Research article Special Issues

Asymptotic formulas for generalized gcd-sum and lcm-sum functions over $ r $-regular integers $ (\bmod\ n^{r}) $

  • Received: 28 May 2021 Accepted: 09 September 2021 Published: 15 September 2021
  • MSC : 11A25, 11N37

  • In this paper we perform a further investigation for $ r $-gcd-sum function over $ r $-regular integers $ (\bmod\ n^{r}) $, and we derive two kinds of asymptotic formulas by making use of Dirichlet product, Euler product and some techniques. Moreover, we also establish estimates for the generalized $ r $-lcm-sum function over $ r $-regular integers $ (\bmod\ n) $.

    Citation: Zhengjin Bu, Zhefeng Xu. Asymptotic formulas for generalized gcd-sum and lcm-sum functions over $ r $-regular integers $ (\bmod\ n^{r}) $[J]. AIMS Mathematics, 2021, 6(12): 13157-13169. doi: 10.3934/math.2021760

    Related Papers:

  • In this paper we perform a further investigation for $ r $-gcd-sum function over $ r $-regular integers $ (\bmod\ n^{r}) $, and we derive two kinds of asymptotic formulas by making use of Dirichlet product, Euler product and some techniques. Moreover, we also establish estimates for the generalized $ r $-lcm-sum function over $ r $-regular integers $ (\bmod\ n) $.



    加载中


    [1] P. Haukkanen, On a gcd-sum function, Aequationes Math., 76 (2008), 168–178.
    [2] O. Bordells, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Seq., 10 (2007), 1–13.
    [3] T. Hilberdink, F. Luca, L. Tóth, On certain sums concerning the gcd's and lcm's of k positive integers, Int. J. Number Theory, 16 (2020), 77–90. doi: 10.1142/S1793042120500049
    [4] V. S. R. Prasad, P. A. Reddy, M. G. Rao, On the partial sums of the dirichlet series of the $r$-gcd-sum function, Int. J. Math. Comput. Appl. Res., 3 (2013), 65–76.
    [5] M. G. Rao, $r$-regular Integers Modulo $n^{r}$, Turkish J. Comput. Math. Edu., 12 (2021), 1047–1053.
    [6] L. Tóth, Regular integers modulo n, Ann. Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263–275.
    [7] L. Tóth, A gcd-sum function over regular integers modulo n, J. Integer Seq., 12 (2009), 1–8.
    [8] D. Zhang, W. Zhai, Mean values of a gcd-sum function over regular integers modulo n, J. Integer Seq., 13 (2010), 1–11.
    [9] V. S. R. Prasad, P. A. Reddy, M. G. Rao, On a $r$-gcd-sum function over $r$-regular integers modulo $n^r$, Int. J. Soft Comput. Eng., 3 (2013), 7–11.
    [10] V. L. Klee, A generalization of Euler's $\varphi$-function, Am. Math. Mon., 55 (1948), 358–359.
    [11] S. Ikeda, K. Matsuoka, On the lcm-sum function, J. Integer Seq., 17 (2014), 1–11.
    [12] D. Suryanarayana, V. S. R. Prasad, Sum functions of k-ary and semi-k-ary divisors, J. Aust. Math. Soc., 15 (1973), 148–162. doi: 10.1017/S1446788700012908
    [13] L.Tóth, The unitary analogue of Pillai's arithmetical function, Collect. Math., 40 (1989), 19–30.
    [14] E. Cohen, Some totient functions, Duke Math. J., 23 (1956), 515–522.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1964) PDF downloads(73) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog