi

)
=

1
12
φ(n) +

1
4

(−1)Ω(n) 2ω(n). (4.5)

If R′Pk
= {5, 11} or {5}, i.e., for any p ∈ Pk, p ≡ 5, 11 (mod 12) or p ≡ 5 (mod 12), respectively.

Then (−3
p ) = −1, and there exists a prime p′ ≡ 5 (mod 12), i.e., (−1

p′ ) = 1 in either case. Thus by (4.3)
we can get

φ12(n) =
1
12
φ(n1) +

1
6

k∏
i=1

(
2 (−1)αi

)
=

1
12
φ(n) +

1
6

(−1)Ω(n) 2ω(n). (4.6)

If R′Pk
= {11}, i.e., for any p ∈ Pk, p ≡ 11 (mod 12); then, (−1

p ) = (−3
p ) = −1. Thus by (4.3) we have

φ12(n) =
1

12
φ(n1) +

5
12

k∏
i=1

(
2 (−1)αi

)
=

1
12
φ(n) +

5
12

(−1)Ω(n) 2 ω(n). (4.7)

(B) If β ≥ 1, then by (1.1) we have

φ12(n) = φ12(3βn1) =
∑
d | n1

µ
(3βn1

d

)[ d
12

]
+
∑

d | 3β−1n1

µ
(3βn1

3d

)[3d
12

]
= µ(3β)φ12(n1) + φ4(3β−1n1).

Now from β = 1, Lemma 2.4 and Case 1, we can get the following:

φ12(n) = −φ12(n1) + φ4(n1)

=


1
12 φ(n), if R′Pk

= {7, 11}, {7},
1
12 φ(n) + 1

6 (−1)Ω(n) 2 ω(n)−1, if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

6 (−1)Ω(n) 2 ω(n)−1, if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.8)

For the case that β ≥ 2, note that µ(3γ) = 0 with γ ≥ 2; thus, by Lemma 2.4 we have the following:

φ12(n) = φ4(3β−1n1)

=


1
12 φ(n) + 1

4 (−1)Ω(n)+1 2 ω(n), if R′Pk
= {7, 11}, {7},

1
12 φ(n), if R′Pk

= {5, 11}, {5},
1
12 φ(n) + 1

4 (−1)Ω(n)+1 2 ω(n), if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.9)

From the above (4.3)–(4.9), Theorem 4.2 is proved in this case.
Case 2. α = 1.
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(A) If β = 0, i.e., n = 2n1, then by (1.1), Case 1 and Lemma 2.4, we have

φ12(n) =
∑
d | n1

µ
(2n1

d

)[ d
12

]
+
∑
d | n1

µ
(2n1

2d

)[2d
12

]
= −φ12(n1) + φ6(n1)

=


1

12 φ(n) + 1
4 (−1)Ω(n) 2 ω(n)−1, if R′Pk

= {7, 11}, {7},
1

12 φ(n) + 1
12 (−1)Ω(n)+1 2 ω(n), if R′Pk

= {5, 11}, {5},
1

12 φ(n) + 1
12 (−1)Ω(n) 2 ω(n)−1, if R′Pk

= {11},
1

12 φ(n), otherwise.

(4.10)

(B) If β = 1, i.e., n = 6n1, then from (1.1) we can get

φ12(n) =
∑
d | n1

µ
(6n1

d

)[ d
12

]
+
∑
d | n1

µ
(6n1

2d

)[2d
12

]
+
∑
d | n1

µ
(6n1

3d

)[3d
12

]
+
∑
d | n1

µ
(6n1

6d

)[6d
12

]
= φ12(n1) − φ6(n1) − φ4(n1) + φ2(n1).

Now by Lemmas 2.4 and 2.5 and Case 1, we have the following:

φ12(n) =


1
12 φ(n), if R′Pk

= {7, 11}, {7},
1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.11)

(C) If β ≥ 2, then by (1.1) one can easily see that

φ12(n) =
∑
d | n1

µ
(2 · 3βn1

d

)[ d
12

]
+
∑
d | n1

µ
(2 · 3βn1

2d

)[2d
12

]
+
∑

d | 3β−1n1

µ
(2 · 3βn1

3d

)[3d
12

]
+
∑

d | 3β−1n1

µ
(2 · 3βn1

6d

)[6d
12

]
= −φ4(3β−1n1) + φ2(3β−1n1).

