In this paper we perform a further investigation for $ r $-gcd-sum function over $ r $-regular integers $ (\bmod\ n^{r}) $, and we derive two kinds of asymptotic formulas by making use of Dirichlet product, Euler product and some techniques. Moreover, we also establish estimates for the generalized $ r $-lcm-sum function over $ r $-regular integers $ (\bmod\ n) $.
Citation: Zhengjin Bu, Zhefeng Xu. Asymptotic formulas for generalized gcd-sum and lcm-sum functions over $ r $-regular integers $ (\bmod\ n^{r}) $[J]. AIMS Mathematics, 2021, 6(12): 13157-13169. doi: 10.3934/math.2021760
In this paper we perform a further investigation for $ r $-gcd-sum function over $ r $-regular integers $ (\bmod\ n^{r}) $, and we derive two kinds of asymptotic formulas by making use of Dirichlet product, Euler product and some techniques. Moreover, we also establish estimates for the generalized $ r $-lcm-sum function over $ r $-regular integers $ (\bmod\ n) $.
[1] | P. Haukkanen, On a gcd-sum function, Aequationes Math., 76 (2008), 168–178. |
[2] | O. Bordells, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Seq., 10 (2007), 1–13. |
[3] | T. Hilberdink, F. Luca, L. Tóth, On certain sums concerning the gcd's and lcm's of k positive integers, Int. J. Number Theory, 16 (2020), 77–90. doi: 10.1142/S1793042120500049 |
[4] | V. S. R. Prasad, P. A. Reddy, M. G. Rao, On the partial sums of the dirichlet series of the $r$-gcd-sum function, Int. J. Math. Comput. Appl. Res., 3 (2013), 65–76. |
[5] | M. G. Rao, $r$-regular Integers Modulo $n^{r}$, Turkish J. Comput. Math. Edu., 12 (2021), 1047–1053. |
[6] | L. Tóth, Regular integers modulo n, Ann. Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263–275. |
[7] | L. Tóth, A gcd-sum function over regular integers modulo n, J. Integer Seq., 12 (2009), 1–8. |
[8] | D. Zhang, W. Zhai, Mean values of a gcd-sum function over regular integers modulo n, J. Integer Seq., 13 (2010), 1–11. |
[9] | V. S. R. Prasad, P. A. Reddy, M. G. Rao, On a $r$-gcd-sum function over $r$-regular integers modulo $n^r$, Int. J. Soft Comput. Eng., 3 (2013), 7–11. |
[10] | V. L. Klee, A generalization of Euler's $\varphi$-function, Am. Math. Mon., 55 (1948), 358–359. |
[11] | S. Ikeda, K. Matsuoka, On the lcm-sum function, J. Integer Seq., 17 (2014), 1–11. |
[12] | D. Suryanarayana, V. S. R. Prasad, Sum functions of k-ary and semi-k-ary divisors, J. Aust. Math. Soc., 15 (1973), 148–162. doi: 10.1017/S1446788700012908 |
[13] | L.Tóth, The unitary analogue of Pillai's arithmetical function, Collect. Math., 40 (1989), 19–30. |
[14] | E. Cohen, Some totient functions, Duke Math. J., 23 (1956), 515–522. |