Now by Lemma 2.4 we can get the following:

φ12(n) =


1

12 φ(n) + 1
4 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk

= {7, 11}, {7},
1

12 φ(n), if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

4 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.12)

From the above (4.10) and (4.12), Theorem 4.2 is true in this case.
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Case 3. α = 2.
(A) If β = 0, i.e., n = 4n1, then from Lemmas 2.3 and 2.5, we can obtain

φ12(n) =
∑

d | 4n1

µ
(4n1

d

)[ d
12

]
=
∑
d | n1

µ
(4n1

d

)[ d
12

]
+
∑
d | n1

µ
(4n1

2d

)[2d
12

]
+
∑
d | n1

µ
(4n1

4d

)[4d
12

]
= −φ6(n1) + φ3(n1)

=


1

12 φ(n), if R′Pk
= {7, 11}, {7},

1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n), if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n), if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.13)

(B) If β = 1, i.e., n = 12 n1, then by the definition we have

φ12(n) =
∑

d|12n1

µ
(12n1

d

)[ d
12

]
=
∑
d | n1

µ
(12n1

d

)[ d
12

]
+
∑
d | n1

µ
(12n1

2d

)[2d
12

]
+
∑
d | n1

µ
(12n1

4d

)[4d
12

]
+
∑
d | n1

µ
(12n1

3d

)[3d
12

]
+
∑
d | n1

µ
(12n1

6d

)[6d
12

]
+
∑
d | n1

µ
(12n1

12d

)[12d
12

]
= φ6(n1) − φ3(n1) − φ2(n1) + φ(n1).

Now by Lemmas 2.3 and 2.4 and Case 1, we can get the following:

φ12(n) =


1
12 φ(n), if R′Pk

= {7, 11}, {7},
1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

12 (−1)Ω(n)+1 2 ω(n)−1, if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.14)

(C) If β ≥ 2, then from n = 4 · 3β n1 and the definition, we know that

φ12(n) =
∑

d | 4·3βn1

µ
(4 · 3βn1

d

)[ d
12

]
=
∑

d | 2·3β−1n1

µ
(4 · 3βn1

6d

)[6d
12

]
=

∑
d | 3β−1n1

µ
(2 · 3βn1

2d

)[2d
2

]
+
∑

d | 3β−1n1

µ
(2 · 3βn1

d

)[d
2

]
(4.15)

= φ(3β−1n1) − φ2(3β−1n1) =
1
2
φ(3β−1n1)

=
1

12
φ(4 · 3βn1) =

1
12
φ(n).

From the above (4.13)–(4.15), Theorem 4.2 is proved in this case.
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Case 4. α ≥ 3.

(A) If β = 0, i.e., n = 2α n1, then by Lemma 2.5 we have

φ12(n) =
∑
d | n1

µ
(2αn1

d

)[ d
12

]
+
∑

d | 2α−1n1

µ
(2αn1

2d

)[2d
12

]
= φ6(2α−1n1)

=


1
12 φ(n), if R′Pk

= {7, 11}, {7},
1
12 φ(n) + 1

6 (−1)Ω(n) 2 ω(n), if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

6 (−1)Ω(n) 2 ω(n), if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.16)

(B) If β = 1, i.e., n = 3 · 2α n1, then by the definition we have

φ12(n) =
∑
d | n1

µ
(3 · 2αn1

d

)[ d
12

]
+
∑

d | 2α−1n1

µ
(3 · 2αn1

2d

)[2d
12

]
+
∑
d | n1

µ
(3 · 2αn1

3d

)[3d1

12

]
+
∑

d | 2α−1n1

µ
(3 · 2αn1

6d

)[6d
12

]
= −φ6(2α−1n1) + φ2(2α−1n1)

=


1

12 φ(n), if R′Pk
= {7, 11}, {7},

1
12 φ(n) + 1

12 (−1)Ω(n) 2 ω(n), if R′Pk
= {5, 11}, {5},

1
12 φ(n) + 1

12 (−1)Ω(n) 2 ω(n), if R′Pk
= {11},

1
12 φ(n), otherwise.

(4.17)

(C) If β ≥ 2, then by Lemma 2.6 we can get

φ12(n) =
1

12
φ(2α · 3βn1) =

1
12
φ(n). (4.18)

Now from (4.16)–(4.18), Theorem 4.2 is proved in this case.

From the above, we complete the proof for Theorem 4.2.

5. The parity of the generalized Euler functions φ8(n) and φ12(n)

Based on Theorems 3.1, 4.1 and 4.2, this section gives the parity of φ8(n) and φ12(n), respectively.

Theorem 5.1. If n is a positive integer, then φ8(n) is odd if and only if n = 8, 16 or n is given by
Table 1.
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Table 1. the conditions of φ8(n) is odd.

n Conditions
pα p ≡ 9, 15 (mod 16); p ≡ 3, 5 (mod 16), 2 |α; p ≡ 11, 13 (mod 16), 2 ∤ α;
2pα p ≡ 7, 9 (mod 16); p ≡ 3, 13 (mod 16), 2 |α; p ≡ 5, 11 (mod 16), 2 ∤ α;
4pα p ≡ 3, 5 (mod 8);
8pα p ≡ 3, 7 (mod 8);
pα1

1 pα2
2 p1 ≡ p2 ≡ 3 (mod 8); p1 ≡ p2 ≡ 5 (mod 8); p1 ≡ 3 (mod 8), p2 ≡ 5 (mod 8);

2pα1
1 pα2

2 p1 ≡ p2 ≡ 3 (mod 8); p1 ≡ p2 ≡ 5 (mod 8); p1 ≡ 3 (mod 8), p2 ≡ 5 (mod 8).

In the above table, p, p1, p2 are odd primes with p1 , p2, and α, α1, α2 are positive integers.
Proof. For n = 2α, by (3.1) we know that φ8(n) is odd if and only if n = 8, 16.

Now suppose that n = 2α
∏k

i=1 pαi
i , where α ≥ 0, α1, . . . , αk are positive integers, and p1, . . . , pk are

distinct odd primes. Set n1 =
∏k

i=1 pαi
i ; then, n1 > 1 is odd. By Theorem 3.1, we have the following

four cases.
Case 1. RPk = {5, 7} or {5}.
(A) If α = 0, i.e., n = n1 is odd, then, by (3.2) we have that φ8(n) = 1

8φ(n) + 1
4 (−1)Ω(n)2ω(n). Note that

there exists a prime factor p of n such that p ≡ 5 (mod 8); thus, we must have that ω(n) ≤ 2 if φ8(n) is
odd. For ω(n) = 2, i.e., n = pα1

1 pα2
2 , by (3.2) we have

φ8(n) =
1
8

pα1−1
1 (p1 − 1) pα2−1

2 (p2 − 1) + (−1)α1+α2 .

Therefore φ8(n) is odd if and only if p1 ≡ p2 ≡ 5 (mod 8), which is true. Now for ω(n) = 1, i.e., n = pα1
1

with p1 ≡ 5 (mod 8), similarly, by (3.2) we have

φ8(n) =
1
8

pα1−1
1 (p1 − 1) +

1
2

(−1)α1 =
1
8
(
pα1−1

1 (p1 − 1) + 4 · (−1)α1
)
.

From p1 ≡ 5 (mod 8), we have that p1 ≡ 5, 13 (mod 16). If p1 ≡ 5 (mod 16), then

pα1−1
1 (p1 − 1) + 4(−1)α1 ≡ 4 · 5α1−1 + 4(−1)α1(mod 16).

Thus, φ8(n) is odd if and only if 2 | α1. If p1 ≡ 13 (mod 16), then

pα1−1
1 (p1 − 1) + 4(−1)α1 ≡ 12 · (−3)α1−1 + 4(−1)α1(mod 16).

Thus, φ8(n) is odd if and only if α1 is odd.
(B) If α = 1, i.e., ω(n) ≥ 2, by (3.2) we have that φ8(n) = 1

8φ(n) + 1
4 (−1)Ω(n)2ω(n)−1. Then we must have

that ω(n) ≤ 3 if φ8(n) is odd. For ω(n) = 3, namely, n = 2pα1
1 pα2

2 , using the same method as (A), φ8(n)
is odd if and only if p1 ≡ p2 ≡ 5 (mod 8). Now for ω(n) = 2, i.e., n = 2pα1

1 with p1 ≡ 5 (mod 8), similar
to (A), φ8(n) is odd if and only if p1 ≡ 5 (mod 16) and α1 is odd, or if p1 ≡ 13 (mod 16) and 2 | α1 .
(C) If α = 2, i.e., ω(n) ≥ 2, then by (3.2), we have that φ8(n) = 1

8φ(n) = 1
4

∏k
i=1 pαi−1

i (pi − 1). Thus
from the assumption that pi ≡ 5, 7 (mod 8) or pi ≡ 5 (mod 8), we know that ω(n) = 2 if φ8(n) is odd. In
this case, n = 4pα1

1 with p1 ≡ 5 (mod 8); then, pα1−1
1 (p1 − 1) ≡ 4 (mod 8), namely, φ8(n) is odd.
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(D) If α ≥ 3, then by (3.2), φ8(n) = 1
8φ(n) = 2α−4∏k

i=1 pαi−1
i (pi − 1). Thus we must have that α = 3 and

k = 1 if φ8(n) is odd, namely, n = 8pα1
1 with p1 ≡ 5 (mod 8). In this case, φ8(n) = 1

8φ(n) = 1
2 pα1−1

1 (p1−1)
is always even.
Case 2. RPk = {3, 7} or {3}.
(A) If α = 0, by (3.2) we have that φ8(n) = 1

8φ(n) + 1
8 (−1)Ω(n)2ω(n). Thus we must have that ω(n) ≤ 3

if φ8(n) is odd. For the case that ω(n) = 3, i.e, n = pα1
1 pα2

2 pα3
3 , where pi ≡ 3 (mod 4) (i = 1, 2, 3),

it is easy to see that φ8(n) is always even in this case. Therefore we must have that ω(n) = 1, 2.
Consider that ω(n) = 2, i.e., n = pα1

1 pα2
2 . Note that RPk = {3, 7} or {3}; then, by (3.2), φ8(n) =

1
8

(
pα1−1

1 (p1−1) pα2−1
2 (p2−1)+4·(−1)α1+α2

)
is odd if and only if p1 ≡ p2 ≡ 3 (mod 8). Now, for ω(n) = 1,

i.e., n = pα1
1 with p1 ≡ 3 (mod 8), then by (3.2) we have that φ8(n) = 1

8

(
pα1−1

1 (p1 − 1) + 2(−1)α1
)
. Thus,

φ8(n) is odd if and only if p1 ≡ 3 (mod 16) and 2 | α1, or if p1 ≡ 11 (mod 16) and α1 is odd.
(B) If α = 1, i.e., ω ≥ 2, by (3.2) we have that φ8(n) = 1

8φ(n) + 1
8 (−1)Ω(n)−12ω(n)−1. Thus we must have

that ω(n) ≤ 3 if φ8(n) is odd. Using the same method as (A) in case 1, we can get that φ8(n) is odd if
and only if n = 2pα1

1 pα2
2 with p1 ≡ p2 ≡ 3 (mod 8), or if n = 2pα1

1 with p1 ≡ 3 (mod 16) and 2 | α1, or if
p1 ≡ 11 (mod 16) and α1 is odd.
(C) If α = 2, i.e., ω(n) ≥ 2, by (3.2) we have that φ8(n) = 1

8φ(n)+ 1
8 (−1)Ω(n)−1 2 ω(n). Therefore we must

have that ω(n) ≤ 3 if φ8(n) is odd. For the case that ω(n) = 3, i.e., n = 4pα1
1 pα2

2 , we know that

φ8(n) =
1
4

pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) + (−1)α1+α2+1,

which is always even. Now for the case that ω(n) = 2, i.e., n = 4pα1
1 with p1 ≡ 3 (mod 8), by (3.2) we

have that φ8(n) = 1
4 (pα1−1

1 (p1 − 1) + 2(−1)α1+1). Since

pα1−1
1 (p1 − 1) + 2(−1)α1+1 ≡ 2 · 3α1−1 + 2(−1)α1+1 ≡ 4 (mod 8),

it follows that φ8(n) is odd.
(D) If α ≥ 3, by (3.2) we have that φ8(n) = 1

8φ(n) = 2α−4∏k
i=1 pαi−1

i (pi − 1). From RPk = {3, 7} or {3},
we must have that α = 3 and k = 1 if φ8(n) is odd, namely, n = 8pα1

1 with p1 ≡ 3 (mod 8). Obviously,
φ8(n) = 1

2 pα1−1
1 (p1 − 1) is odd in this case.

Case 3. RPk = {7}.
(A) If α = 0, by (3.2), φ8(n) = 1

8φ(n) + 3
8 (−1)Ω(n) 2 ω(n). Then we must have that ω(n) ≤ 2 if φ8(n) is

odd. For ω(n) = 2, i.e., n = pα1
1 pα2

2 , it follows that

φ8(n) =
1
2

(
pα1−1

1 pα2−1
2 ·

p1 − 1
2
·

p2 − 1
2
+ 3 · (−1)α1+α2

)
.

Since p1 ≡ p2 ≡ 7 (mod 8), we have that p1−1
2 ·

p2−1
2 ≡ 1 (mod 4) and

pα1−1
1 pα2−1

2 ·
p1 − 1

2
·

p2 − 1
2
+ 3 · (−1)α1+α2 ≡ (−1)α1+α2−2 + 3 · (−1)α1+α2 ≡ 0 (mod 4),

which means that φ8(n) is even. Now for ω(n) = 1, i.e., n = pα1
1 , by (3.2) we have

φ8(n) =
1
4

(
pα1−1

1 ·
p1 − 1

2
+ 3 · (−1)α1

)
.
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Now from p1 ≡ 7 (mod 8), we have that p1 ≡ 7, 15 (mod 16). If p1 ≡ 7 (mod 16), then

pα1−1
1 ·

p1 − 1
2
+ 3 · (−1)α1 ≡ 3 · (−1)α1−1 + 3 · (−1)α1 ≡ 0 (mod 8),

namely, φ8(n) is even. Thus, p1 ≡ 15(mod 16), then

pα1−1
1 ·

p1 − 1
2
+ 3 · (−1)α1 ≡ 7 · (−1)α1−1 + 3 · (−1)α1 ≡ 4 (mod 8),

namely, φ8(n) is odd.
(B) If α = 1, by (3.2), φ8(n) = 1

8φ(n) + 1
8 (−1)Ω(n)2 ω(n)−1. Using a similar proof as that for (A) in case 1,

φ8(n) is odd if and only if n = 2pα1
1 and p1 ≡ 7 (mod 16).

(C) If α = 2, i.e., ω(n) ≥ 2, by (3.2), φ8(n) = 1
8φ(n) + 1

8 (−1)Ω(n)−1 2 ω(n). Then we must have that
ω(n) ≤ 3 if φ8(n) is odd. For ω(n) = 3, i.e., n = 4pα1

1 pα2
2 with p1 ≡ p2 ≡ 7 (mod 8), we know that

φ8(n) = pα1−1
1 pα2−1

2 ·
p1 − 1

2
·

p2 − 1
2
+ (−1)α1+α2−1

is always even. Now for ω(n) = 2, i.e., n = 4pα1
1 with p1 ≡ 7 (mod 8), we can verify that

φ8(n) =
1
2

(
pα1−1

1 ·
p1 − 1

2
+ (−1)α1−1

)
is also even.
(D) If α ≥ 3, by (3.2), φ8(n) = 1

8φ(n) = 2α−4∏k
i=1 pαi−1

i (pi−1). Hence, by RPk = {7} we know that φ8(n)
is odd if and only if α = 3 and k = 1, i.e., n = 8pα1

1 with p1 ≡ 7 (mod 8).
Case 4. {3, 5} ⊆ RPk or 1 ∈ RPk .
(A) If {3, 5} ⊆ RPk , i.e., k ≥ 2, then by (3.2) we have that φ8(n) = 1

8φ(n) = 1
8φ(2α)

∏k
i=1 pαi−1

i (pi − 1).
Thus we must have that k = 2 and α ≤ 1 if φ8(n) is odd, namely, n = pα1

1 pα2
2 or 2pα1

1 pα2
2 , where

p1 ≡ 3 (mod 8) and p2 ≡ 5 (mod 8). Obviously, φ8(n) = 1
8 pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1) is always odd in

this case.
(B) If 1 ∈ RPk , by (3.2), φ8(n) = 1

8φ(n) = 1
8φ(2α)

∏k
i=1 pαi−1

i (pi − 1). Thus, we must have that α ≤ 1
and k = 1 if φ8(n) is odd. Namely, n = pα1

1 , 2pα1
1 with p1 ≡ 1 (mod 8); then, φ8(n) = 1

8 pα1−1(p1 − 1).
Obviously, φ8(n) is odd if and only if p1 ≡ 9 (mod 16).

From the above, we have completed the proof of Theorem 5.1.
Theorem 5.2. If n is a positive integer, then φ12(n) is odd if and only if n = 2α (α ≥ 4), 3 · 2α (α ≥ 2),
2 · 3β (β ≥ 2), 4 · 3β (β ≥ 2), or if it satisfies the conditions given in Table 2.

Table 2. the conditions of φ12(n) is odd.

n Conditions
pα p ≡ 13, 17, 19, 23 (mod 24);
2pα p ≡ 7, 11, 13, 17 (mod 24);
3pα p ≡ 5, 7 (mod 12);
4pα p ≡ 5, 7 (mod 12);
6pα p ≡ 5, 7 (mod 12);
12pα p ≡ 5, 11 (mod 12).
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Here, p > 3 is an odd prime and α ≥ 1.
Proof. Obviously, by the definition of φ12(n) we can get that φ12(n) = 0 for n < 12 and φ12(n) = 1 for
n = 12, 24; then, we consider that n > 12 and n , 24. First, we consider the case that n = 2α · 3β.

If α = 0, we have that β ≥ 3 ; then, by (4.1), φ12(n) = 1
2

(
3β−2 − (−1)β

)
is even.

If α = 1, we have that β ≥ 2 ; then, by (4.1), φ12(n) = 1
2

(
3β−2 − (−1)β+1) is odd.

If α = 2, we have that β ≥ 2 ; then, by (4.1), φ12(n) = 3β−2 is odd.
If α = 3, we have that β ≥ 2 ; then, by (4.1), φ12(8 · 3β) = 2 · 3β−2 is even.
If α ≥ 4, then that β ≥ 0. For β = 0, by (4.1), φ12(n) = 1

3 (2α−3 + (−1)α) is odd. For β = 1, by (4.1),
φ12(n) = 1

3

(
2α−2 + (−1)α+1) is odd. For β ≥ 2, by (4.1), φ12(2α · 3β) = 2α−2 · 3β−2, which is always even.

Next, we consider the case that n = 2α 3βn1, where α ≥ 0, β ≥ 0, n1 > 1 and gcd(n1, 6) = 1. For
convenience, we set n = 2α 3β

∏k
i=1 pαi

i , where αi ≥ 1, pi is an odd prime and pi > 3 (1 ≤ i ≤ k). By
Theorem 4.2 we have the following four cases.
Case 1. R′Pk

= {7, 11} or {7}.
(A) α = 0. If β = 0, i.e., ω(n) ≥ 1, from (4.2) we have that φ12(n) = 1

12φ(n) + 1
4 (−1)Ω(n) 2 ω(n). Thus,

from the assumption that R′Pk
= {7, 11} or {7}, we must have thatω(n) ≤ 2 if φ12(n) is odd. Forω(n) = 2,

i.e., n = pα1
1 pα2

2 , note that R′Pk
= {7, 11} or {7} ; then,

φ12(n) =
1
3

pα1−1
1 pα2−1

2 ·
p1 − 1

2
·

p2 − 1
2
+ (−1)α1+α2

is always even in this case. Thus, ω(n) = 1, i.e., n = pα1
1 ; then, by (4.5),

φ12(n) =
1

12
(
pα1−1

1 (p1 − 1) + 6 · (−1)α1
)
.

Note that p1 ≡ 7 (mod 12), i.e., p1 ≡ 7, 19 (mod 24). If p1 ≡ 7 (mod 24), then pα1−1
1 (p−1)+6 · (−1)α1 ≡

0 (mod 24), which means that φ12(n) is even. Thus, p1 ≡ 19 (mod 24); then, pα1−1
1 (p1 − 1)+ 6 · (−1)α1 ≡

12 (mod 24), namely, φ12(n) is odd.
If β = 1, i.e., ω(n) ≥ 2, by (4.2), φ12(n) = 1

12φ(n) = 1
6

∏k
i=1 pαi−1

i (pi−1). Similarly, we must have that
ω(n) = 2 if φ12(n) is odd. In this case, n = 3pα1 with p1 ≡ 7 (mod 12); then, φ12(n) = 1

6 pα−1
1 (p1−1), easy

to see that φ12(n) is always even. If β ≥ 2, i.e., ω(n) ≥ 2, by (4.2), φ12(n) = 1
12φ(n) + 1

4 (−1)Ω(n)+1 2 ω(n).
Similarly, we must have that ω(n) = 2, i.e., n = 3βpα1

1 if φ12(n) is odd. Since p1 ≡ 7 (mod 12), it follows
that φ12(n) = 3β−2 pα1−1

1 ·
p1−1

2 + (−1)β+α1+1 is always even.
(B) α = 1. If β = 0, i.e., ω(n) ≥ 2, by (4.10), φ12(n) = 1

12φ(n) + 1
4 (−1)Ω(n)2ω(n)−1. Similarly, we must

have that ω(n) ≤ 3 if φ12(n) is odd. For ω(n) = 3, i.e., n = 2pα1
1 pα2

2 , note that R′Pk
= {7, 11} or {7}; then,

it is easy to see that φ12(n) is always even. Thus, ω(n) = 2, i.e., n = 2pα1
1 ; note that p1 ≡ 7 (mod 12),

namely, p1 ≡ 7, 19 (mod 24). In this case, φ12(n) is odd if and only if p1 ≡ 7 (mod 24).
If β = 1, i.e., ω(n) ≥ 3, by (4.2), φ12(n) = 1

12φ(n) = 1
6

∏k
i=1 pαi−1

i (pi − 1). Similarly, from R′Pk
=

{7, 11} or {7}, we can get that φ12(n) is odd if and only if ω(n) = 3, i.e., n = 6pα1 with p1 ≡ 7 (mod 12).
If β ≥ 2, i.e., ω(n) ≥ 3, by(4.2), φ12(n) = 1

12φ(n) + 1
4 (−1)Ω(n)+12ω(n)−1. Then we must have that

ω(n) = 3 if φ12(n) is odd, namely, n = 2 · 3βpα1
1 with p1 ≡ 7 (mod 12). Obviously, φ12(n) = 3β−2 pα−1 ·

p−1
2 + (−1)2+β+α is always even in this case.

(C) α = 2. If β = 0, i.e., ω(n) ≥ 2, by (4.2), φ12(n) = 1
12φ(n) = 1

6

∏k
i=1 pαi−1

i (pi − 1). Thus, we must
have that ω(n) = 2 if φ12(n) is odd. In this case, n = 4pα1

1 with p1 ≡ 7 (mod 12); then, pα1
1 (p1 − 1) ≡

6 (mod 12), which means that φ12(n) is always odd in this case.
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If β ≥ 1, i.e., ω(n) ≥ 3, by (4.2), φ12(n) = 1
12φ(n) = 3β−2∏k

i=1 pαi−1
i (pi − 1). Note that R′Pk

=

{7, 11} or {7}; then, φ12(n) is always even.
(D) α ≥ 3. By (4.2) and R′Pk

= {7, 11} or {7}, φ12(n) = 1
12φ(n) = 1

3 · 2
α−3φ(3βn1) is always even in this

case.
Case 2. R′Pk

= {5, 11} or {5}.
(A) α = 0. If β = 0, i.e., ω(n) ≥ 1, from (4.6), we can get that φ12(n) = 1

12 φ(n) + 1
6 (−1)Ω(n) 2ω(n). Thus,

we must have that ω(n) = 1 if φ12(n) is odd, namely, n = pα1
1 with p1 ≡ 5 (mod 12). Hence

φ12(pα1
1 ) =

1
12

pα1−1
1 (p1 − 1) +

1
3

(−1)α1 =
1
3

(
pα1−1

1 ·
p1 − 1

4
+ (−1)α1

)
.

Note that p1 ≡ 5 (mod 12), i.e., p1 ≡ 5, 17 (mod 24). If p1 ≡ 5(mod 24), then pα−1
1 ·

p1−1
4 + (−1)α1 ≡

0(mod 6), which means that φ12(pα1 ) is always even. Thus, p1 ≡ 17 (mod 24), in this case pα1−1
1 ·

p1−1
4 +

(−1)α1 ≡ 3 (mod 6), namely, φ12(pα1) is odd.
If β = 1, i.e., ω(n) ≥ 2, from (4.8) we have that φ12(n) = 1

12 φ(n) + 1
6 (−1)Ω(n) 2ω(n)−1. Thus, we must

have that ω(n) = 2 if φ12(n) is odd, namely, n = 3pα1
1 with p1 ≡ 5 (mod 12); in this case

φ12(3pα1
1 ) =

1
3

(
2 pα1−1

1 ·
p1 − 1

4
+ (−1)α1

)
is always odd.

If β ≥ 2, i.e., ω(n) ≥ 2, from (4.9) we can get that φ12(n) = 1
12 φ(n). We must have that ω(n) = 2, i.e.,

n = 3βpα(β ≥ 2), if φ12(n) is odd. From the assumption p1 ≡ 5 (mod 12), φ12(3β pα1
1 ) = 1

12 φ(3β pα1
1 ) =

2 · 3β−1 pα1−1
1 ·

p1−1
4 is always even.

(B) α = 1, i.e., ω(n) ≥ 2. By (4.10)–(4.12), we must have ω(n) ≤ 3 if φ12(n) is odd. Namely,
n = 2pα1

1 , 2pα1
1 pα2

2 , 6pα1
1 , or 2 · 3βpα1

1 (β ≥ 2). Similar to the proof of (A) in case 1, φ12(n) is odd if and
only if n = 2pα1

1 with p1 ≡ 17 (mod 24), or if n = 6pα1
1 with p1 ≡ 5 (mod 12).

(C) α = 2. If β = 0, i.e., ω(n) ≥ 2, by (4.13), φ12(n) = 1
12φ(n) + 1

12 (−1)Ω(n)+12ω(n); then, we must
have that ω(n) = 2 if φ12(n) is odd. In this case, n = 4pα1

1 with p1 ≡ 5 (mod 12). Hence, φ12(n) =
1
6 pα1−1

1 (p1 − 1) + 1
3 (−1)α1+3 = 1

3

(
pα1−1

1
p1−1

2 + (−1)α1+3
)

is always odd.
If β = 1, i.e.,ω(n) ≥ 3, by (4.14), φ12(n) = 1

12φ(n)+ 1
12 (−1)Ω(n)+12ω(n)−1; we must have thatω(n) = 3 if

φ12(n) is odd. In this case, n = 12 pα1
1 with p1 ≡ 5 (mod 12); then, φ12(n) = 1

3 pα1−1
1 (p1−1)+ 1

3 (−1)α1+4 =
1
3

(
pα1−1

1 (p1 − 1) + (−1)α1+4) is odd.
If β ≥ 2, i.e., ω(n) ≥ 3, by (4.15), φ12(n) = 1

12φ(n); we must have that ω(n) = 3 if φ12(n) is odd.
Namely, n = 4 · 3βpα1

1 with p1 ≡ 5 (mod 12); then,

φ12(n) =
1

12
φ(n) = 3β−2 pα1−1

1 (p1 − 1)

is always even.
(D) α ≥ 3, i.e., ω(n) ≥ 2. If β = 0, then by (4.16) and R′Pk

= {5, 11} or {5}, we konw that φ12(n) =
1
12φ(n) + 1

6 (−1)Ω(n) 2 ω(n) is always even in this case.
If β = 1 , by (4.17) and R′Pk

= {5, 11} or {5}, we know that φ12(n) = 1
12φ(n) + 1

12 (−1)Ω(n) 2 ω(n) is
always even in this case.

If β ≥ 2 , by (4.18) and R′Pk
= {5, 11} or {5}, φ12(n) = 1

12φ(n) is always even in this case.
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Case 3. R′Pk
= {11}.

(A) α = 0, i.e., ω(n) ≥ 1. From (4.7)–(4.9), we must have that ω(n) ≤ 2 if φ12(n) is odd. Consider that
ω(n) = 2, i.e., n = pα1

1 pα2
2 , or 3βpα1

1 (β ≥ 1) with p1 ≡ p2 ≡ 11 (mod 12). Thus, by (4.7)–(4.9), φ12(n) is
always even. Hence, ω(n) = 1, i.e., n = pα1

1 with p ≡ 11 (mod 12); then, (4.7) we can get

φ12(pα1
1 ) =

1
12

pα1−1
1 (p1 − 1) +

5
6

(−1)α1 =
1
6

(
pα1−1

1 ·
p1 − 1

2
+ 5(−1)α1

)
.

Note that p1 ≡ 11(mod 12), i.e., p1 ≡ 11, 23 (mod 24). If p1 ≡ 11 (mod 24), then

pα1−1
1 ·

p1 − 1
2
+ 5(−1)α1 ≡ 5(−1)α1−1 + 5(−1)α1 ≡ 0 (mod 12),

namely, φ12(n) is even. If p1 ≡ 23 (mod 24), then

pα1−1
1 ·

p1 − 1
2
+ 5(−1)α1 ≡ 11(−1)α1−1 + 5(−1)α1 ≡ 6 (mod 12),

namely, φ12(n) is odd.
(B) α = 1, i.e., ω(n) ≥ 2. From (4.10)–(4.12), we must have that ω(n) ≤ 3 if φ12(n) is odd. Namely,
n = 2pα1

1 , 2pα1
1 pα2

2 , 6pα1
1 , or 2 · 3βpα1

1 (β ≥ 2) with p1 ≡ p2 ≡ 11 (mod 12). Using the same method as
for (A) in case 1, φ12(n) is odd if and only if n = 2pα1

1 with p1 ≡ 11 (mod 24).
(C) α = 2, i.e., ω(n) ≥ 2. If β = 0, by (4.13), we must have that ω(n) = 2 if φ12(n) is odd, namely,
n = 4pα1

1 with p1 ≡ 11 (mod 12). Then by (4.13),

φ12(4pα1
1 ) =

1
3

(
pα1−1

1
p1 − 1

2
+ (−1)α1+3

)
is always even.

If β ≥ 1, i.e., ω(n) ≥ 3, by (4.14)–(4.15), we must have that ω(n) = 3 if φ12(n) is odd. Namely,
n = 4 · 3βpα1

1 (β ≥ 1) with p1 ≡ 11 (mod 12). If β ≥ 2, then by (4.15),

φ12(4 · 3βpα1
1 ) =

1
12
φ(4 · 3βpα1

1 ) = 3β−2 pα1−1
1 (p1 − 1)

is always even. Thus, β = 1; by (4.14), φ12(12 pα1
1 ) = 1

3

(
pα1−1

1 (p1 − 1) + (−1)α1+3) is odd.
(D) α ≥ 3 . If β = 0, i.e., ω(n) ≥ 2, then by (4.16) and R′Pk

= {11}, we know that φ12(n) = 1
12φ(n) +

1
6 (−1)Ω(n) 2 ω(n) is always even in this case.

If β = 1, i.e.,ω(n) ≥ 3, then by (4.17) and R′Pk
= {11}, we know that φ12(n) = 1

12φ(n)+ 1
12 (−1)Ω(n) 2 ω(n)

is always even in this case.
If β ≥ 2, i.e., ω(n) ≥ 3, then by (4.18) and R′Pk

= {11}, we know that φ12(n) = 1
12φ(n) = 2α−2 ·

3β−1∏k
i=1 pαi−1

i (pi − 1) is always even.
Case 4. {5, 7} ⊆ R′Pk

or 1 ∈ R′Pk
.

(A) If {5, 7} ⊆ R′Pk
, by (4.2) we have that φ12(n) = 1

12φ(n) is always even.
(B) If 1 ∈ R′Pk

, then by (4.2), φ12(n) = 1
12φ(n); thus, we must have that k = 1, α ≤ 1, and β = 0 if φ12(n)

is odd. Namely, n = pα1
1 or 2pα1

1 with p1 ≡ 1 (mod 12). In this case, φ12(n) = 1
12 pα1−1

1 (p1 − 1) is odd if
and only if p1 ≡ 13 (mod 24).

From the above, we have completed the proof of Theorem 5.2.
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6. Final remark

In [2, 8], Cai, et al. gave the explicit formulae for the generalized Euler functions denoted by
φe(n) for e = 3, 4, 6. The key point is that the derivation of [ n

e ] can be obtained by utilizing the
corresponding Jacobi symbol for e = 3, 4, 6. In the present paper, by applying Lemmas 2.1 and 2.2, the
exact formulae for φ8(n) and φ12(n) have been given and the parity has been determined. Therefore,
the obvious expression for [n

e ] depends on the Jacobi symbol, seems to be the key to finding the exact
formulae for φe(n).

We propose the following conjecture.
Conjecture 6.1. Let e > 1 be a given integer. For any integer d > 2 with gcd(d, e) = 1, there exist
u ∈ Q, a1, a2, a3, bi (1 ≤ j ≤ r) ∈ Z, and q j (1 ≤ j ≤ r) ∈ P, such that

[d
e

]
= u
(
a1d + a2 + a3

(−1
d

)
+

r∑
j=1

b j

(ε j q j

d

))
(2 ∤ d ), (6.1)

or [d
e

]
= u
(
a1d + a2 +

r∑
j=1

b j

(ε j d
q j

))
(2 | d ), (6.2)

where r ≥ 1 and ε j ∈ {1,−1}.
It is easy to see that Conjecture 6.1 is true for e = 2, 3, 4, 6, 8 and 12. (see [2, 8] and (2.1), (2.2)).

If the formulas for (6.1) and (6.2) in the above conjecture can be obtained, then, by (1.1), using the
properties of Möbius functions, we can find the exact formulae for φe(n).
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